
Java Just in Time: task questions

John Latham

October 24, 2017

Contents

1 Chapter 1 Introduction 4
1.6 Section / task 1.6 Our first Java program 4
1.7 Section / task 1.7 Our second Java program 4

2 Chapter 2 Sequential execution and program errors 5
2.2 Section / task 2.2 Hello world 5
2.3 Section / task 2.3 Hello world with a syntactic error 5
2.4 Section / task 2.4 Hello world with a semantic error 6
2.5 Section / task 2.5 Hello solar system 6
2.6 Section / task 2.6 Hello solar system with a run time error. 7
2.7 Section / task 2.7 Hello anyone 7
2.8 Section / task 2.8 Hello anyone with a logical error 8
2.9 Section / task 2.9 Hello solar system, looking at the layout 9

3 Chapter 3 Types, variables and expressions 9
3.2 Section / task 3.2 Age next year 9
3.4 Section / task 3.4 Age next year with a command line argument 10
3.5 Section / task 3.5 Finding the volume of a fish tank 10
3.6 Section / task 3.6 Sum the first N numbers – incorrectly 11
3.7 Section / task 3.7 Disposable income 12
3.8 Section / task 3.8 Sum the first N numbers – correctly 14
3.9 Section / task 3.9 Temperature conversion 15

4 Chapter 4 Conditional execution 15
4.2 Section / task 4.2 Oldest spouse 1 15
4.3 Section / task 4.3 Oldest spouse 2 16
4.4 Section / task 4.4 Film certificate age checking 16

5 Chapter 5 Repeated execution 17
5.2 Section / task 5.2 Minimum tank size 17
5.3 Section / task 5.3 Minimum bit width 18
5.5 Section / task 5.5 Compound interest: known target 18
5.6 Section / task 5.6 Compound interest: known years 19
5.7 Section / task 5.7 Average of a list of numbers 19

1

CONTENTS

5.8 Section / task 5.8 Single times table 20
5.9 Section / task 5.9 Age history 21
5.10 Section / task 5.10 Home cooked Pi 22

6 Chapter 6 Control statements nested in loops 23
6.2 Section / task 6.2 Film certificate age checking the wholequeue 23
6.3 Section / task 6.3 Dividing a cake (GCD) 23
6.4 Section / task 6.4 Printing a rectangle 24
6.5 Section / task 6.5 Printing a triangle 24
6.6 Section / task 6.6 Multiple times table 25
6.7 Section / task 6.7 Luck is in the air: dice combinations 26

7 Chapter 7 Additional control statements 27

8 Chapter 8 Separate methods and logical operators 27
8.2 Section / task 8.2 Age history with two people 27
8.3 Section / task 8.3 Age history with a separate method 28
8.4 Section / task 8.4 Dividing a cake with a separate method for GCD 28
8.5 Section / task 8.5 Multiple times table with separate methods 29
8.6 Section / task 8.6 Age history with day and month 29
8.7 Section / task 8.7 Truth tables 29
8.8 Section / task 8.8 Producing a calendar 30

9 Chapter 9 Consolidation of concepts so far 31

10 Chapter 10 Separate classes 31
10.2 Section / task 10.2 Age history with Date class 31
10.3 Section / task 10.3 Improving the Date class: lessThan() and equals() methods . 32
10.4 Section / task 10.4 Improving the Date class: toString() method 33
10.5 Section / task 10.5 Improving the Date class: addYear()method 34

11 Chapter 11 Object oriented design 35
11.2 Section / task 11.2 Age history revisited 35
11.3 Section / task 11.3 Greedy children 39

12 Chapter 12 Software reuse and the standard Java API 45
12.2 Section / task 12.2 A reusable Date class, with doc comments 45
12.5 Section / task 12.5 Simple Encryption 45

13 Chapter 13 Graphical user interfaces 48
13.2 Section / task 13.2 Hello world with a GUI 48
13.3 Section / task 13.3 Hello solar system with a GUI 48
13.4 Section / task 13.4 Hello solar system with a GridLayout. 48
13.5 Section / task 13.5 Adding JLabels in a loop 49
13.7 Section / task 13.7 Stop clock 50
13.8 Section / task 13.8 GCD with a GUI 51
13.9 Section / task 13.9 Enabling and disabling components 51
13.12Section / task 13.12 Single times table with a ScrollPane 51

2

CONTENTS

14 Chapter 14 Arrays 52
14.2 Section / task 14.2 Salary analysis 52
14.3 Section / task 14.3 Sorted salary analysis 53
14.4 Section / task 14.4 Get a good job 54
14.5 Section / task 14.5 Sort out a job share? 55
14.6 Section / task 14.6 Diet monitoring 57
14.7 Section / task 14.7 A weekly diet 61

15 Chapter 15 Exceptions 67
15.2 Section / task 15.2 Age next year revisited 67
15.3 Section / task 15.3 Age next year with exception avoidance 68
15.4 Section / task 15.4 Age next year with exception catching 68
15.5 Section / task 15.5 Age next year with multiple exception catching 68
15.6 Section / task 15.6 Age next year throwing an exception 68
15.7 Section / task 15.7 Single times table with exception catching 69
15.8 Section / task 15.8 A reusable Date class with exceptions 69

16 Chapter 16 Inheritance 70
16.3 Section / task 16.3 The Person class 70
16.4 Section / task 16.4 The AudienceMember class 72
16.5 Section / task 16.5 The Punter class 72
16.6 Section / task 16.6 The Person abstract class 73
16.7 Section / task 16.7 The remaining simple subclasses of Person 73
16.8 Section / task 16.8 The MoodyPerson classes 74
16.11Section / task 16.11 The Game class 75
16.12Section / task 16.12 The Worker classes 78
16.13Section / task 16.13 The CleverPunter class 79
16.15Section / task 16.15 The Object class and constructor chaining 79
16.16Section / task 16.16 Overloaded methods versus override 80

17 Chapter 17 Making our own exceptions 80
17.3 Section / task 17.3 The Date class with its own exceptions 80
17.4 Section / task 17.4 The Notional Lottery with exceptions 80

18 Chapter 18 Files 82
18.2 Section / task 18.2 Counting bytes from standard input 82
18.3 Section / task 18.3 Counting characters from standard input 83
18.4 Section / task 18.4 Numbering lines from standard input. 84
18.5 Section / task 18.5 Numbering lines from text file to textfile 86
18.6 Section / task 18.6 Numbering lines from and to anywhere. 86
18.7 Section / task 18.7 Text photographs 87
18.8 Section / task 18.8 Contour points 88

19 Chapter 19 Generic classes 89
19.2 Section / task 19.2 A pair of any objects 89
19.3 Section / task 19.3 A generic pair of specified types 90
19.4 Section / task 19.4 Autoboxing and auto-unboxing of primitive values 90
19.5 Section / task 19.5 A conversation of persons 91

3

20 Chapter 20 Interfaces, including generic interfaces 91
20.3 Section / task 20.3 Sorting a text file using an array 91
20.4 Section / task 20.4 Translating documents 92
20.5 Section / task 20.5 Sorting valuables 92

21 Chapter 21 Collections 93
21.2 Section / task 21.2 Reversing a text file 93
21.3 Section / task 21.3 Sorting a text file using an ArrayList. 95
21.4 Section / task 21.4 Prime numbers 96
21.5 Section / task 21.5 Sorting a text file using a TreeSet 98
21.8 Section / task 21.8 Word frequency count sorted by frequency 98
21.9 Section / task 21.9 Collections of collections 99

22 Chapter 22 Recursion 101
22.3 Section / task 22.3 Lecture attendance 101
22.4 Section / task 22.4 Sum of ages of descendants 101
22.5 Section / task 22.5 Factorial 101
22.6 Section / task 22.6 Fibonacci 102
22.7 Section / task 22.7 Number puzzle 102
22.8 Section / task 22.8 Dice combinations 103
22.10Section / task 22.10 Tower of Hanoi 104
22.11Section / task 22.11 Friend book 104

23 Chapter 23 The end of the beginning 106

1 Chapter 1 Introduction

1.6 Section / task 1.6 Our first Java program

• Aim of example: To show the mechanics of processing a finishedJava source program
so that it can berun , through to actually running it.

• Coursework title:Compile and run HelloWorld

• Coursework summary: Tocompileandrun theHelloWorld program.

• Question: Carefully type in thesource codefor theHelloWorld program, and save it in
the appropriately namedfile. Check it to make sure you have not made any typing errors
– otherwise you may get error messages that will alarm you! (Try to get theindentation
right – e.g. line 3 has two spaces at the front, and line 5 has four.) Nowcompileandrun
it. Record your progress and any observations you make, in your logbook.

1.7 Section / task 1.7 Our second Java program

• Aim of example: To reinforce the process of thecompile andrun cycle of a Java pro-
gram.

4

• Coursework title:Compile and run HelloSolarSystem

• Coursework summary: Tocompileandrun theHelloSolarSystem program.

• Question: Carefully type in thesource codefor the HelloSolarSystem program, and
save it in the appropriately namedfile. Check it to make sure you have not made any
typing errors – otherwise you may get error messages that will alarm you! (Try to get
the indentation right – e.g. line 3 has two spaces at the front, and line 5 has four.) Now
compileandrun it. Record your progress and any observations in your logbook.

2 Chapter 2 Sequential execution and program errors

2.2 Section / task 2.2 Hello world

• Aim of example: To introduce some very basic Java concepts, including themain method
andSystem.out.println() .

• Coursework title:HelloWorld in French

• Coursework summary: Write a program to greet the whole world, in French!

• Question: Write a new version ofHelloWorld which gives its greeting in French (or
any other language of your choice, apart from English). You will learn most if you try
to do this without looking at the original version. Your program should still be called
HelloWorld , as only the messagedata is in French. Type the program in and save it in
the appropriately namedfile. Check it against the original to see you have not made any
mistakes – otherwise you may get error messages that will alarm you. Thencompileand
run it.

2.3 Section / task 2.3 Hello world with a syntactic error

• Aim of example: To introduce the principle of program errors, in particularsyntactic
error s. We also see that astring literal must be ended on the same line its starts on.

• Coursework title:Fortune syntactic errors

• Coursework summary: Take a given program that hassyntactic errors in it, and get it
working.

• Question: Carefully type in the following programexactly. It contains some deliberate
mistakes – type them in anyway even if you spot them as you readthe code.

001: public class Fortune
002: {

003: public static void main[String() args]
004: {

005: System.out,println(’Sometimes having a fortune is too exp ensive!");
006: }

007: }

5

2.4 Section / task 2.4 Hello world with a semantic error

Now compile the program and examine the error messages. Record these in your log-
book, each along with your best attempt to explain the meaning and the cause of it. Can
you see any errors which appear not to have caused a message? If so, record these too.

Now fix the errorsone at a time, and compile the program in between. Record any new
error messages that appear, along with your explanation forthem.

Optional extra: Make the smallest number of edits to yourHelloWorld program so
as to havejavac produce the largest number ofsyntactic errors! For example, what
happens if you delete a space between two words of the program?

2.4 Section / task 2.4 Hello world with a semantic error

• Aim of example: To introducesemantic errors and note that these andsyntactic errors
arecompile time errors.

• Coursework title:ManchesterWeather semantic errors

• Coursework summary: Take a given program that hassemantic errors in it, and get it
working.

• Question: Carefully type in the following programexactly. It contains some deliberate
mistakes – type them in anyway even if you spot them as you readthe code.

001: public class ManchesterWeather
002: {

003: public static avoid main(spring[] args)
004: {

005: Cistern.flush.printline("Rainfalls keep dropping on my h ead!");
006: }

007: }

Now compile the program and examine the error messages. Record these in your log-
book, each along with your best attempt to explain the meaning and the cause of it. Can
you see any errors which appear not to have caused a message? If so, record these too.

Now fix the errorsone at a time, and compile the program in between. Record any new
error messages that appear, along with your explanation forthem.

2.5 Section / task 2.5 Hello solar system

• Aim of example: To introduce the principle ofsequential execution.

• Coursework title:HelloFamily

• Coursework summary: Write a program to greet some of your family.

• Question: Preferably without looking atHelloSolarSystem , write a program called
HelloFamily which greets your maternal grand parents and all their descendants. Don’t
forget to include yourself. If you have a lot of relatives, then you may limit your program

6

2.6 Section / task 2.6 Hello solar system with a run time error

to around 12 of them if you wish. The greeting must be done in alphabetical order by
name – so you had better plan the output before you start typing.

(Hint: one approach would be to type the names into atext file, one name per line, and
then use some program whichsorts lines of text – for example thesort program. After
this the resulting text could be edited to become the final program.)

2.6 Section / task 2.6 Hello solar system with a run time error

• Aim of example: To introduce the principle ofrun time error s.

• Coursework title:Quote run time errors

• Coursework summary: Take a given program that hasrun time error s in it, and get it
working.

• Question: Carefully type in the following programexactly. It contains some deliberate
mistakes – type them in anyway even if you spot them as you readthe code.

001: public class Quote
002: {

003: public void Main(String args)
004: {

005: System.out.println("Programming is about making the stup id seem clever.");
006: System.out.println(" - ˆ - ");
007: System.out.println(0 / 0);
008: System.out.println(" = ");
009: System.out.println(" (At least, to the dumb user!) ");
010: }

011: }

Now compile the program, and if you have typed it correctly it should compile without
errors. However, when yourun the program you will get an error message. Record this
in your logbook, along with your best attempt to explain the meaning and the cause of it.

Now fix the error and run the program again. Record any new error messages that appear,
along with your explanation for them.

2.7 Section / task 2.7 Hello anyone

• Aim of example: To introduce the principle of making Java programs perform a variation
of their task based oncommand line arguments, which can be accessed via anindex.
We also meet stringconcatenation.

• Coursework title:FlatterMe

• Coursework summary: Write a program to say how wonderful theuser is.

• Question: Without looking atHelloAnyone , write a program calledFlatterMe which
flatters the person named as the firstcommand line argument, three times. The first

7

2.8 Section / task 2.8 Hello anyone with a logical error

comment should start with the person’s name, the second should end with it, and the
third should have some text either side of the name. (Hint: you will need to use two
concatenation operators for that.)

2.8 Section / task 2.8 Hello anyone with a logical error

• Aim of example: To introduce the principle oflogical errors.

• Coursework title:Birthday logical errors

• Coursework summary: Take a given program that haslogical errors in it, and get it
working.

• Question: Carefully type in the following programexactly. It contains some deliberate
mistakes – type them in anyway even if you spot them as you readthe code.

001: public class Birthday
002: {

003: public static void main(String[] args)
004: {

005: System.out.print("Name: + args[1] + , " + args[2] + ";");
006: System.out.println("Born: " + args[0]);
007: }

008: }

Now compile the program, and if you have typed it correctly it should compile without
errors. Next you shouldrun the program withthreecommand line arguments – the
first should be your personal name, the second should be your surname or family name,
and the third should be your date of birth, e.g.24/04/1959 . It is intendedto print a
result like the following.

Console Input / Output
$ java Birthday John Latham 24/04/1959

Name: Latham, John; Born: 24/04/1959
$ _

Note the position of spaces and punctuation in the desired output. However you will see
that the output you actually get is wrong! Record the errors in your logbook, along with
your best attempt to explain the cause of them.

Now fix the errors and run the program again. Record any new errors that appear, along
with your explanation for them.

During this process you should have learnt about amethodwhich is similar toSystem.out.println() .
Record what this method is called and what it does.

8

2.9 Section / task 2.9 Hello solar system, looking at the layout

2.9 Section / task 2.9 Hello solar system, looking at the layout

• Aim of example: To begin to explore the decisions behind the way we lay out thesource
codefor a program.

• Coursework title:Limerick layout

• Coursework summary: Take a given program and lay it out properly.

• Question: Carefully type in the following programexactly. It contains very poor layout
– type it in anyway even if you can see how it should be laid out as you read the code.

001: public class Limerick {public static void main(String[]args) {System.out.
002: println("There was a young user of Java");System.out.prin tln(
003: "Whose coding was such a palava!");System.out.println(
004: "His layout was pooh!");System.out.println(
005: "So what did we do?");System.out.println(
006: "We told him to stick to making coffee!"); }}

You shouldcompile the program, and if you have typed it correctly it should compile and
run without errors. Record all the instances of poor layout you can see, in your logbook.

Now fix the layout!

3 Chapter 3 Types, variables and expressions

3.2 Section / task 3.2 Age next year

• Aim of example: To introduce the concepts oftype, int , variable, expressionandas-
signment statement. We also find out how to convert a number to a string, and discover
what it means fordata to behard coded.

• Coursework title:Hard coded YearsBeforeRetirement

• Coursework summary: Write a program to determine how many yearsyouhave before
you retire!

• Question: Preferably without looking atAgeNextYear , write a program calledYearsBeforeRetirement
which has your agehard coded into it, along with the age you expect to retire at (proba-
bly 68 – although that may well change before you get there!).Your program will need
two variables for these values. It should then compute the difference between them and
store it in a third variable, for which you should choose anappropriatename. Finally, it
should produce three lines of output, similar to the following.

Console Input / Output
$ java YearsBeforeRetirement

My age now is 58
I will retire at the age of 68
Years left working is 10
$ _

9

3.4 Section / task 3.4 Age next year with a command line argument

3.4 Section / task 3.4 Age next year with a command line argument

• Aim of example: To introduce the idea of converting acommand line argumentinto an
int and using the value in a program.

• Coursework title:Command lineYearsBeforeRetirement

• Coursework summary: Write a program to determine how many years the user has before
he or she retires.

• Question: Here you will write another version ofYearsBeforeRetirement , which is
similar to the fullyhard codedversion of the program, but takes the user’s age as its first
command line argument. The retirement age is still to be hard coded as 68.

Beforeimplementing the program, you should designtest data for various tests which
do the following.

– Make the program behave sensibly.

– Make the program behave inappropriately (i.e. a silly inputresulting in a silly
output).

– Make the program crash.

You should record this data in your logbook along with what you expect from each test.

Then copy your previous version of the program and alter it tosuit the new requirement.
You will learn most if you try not to look at the latest versionof AgeNextYear while you
do this. Finally,run it with your pre-planned tests and record whether the outcome was
as you expected.

3.5 Section / task 3.5 Finding the volume of a fish tank

• Aim of example: To reinforce the use ofcommand line arguments andexpressions,
and introduce the idea of splitting up lines of code which aretoo long, whilst maintaining
their readability. We also see that avariable can be given a value when it is declared.

• Coursework title:FieldPerimeter

• Coursework summary: Write a program to determine how much fence is needed to sur-
round a rectangular field.

• Question: Here you will write a program calledFieldPerimeter which takes the length
and width of a field as its twocommand line arguments, and computes the length of
fence needed to enclose the field. (The simplest way to compute this islength+ length+
width+width).

Beforeimplementing the program, you should designtest data for various tests which
do the following.

– Make the program behave sensibly.

10

3.6 Section / task 3.6 Sum the first N numbers – incorrectly

– Make the program behave inappropriately (i.e. a silly inputresulting in a silly
output).

– Make the program crash.

You should record this data in your logbook along with what you expect from each test.

You will learn most if you try not to look atFishTankVolume while writing your pro-
gram. Afterwards,run it with your pre-planned tests and record whether the outcome
was as you expected.

3.6 Section / task 3.6 Sum the first N numbers – incorrectly

• Aim of example: To introduce the principle ofoperator precedence, and have a program
containing abug.

• Coursework title:FishTankMaterials

• Coursework summary: Take a program withbugs in it, and fix them.

• Question: Suppose you want to build fish tanks. Each tank has five pieces of glass – two
sides, a front, a back and a bottom. It also has twelve pieces of metal angle-strip to form
the edges. Below is a program which computes the surface areaand the length of the
edges for a tank with dimensions given by threecommand line arguments.

Design sometest datafor the program, predicting what the surface area and edge length
should be if the program worked correctly. For simplicity, you do not need to worry
about missing or meaningless arguments for this program. Record your planned test data
in your logbook.

Then carefully type in the program, as is, andrun it with your tests. Record the actual
results, and attempt to explain thebugs, in your logbook.

001: public class FishTankMaterials
002: {

003: public static void main(String[] args)
004: {

005: int width = Integer.parseInt(args[0]);
006: int depth = Integer.parseInt(args[1]);
007: int height = Integer.parseInt(args[2]);
008:
009: int surfaceArea = width + height * depth + height + 2 * width + depth ;
010:
011: int edgesLength = height * width * depth + 4;
012:
013: System.out.println("The surface area of a tank with dimens ions "
014: + "(" + width + "," + depth + "," + height + ") "
015: + "is " + surfaceArea);
016:
017: System.out.println("The length of the edges of a tank with d imensions "
018: + "(" + width + "," + depth + "," + height + ") "

11

3.7 Section / task 3.7 Disposable income

019: + "is " + edgesLength);
020: }

021: }

Now fix the program and test it again, making a record of your bug corrections. Does
the program now produce the results you originally predicted, or is it still wrong, or were
your original predictions wrong?

3.7 Section / task 3.7 Disposable income

• Aim of example: To introduceoperator associativity. We also take a look at thestring
literal escape sequences.

• Coursework title:ThreeWeights

• Coursework summary: Write a program to show what weights canbe weighed using a
balance scale and three given weights.

• Question: In the days before accurate mechanical spring weighing scales (let alone digital
ones), gold merchants were quite clever in their use of a small number of brass or lead
weights, and a balance scale. (Indeed, many still use these in preference to inferior
modern technology!) They would place the gold to be weighed in the left pan of the
balance scale, and then place known weights in the right pan,and maybe also in the left
pan, until the scales balanced. For example, suppose an unknown amount of gold was
placed in the left pan. The merchant might experiment with a number of weights until
he or she managed to make it balance with a known weight ofR ounces in the right pan,
andL ounces in the left pan along with the gold. This would show that the gold weighed
R− L ounces. In order to be able to weigh different amounts of gold, each merchant
would carry a small number of known weights. When making a particular weighing,
each weight could be placed in one of three positions: in the left pan with the gold, in the
right one or not used.[?]

Weights here have a positive effect

Weights here have no effect

Weights here have a negative effect.

Suppose then that a merchant carries just three known brass or lead weights. Each of
the three weights has three positions, thus giving rise to 33 permutations. These 27
permutations are listed below.

12

3.7 Section / task 3.7 Disposable income

Position of
Weight 1 Weight 2 Weight 3

1 Left Left Left
2 Left Left Off
3 Left Left Right
4 Left Off Left
5 Left Off Off
6 Left Off Right
7 Left Right Left
8 Left Right Off
9 Left Right Right

Position of
Weight 1 Weight 2 Weight 3

10 Off Left Left
11 Off Left Off
12 Off Left Right
13 Off Off Left
14 Off Off Off
15 Off Off Right
16 Off Right Left
17 Off Right Off
18 Off Right Right

Position of
Weight 1 Weight 2

19 Right Left
20 Right Left
21 Right Left
22 Right Off
23 Right Off
24 Right Off
25 Right Right
26 Right Right
27 Right Right

Not all of these are useful. For example, at least one of them results in a weighing of zero
– the one in which none of the weights are used. In fact,anypermutation in which the
total of the known weights in the two pans isequal, results in a weighing of zero amount
of gold. Then also, any permutation for which the total knownweight in the left pan is
greater than that of the right pan is not useful – this would need a negativeweight of
gold in the left pan in order to balance!

Smart gold merchants chose the weights they would carry in such a way as to maximize
their usefulness – that is, to enable the greatest range of weighings for a given number
of carried weights. Suppose the number of weights carried isto be three. To maximize
their effectiveness, there must be only one way of weighing zero, that is, the sum of any
two weights must not equal the third. Also, of the 26 non-zeroweighing permutations,
for each that totals a positive weight, i.e., where the sum ofthe weights in the right pan
exceeds that in the left, there is a corresponding negative weighing – formed by swapping
the weights in the left and right pans over. This means there will be 13 permutations
giving positive weighings, and 13 which give the opposite negative weighings. These
negative weighings are of no use, and some of the positive weighings could add up to
the same amount, which would not be efficient. The maximum effectiveness is achieved
when the 13 positive weighings are the numbers 1 to 13.

You are going to write a program to help you experiment with this scenario, and by a
mixture of trial and error with your grasp of number theory, discover which three weight
values gives the ability to weigh whole amounts from 1 to 13 inclusive.

Your program should be calledThreeWeights , and will take the three weights ascom-
mand line arguments. It should then print out all 27 possible weighing values. Each
value will appear on one line of the output. You will use 27 calls toSystem.out.println() .

Attempt to derive which three weights are the best to use, that is, the three values which
produce weighing values from-13 through to13 inclusive. If you arerunning in a Unix
environment, and the first, or only, item on each output line is the weighing value, then
the following command may help you assess your output.

13

3.8 Section / task 3.8 Sum the first N numbers – correctly

Console Input / Output
$ java ThreeWeights 1 2 3 | sort -n

(Output shown using multiple columns to save space.)

-6 -4 -2 -1 0 1 2 3 4
-5 -3 -2 -1 0 1 2 3 5
-4 -3 -2 -1 0 1 2 4 6
$ _

This runs your program and pipes the output of it into the input of sort , for which the
-n option means ‘sort numerically’.

On Microsoft Windows, the nearest equivalent isjava ThreeWeights 1 2 3 | sort
which sorts the lines lexicographically (alphabetically), rather than numerically – e.g.10
comes before2. Nevertheless, even this is helpful.

As you can see from the above output, there are duplicate values in the 27 listed, so1
2 3 is not the right answer. (They don’t even add up to13. . .) You will substitute the
arguments you think the weights should be instead. If you aresuccessful, attempt to
explain why your values are the best three weights, in your logbook.

Coffee
time:

When weighing food, one would not wish to place weights in thepan con-
taining the food, and so grocers did not use a three state, negative weighing
scheme. Whatfour weights did they use to weigh units of 1 to 15 inclu-
sive? What is the connection between this and your answer forthe gold
merchants?

3.8 Section / task 3.8 Sum the first N numbers – correctly

• Aim of example: To introduce the fact thatinteger division produces a truncated result.
We then look at the interaction between that andoperator associativity.

• Coursework title:RoundPennies

• Coursework summary: Write a program to help a child determine whether she has
enough pennies to go shopping!

• Question: Imagine there is a child who collects pennies in a piggy bank. Her mother tells
her she is allowed to spend some of it when she has saved “aboutX pounds”, whereX
varies depending on what her mother thinks the girl is likelyto want to buy. Your job is
to write a program that helps the girl convert a number of pennies, which she is able to
count up, into “about pounds” – i.e. round the number of pennies to the nearest pound.
The program will take the number of pennies as itscommand line argument, and report
how many pounds it rounds to. So, any non-negative numberless than50 will round to
zero, but 50 through to 149 will round to 1. The value 749 rounds to 7, but 750 and 751
round to 8. And so on.

Start by designingtest data and expected results in your logbook. You do not need to
worry about arguments which are missing or are notinteger numbers, but you should

14

3.9 Section / task 3.9 Temperature conversion

consider what the program will do for negative numbers, eventhough they are not really
valid inputs.

Now write the program, calling itRoundPennies . You will learn most if you try to avoid
looking at any other program while you do this. To get you thinking, the calculation will
exploit the fact thatinteger division truncates its result. However that is not enough. For
example,750 / 100 will yield 7, not8 as we want here. There is some value you must
add to the numerator before thedivision by 100 .

Then, after implementing the program, you shouldrun it with your pre-planned tests
and record whether the outcome was as you expected. Record comments about the neg-
ative cases – is this the behaviour of a more general round-to-the-nearest-whole-number
function? If not, what could we do to make it so?

3.9 Section / task 3.9 Temperature conversion

• Aim of example: To introduce thedouble type and some associated concepts, including
converting to and from strings, anddouble division.

• Coursework title:FahrenheitToCelsius

• Coursework summary: Write a program to convert a temperature from Fahrenheit to
Celsius.

• Question: In this task you will write a program calledFahrenheitToCelsius which
converts a given Fahrenheit temperature into its Celsius equivalent.

Start by designingtest data and expected results in your logbook. You do not need to
worry about arguments which are missing or notreal numbers.

Now designyour program. You can derive the formula by manipulating theone given for
converting the other way. Show your working in your logbook.There is a temperature
at which the Fahrenheit and Celsius measurements are the same. Figure out what this is,
showing your working in your logbook, and add it to your tests.

As always, you will learn most if you try to avoid looking at any other program while
writing this one. Afterwards,run it with your pre-planned tests and record whether the
outcome was as you expected.

4 Chapter 4 Conditional execution

4.2 Section / task 4.2 Oldest spouse 1

• Aim of example: To introduce the idea ofconditional execution, implemented by the
if else statement, and controlled byboolean expressions based on the use ofrelational
operators.

• Coursework title:MaxTwoDoubles

15

4.3 Section / task 4.3 Oldest spouse 2

• Coursework summary: Write a program to find the maximum of twogiven numbers,
using anif else statement.

• Question: In this task you will write a program calledMaxTwoDoubles which takes two
command line arguments, interprets them asdoublevalues, and reports both numbers on
thestandard output, along with their maximum value. You will use anif else statement.

Start by designingtest data and expected results in your logbook. You do not need to
worry about arguments which are missing or are notreal numbers.

Now designyour program, preferably without looking atOldestSpouse . After imple-
menting the program, you shouldrun it with your pre-planned tests and record whether
the outcome was as you expected.

4.3 Section / task 4.3 Oldest spouse 2

• Aim of example: To introduce the idea of nestingif else statements.

• Coursework title:DegreeCategory

• Coursework summary: Write a program to report the degree category of a given mark.

• Question: In this task you will write a program calledDegreeCategory which takes a
student mark (e.g. final year, total assessment mark) and reports what degree category it
is worth. The input is a single number, which might have decimal places in it, entered as
acommand line argument.

Input Required output
input≥ 70 Honours, first class
70> input≥ 60 Honours, second class, division one
60> input≥ 50 Honours, second class, division two
50> input≥ 40 Honours, third class
40> input≥ 32 Pass / ordinary degree
input < 32 Fail

Start by designing yourtest data and expected output in your logbook. You do not
need to worry about input which is invalid. Thendesignand implement your program,
preferably without looking atOldestSpouse . Finally, run it with your pre-planned tests
and record whether your outcome was as you expected.

4.4 Section / task 4.4 Film certificate age checking

• Aim of example: To introduce theif statement without afalse part.

• Coursework title:PassFailDistinction

• Coursework summary: Write a program to report the pass or fail status of an exam can-
didate, giving a message of distinction if appropriate using anif statement.

• Question: In this task you will write a program calledPassFailDistinction which
takes a postgraduate student mark and reports whether it is apass or fail; and then,

16

possibly, that it is a distinction. You will use anif else statementfollowed by anif
statement. Here is the specification of the required output for a given input.

The input is a single number, which might have decimal placesin it, entered as acom-
mand line argument.

Input First line of output
input≥ 50 Pass
input < 50 Fail

Input Second line of output
input≥ 70 Distinction
input < 70 (no second line)

Start by designing yourtest data and expected output in your logbook. You do not
need to worry about input which is invalid. Thendesignand implement your program,
preferably without looking at any others. Finally,run it with your pre-planned tests and
record whether your outcome was as you expected.

5 Chapter 5 Repeated execution

5.2 Section / task 5.2 Minimum tank size

• Aim of example: To introduce the idea ofrepeated execution, implemented by thewhile
loop. We also meet the notion of avariable update.

• Coursework title:MinimumTankSize in half measures

• Coursework summary: Write a program which calculates the minimum size of cubic
tanks to hold given required volumes, where the possible sizes are in steps of 0.5 metre.

• Question: In this task you will write a program calledMinimumTankSize which is the
same as the one we have just covered, except that the tanks canbe made with side lengths
which are any positive whole multiple of 0.5 metre, instead of whole metres. (Hint: use
double for the side length.)

Use the sametest dataas was used for the whole metres version of the program. Start
by planning the expected output, in your logbook.

Thendesignand implement your program, preferably without looking at the previous
version while you do this. When completed,run it with your pre-planned tests and
record whether your outcome was as you expected.

Now change your program so that it has increments of 0.1 metres and test it again with
the same data. Are there some surprises due to the accuracy ofreal numbers? Would
you go so far as to say that some of them are wrong, rather than just inaccurate?

17

5.3 Section / task 5.3 Minimum bit width

5.3 Section / task 5.3 Minimum bit width

• Aim of example: To introduce the idea of usingpseudo codeto help usdesignprograms.
We also meetMath.pow() .

• Coursework title:LargestSquare

• Coursework summary: Write a program to find the largest square number which isless
than or equal to a given number.

• Question: A square number is a whole number which is the square of another (or the
same) whole number. Examples are 0, 1, 4, 9, 16, 25, 36, 49, 64,81, 100, 121, 144, 169,
etc.. In this task you will write a program calledLargestSquare which takes a given
positive integer as itscommand line argument and finds the largest square number
which is less than or equalto that given number.

Start by planning yourtest dataand expected results in your logbook. You do not need
to worry about invalid inputs.

Now think about thedesignof your program. Perhaps the simplest approach to use is
to focus on the square roots, rather than their squares. Start with a value which isequal
to the given number, and keep decrementing it until its square is notgreater than the
number. So, for example, if the given number was 99, then we would start at 99 and
count down until we finally get to 9 – this being the first numberwe find whose square is
less than or equal to 99.

Express thisalgorithm in pseudo codein your logbook.

Finally, implement the program and test it with your test data, recording the results in
your logbook.

Optional extra: Would it be quicker for the program toloop upwards from 0, rather than
downwards from the given command line argument? Write that version as a program
calledLargestSquare2 .

Optional extra: Look in the on-line Java documentation for the JavaMath class, and
find out how to obtain the square root of a number. Use this to speed up your program by
making it start at a number which is much closer to the answer than the given command
line argument is.

5.5 Section / task 5.5 Compound interest: known target

• Aim of example: To reinforce thewhile loop and thecompound statement.

• Coursework title:MinimumBitWidth by doubling

• Coursework summary: Write a program to find the minimumbit width needed to support
a given number of values, by doubling.

• Question: In this task you will write a variation of theMinimumBitWidth program which
works a little more efficiently. Instead of computing a powerof 2 in theloop condition
on eachiteration , your version will accumulate 2 to the power ofnoOfBits in a separate

18

5.6 Section / task 5.6 Compound interest: known years

variable. This can be done by initializing your new variable to 1, and doubling its value
each time you incrementnoOfBits .

You will use the sametest dataas used for the previous version of the program – except,
do not try higher than 1073741824, otherwise your program will not end!

First think about thedesignof your program and plan in your logbook the changes you
need to make to the original version.

Finally, implement the program and test it with your test data, recording the results in
your logbook.

Optional extra: Explain why an input of, say, 1073741825 will cause a never ending
infinite loop. Is there a solution?

5.6 Section / task 5.6 Compound interest: known years

• Aim of example: To introduce thefor loop.

• Coursework title:Power

• Coursework summary: Write a program to raise a given number to the power of a second
given number, without usingMath.pow() .

• Question: What would you do if you needed to compute powers, and somebody had
not already written themethod Math.pow() ? You would write the code yourself, and
perhaps make it available for others to use.

In this task you will write a program, calledPower , that takes twointeger values as
command line arguments and prints out the result of the first number raised to the
power of the second. You may not use theMath.pow() method – somebody had to write
that code, and let us pretend it is you! However, for simplicity, you may assume that both
arguments exist and represent integers, and that the secondnumber is non-negative.

Start by planning yourtest dataand expected results in in your logbook.

Now think about thedesignof your program. One approach is to have avariable to
accumulate the result, which starts off with the value 1. Then, using aloop, this result is
multiplied by the first number as many times as the value of thesecond number. Afor
loop is appropriate for this task. Writepseudo codein your logbook.

Finally implement the program, (ideally without looking atCompoundInterestKnownYears !),
test it with your preplanned tests and record the results in your logbook.

5.7 Section / task 5.7 Average of a list of numbers

• Aim of example: To show how to get the length of alist, note that anindex can be a
variable, and introducetype casting.

• Coursework title:Variance

19

5.8 Section / task 5.8 Single times table

• Coursework summary: Write a program to produce the varianceof some given numbers.

• Question: In statistics, the variance of aset of numbers is one way of measuring the
spread of them. It is the sum of the squares of the deviations (differences) between each
number and the mean average of the numbers, all divided by thenumber of numbers.

For example, a set of student marks{2,4,6,8,10} (out of 10) has a mean of 6 (which
also happens to be one of the marks). The deviations from the mean are{−4,−2,0,2,4}
and the squares of such are{16,4,0,4,16}. The variance is thus(16+4+0+4+16)/5,
which is 8. Whereas, the results{4,5,6,7,8} share the same mean but have a variance
of only 2.

One approach to computing the variance is as follows. First compute the mean average
of the numbers. Then, go through each number and compute the deviation between it
and the mean, squaring this difference and accumulating thesum of all these squared
deviations. Finally, divide that sum by the number of numbers.

In this task you will write a program, calledVariance that takes alist of integer values
ascommand line arguments and prints out the mean average and the variance of them.
You may assume that there is at least one number, and that all the arguments represent
integers.

Here is an examplerun of the program.

Console Input / Output
$ java Variance 2 4 6 8 10

The mean average is 6.0
The variance is 8.0
$ _

Start by planning yourtest dataand expected results in in your logbook.

Now think about thedesign of your program. You can copy the code for computing
the mean of the numbers from the example in this section. Thiswill then be followed
by a secondfor loop to compute the sum of the squares of the deviations between each
number and the mean. You will need morevariables, including one to hold the mean
of the numbers, and another for the sum of the squares of the deviation between each
number and the mean. Then the variance can be computed and output.

Write pseudo codein your logbook.

Finally, implement the program, test it with your preplanned tests and record the results
in your logbook.

5.8 Section / task 5.8 Single times table

• Aim of example: To reinforce thefor loop.

• Coursework title:SinTable

• Coursework summary: Write a program to produce a sin table.

20

5.9 Section / task 5.9 Age history

• Question: In the days before scientific calculators, students of trigonometry used to use
mathematical tables to look up values offunctions, such as sin, cosin and tan.

In this task you will write a program, calledSinTable to produce a sin table. It will take
threeinteger command line arguments: the starting point of the table, the increment
and the ending point. You can assume these arguments represent whole numbers of
degrees and that the increment is positive. Here is an example run .

Console Input / Output
$ java SinTable 0 10 90

--
Sin table from 0 to 90 in steps of 10
sin(0) = 0.0
sin(10) = 0.17364817766693033
sin(20) = 0.3420201433256687
sin(30) = 0.49999999999999994
sin(40) = 0.6427876096865393
sin(50) = 0.766044443118978
sin(60) = 0.8660254037844386
sin(70) = 0.9396926207859083
sin(80) = 0.984807753012208
sin(90) = 1.0
--
$ _

In Java, in order to compute the sin of a value,d, which is expressed in degrees, we can
use the followingexpression.

Math.sin(Math.toRadians(d))

Themethod sin() is available in the standardclassMath . It takes a value, expressed in
radians, andreturn s the sin of that value. The methodtoRadians() , in the same class,
converts a given value in degrees to the corresponding valuein radians.

Start by planning yourtest dataand expected results in in your logbook.

Now think about thedesignof your program. It should use afor loop. Write pseudo
code in your logbook. You will learn most if you try not to look atTimesTable while
designing – perhaps you should compare the two programs after you have completed the
task?

Finally, implement the program, test it with your preplanned tests and record the results
in your logbook.

5.9 Section / task 5.9 Age history

• Aim of example: To introduce the idea of documenting programs usingcomments.

• Coursework title:WorkFuture

21

5.10 Section / task 5.10 Home cooked Pi

• Coursework summary: Write a program to print out all the years from the present day
until the user retires.

• Question: In this task you will write a program, calledWorkFuture , which shows the
future working time of a user, assuming he or she retires at 68. The program will take
two command line arguments, which you may assume are valid. The first is the present
year, the second is the birth year of the user.

An example use of the program might be as follows.

Console Input / Output
$ java WorkFuture 2018 1959

You have 9 years left to work
In 2019 you will have 8 years left to work
In 2020 you will have 7 years left to work
In 2021 you will have 6 years left to work
In 2022 you will have 5 years left to work
In 2023 you will have 4 years left to work
In 2024 you will have 3 years left to work
In 2025 you will have 2 years left to work
In 2026 you will have 1 years left to work
You will retire in 2027
$ _

Start by planning yourtest dataand expected results in your logbook. Next,designthe
program, writingpseudo codein your logbook. As is generally true, you will learn most
if you can avoid referring to the associated example while you do this, and only compare
the two programs when you have finished.

Finally, implement the program – including suitablecomments in the text, and test it.
Record your results in the usual way.

5.10 Section / task 5.10 Home cooked Pi

• Aim of example: To introduce variousshorthand operators forvariable updates, have
another example where we reveal thepseudo code design, and meetMath.abs() and
Math.PI .

• Coursework title:Shorthand operators

• Coursework summary: Go through all the previous programs inthis chapter to see where
shorthand operators could have been used.

• Question: Now that you know about theshorthand operators for updatingvariables,
in this task you will go through all the examples in this chapter and identify all the places
where they could have been used, recording your analysis in your logbook.

Optional extra: Take the program from this section and try it with one more decimal
place. Then try to improve it to extend its accuracy.

22

6 Chapter 6 Control statements nested in loops

6.2 Section / task 6.2 Film certificate age checking the wholequeue

• Aim of example: To introduce the ideas of nesting anif statementwithin a for loop, and
declaring avariable inside acompound statement. We also introduce theconditional
operator.

• Coursework title:MaxList

• Coursework summary: Write a program to find the maximum of a givenlist of numbers.

• Question: In this task you will write a program, calledMaxList , which finds the maxi-
mum of a givenlist of numbers. The numbers are supplied ascommand line arguments.
The program should report the number together with itsindex in the list (counting from
zero). If two or more are jointly the maximum, it should report the one with the lowest
index.

You may assume that the arguments all represent validdouble numbers.

To find the maximum of a list of numbers, your program can startby regarding the first
number as the maximum found so far, and thenlooping through the remaining numbers,
comparing each with the maximum found so far and updating it as necessary.

Take the usual steps of planningtest data and expected results, anddesigning pseudo
codein your logbook, before implementing the program, including suitablecomments,
and recording your results back in your logbook.

6.3 Section / task 6.3 Dividing a cake (GCD)

• Aim of example: To introduce the idea of nesting anif else statementwithin a while
loop.

• Coursework title:DivideCake3

• Coursework summary: Write a program to compute thegreatest common divisorof
three numbers.

• Question: Suppose the mother has three daughters who share their birthday. In this task
you will write a program, calledDivideCake3 , which finds the greatest common divisor
of the three ages given ascommand line arguments and reports the number of portions
the cake should be divided into, and the number of portions each girl should get.

You may assume that the arguments all represent positiveint numbers.

To find thegreatest common divisorof three numbers, your program can find the great-
est common divisor of two of them, and then find the greatest common divisor of that
result and the third one.

Take the usual steps of planningtest data and expected results, anddesigning pseudo
codein your logbook, before implementing the program, including suitablecomments,

23

6.4 Section / task 6.4 Printing a rectangle

and recording your results back in your logbook.

6.4 Section / task 6.4 Printing a rectangle

• Aim of example: To introduce the idea of nesting afor loop within a for loop. We also
meetSystem.out.print() and revisitSystem.out.println() .

• Coursework title:PrintHoledRectangle

• Coursework summary: Write a program to print out a rectanglewith a hole in it.

• Question: In this task you will write a program, calledPrintHoledRectangle , which
prints a rectangle with a hole at the centre. This just means missing out one cell, printing
spaces for it instead. The program takes the width and heightarguments as before, but in
order to ensure there is a centre cell, each of these have one added to them if necessary
to make them an odd number.

You may assume that the arguments represent positiveint numbers.

To ensure aninteger number is odd you can divide it by two, multiply it by two and then
add one! The simplest way to miss out the centre cell is to count all the cells as you print
them, and check the sequence number of a cell just before you print it. The centre cell
will have a sequence number which is the width times the height, divided by two, plus
one.

Take the usual steps of planningtest data and expected results, anddesigning pseudo
codein your logbook, before implementing the program, including suitablecomments,
and recording your results back in your logbook.

6.5 Section / task 6.5 Printing a triangle

• Aim of example: To reinforce the idea of nesting afor loop within a for loop.

• Coursework title:PrintTriangleMirror

• Coursework summary: Write a program to print out an isosceles right angled triangle,
with a straight right edge, and the longest side at the top.

• Question: In this task you will write a program, calledPrintTriangleMirror , which
prints an isosceles right angled triangle with its longest row at the top and the right hand
side straight. The program is given the height as its argument – here is an examplerun .

24

6.6 Section / task 6.6 Multiple times table

Console Input / Output
$ java PrintTriangleMirror 10

[_][_][_][_][_][_][_][_][_][_]
[_][_][_][_][_][_][_][_][_]

[_][_][_][_][_][_][_][_]
[_][_][_][_][_][_][_]

[_][_][_][_][_][_]
[_][_][_][_][_]

[_][_][_][_]
[_][_][_]

[_][_]
[_]

$ _

You may assume that the argument represents a positiveint number.

Each row will consist of a number of space cells (each 3 spaces) followed by a number of
brick cells ("[]"). This will require twoloops inside the outer loop, one after the other.

Take the usual steps of planningtest data and expected results, anddesigning pseudo
codein your logbook, before implementing the program, including suitablecomments,
and recording your results back in your logbook.

6.6 Section / task 6.6 Multiple times table

• Aim of example: To reinforce the idea of havingnested statements within each other,
and explore the idea of using multipleloops in sequence.

• Coursework title:CommonFactorsTable

• Coursework summary: Write a program to produce a table showing pairs of numbers
which share common factors.

• Question: In this task you will write a program, calledCommonFactorsTable , which
prints a 19 times 19 labelled table indicating which of all the pairs made up ofintegers
between 2 and 20, inclusive, have common factors other than one. (That is, theirgreatest
common divisor is greater than one.)

The program’s output will be as follows.

25

6.7 Section / task 6.7 Luck is in the air: dice combinations

Console Input / Output
$ java CommonFactorsTable

-----	-- --------------																		
	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20																		
-----	-- --------------																		
2	--#--	--#--	--#--	--#--	--#--	--#--	--#--	--#--	--#--	--#									
3	--	--#--	--	--#--	--	--#--	--	--#--	--	--#--	--	--#--	--						
4	--#--	--#--	--#--	--#--	--#--	--#--	--#--	--#--	--#--	--#									
5	--	--	--	--#--	--	--	--	--#--	--	--	--	--#--	--	--	--	--#			
6	--#--#--#--	--#--	--#--#--#--	--#--	--#--#--#--	--#--	--#												
7	--	--	--	--	--	--#--	--	--	--	--	--	--#--	--	--	--	--	--		
8	--#--	--#--	--#--	--#--	--#--	--#--	--#--	--#--	--#--	--#									
9	--	--#--	--	--#--	--	--#--	--	--#--	--	--#--	--	--#--	--						
10	--#--	--#--#--#--	--#--	--#--	--#--	--#--#--#--	--#--	--#											
11	--	--	--	--	--	--	--	--	--	--#--	--	--	--	--	--	--	--	--	
12	--#--#--#--	--#--	--#--#--#--	--#--	--#--#--#--	--#--	--#												
13	--	--	--	--	--	--	--	--	--	--	--	--#--	--	--	--	--	--	--	
14	--#--	--#--	--#--#--#--	--#--	--#--	--#--	--#--	--#--	--#										
15	--	--#--	--#--#--	--	--#--#--	--#--	--	--#--	--	--#--	--#								
16	--#--	--#--	--#--	--#--	--#--	--#--	--#--	--#--	--#--	--#									
17	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-- #--	--	--	
18	--#--#--#--	--#--	--#--#--#--	--#--	--#--#--#--	--#--	--#												
19	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--#--	
20	--#--	--#--#--#--	--#--	--#--	--#--	--#--#--#--	--#--	--#											
-----	-- --------------																		
$ _

A "--#" at the intersection of two numbers shows that their greatestcommon divisor is
bigger than one, a"--|" shows otherwise.

This program may reasonably be developed by making changes to theTimesTable pro-
gram. Plan these changes in your logbook, before taking the usual steps of implementing
the program, including suitablecomments, and recording your results back in your log-
book.

6.7 Section / task 6.7 Luck is in the air: dice combinations

• Aim of example: To introduce the idea of usingnested loops to generate combinations.

• Coursework title:SumOfCubedDigits

• Coursework summary: Write a program that determines which 3digit decimal whole
numbers areequal to the sum of the cubes of their digits.

• Question: There are four numbers in the range 100 to 999 whichhave the property that
the sum of the cubes of the three digits in the number isequal to the number itself. 153
is such a number because 13+53+33 is equal to 1+125+27 which is 153. In this task
you will write a program, calledSumOfCubedDigits , that finds all four such numbers.
[?]

26

Your program will work bylooping through the numbers100 to 999 using threenested
loops, one for each digit. In the centre of the loops, your programcan calculate the
number represented by the three digits, and the sum of their cubes, and print out the
number if these are equal.

Take the usual steps ofdesigningpseudo codein your logbook, before implementing the
program, including suitablecomments, and recording your results back in your logbook.

7 Chapter 7 Additional control statements

8 Chapter 8 Separate methods and logical operators

8.2 Section / task 8.2 Age history with two people

• Aim of example: To further illustrate the inconvenience of having to copy a chunk of
code which is used in different parts of a program, and thus motivate the need for separate
methods.

• Coursework title:WorkFuture2

• Coursework summary: Write a program to print out all the years from the present day
until retirement, for two people.

• Question: In this task you will write a program, calledWorkFuture2 , which shows the
future working time of two people, assuming they retire at 68. The program will take
threecommand line arguments, which you may assume are valid. The first is the
present year, and the second and third are the birth years of the two people.

In case you have been reading ahead, you shouldnot use a separatemethod – write all
your code in themain method.

An example use of the program might be as follows.

Console Input / Output
$ java WorkFuture2 2018 1959 1999

Pn 1 has 9 years left to work
In 2019 pn 1 will have 8 years left to work
In 2020 pn 1 will have 7 years left to work

(... lines removed to save space.)

In 2026 pn 1 will have 1 years left to work
Pn 1 will retire in 2027
Pn 2 has 49 years left to work
In 2019 pn 2 will have 48 years left to work
In 2020 pn 2 will have 47 years left to work

(... lines removed to save space.)

In 2066 pn 2 will have 1 years left to work
Pn 2 will retire in 2067
$ _

27

8.3 Section / task 8.3 Age history with a separate method

Undertake the usual tasks of planningtest data, designing the program, implementing
and testing it, and finally recording your results.

8.3 Section / task 8.3 Age history with a separate method

• Aim of example: To introduce the idea of dividing a program into separatemethods to
enable the reuse of some parts of it. We meet the conceptsprivate, method parameter,
method argument, method callandvoid method.

• Coursework title:WorkFuture4

• Coursework summary: Write a program, with a separatemethod, to print out all the
years from the present day until retirement, for four people.

• Question: In this task you will write another version of the work future program, called
WorkFuture4 , which shows the future working time of four people. The program will
take fivecommand line arguments, which you may assume are valid. The first is the
present year, and the others are the birth years of the four people.

Your program should use a separatemethod to print the work future for one person, and
call it four times.

Undertake the usual tasks of planningtest data, designing the program, implementing
and testing it, and finally recording your results.

8.4 Section / task 8.4 Dividing a cake with a separate method for GCD

• Aim of example: To introduce the idea of usingmethods merely to split the program into
parts, making it easier to understand and develop. We also meet thereturn statement
for use innon-void methods, and see that altering amethod parameterdoes not change
its argument.

• Coursework title:DivideCake4

• Coursework summary: Write a program to compute thegreatest common divisorof
four numbers, using a separatemethod.

• Question: In this task you will write a version of the cake dividing program for those
very rare families that have four daughters sharing a birthday! This should be called
DivideCake4 . You may assume that the four arguments all represent positive int num-
bers. You should use a separatemethod to compute thegreatest common divisorof
two numbers.

Undertake the usual tasks of planningtest data, designing the program, implementing
and testing it, and finally recording your results.

28

8.5 Section / task 8.5 Multiple times table with separate methods

8.5 Section / task 8.5 Multiple times table with separate methods

• Aim of example: To introduce the concept ofclass variables, compared withlocal vari-
ables, and reinforce the ideas of using separatemethods for reuse and for dividing a
program into manageable chunks. We also meetSystem.out.printf() .

• Coursework title:CommonFactorsTable with methods

• Coursework summary: Write a program, with separatemethods, to produce a table
showing pairs of numbers which share common factors.

• Question: In this task you will write a new version of theCommonFactorsTable program
from Section 6.6 on page 25. This will use separatemethods to avoid repeated code,
and may reasonably be developed by making changes to the previous one. Plan these
changes in your logbook, before taking the usual steps of implementing the program and
recording your results.

8.6 Section / task 8.6 Age history with day and month

• Aim of example: To introduce thelogical operators. We also see that a group ofvari-
ables can be declared together.

• Coursework title:Reasoning about conditions

• Coursework summary: Do some reasoning to show that two different conditions have
the same value.

• Question: Complete the followingtruth table , in your logbook, and thereby show that
theconditions
c1 = !(a1 < a2 || a1 == a2 && h1 <= h2)
and c2 =a1 > a2 || a1 == a2 && h1 > h2 are equivalent.

a1 < a2 a1 == a2 a1 > a2 h1 <= h2 h1 > h2 c1 c2
true false false true false

true false false false true

false true false true false

false true false false true

false false true true false

false false true false true

Optional extra: Try to show this by ‘simplifying’ from one condition to the other.

8.7 Section / task 8.7 Truth tables

• Aim of example: To introduce thebooleantype, and reinforcelogical operators. We also
meet theString type and see that afor update can have multiplestatements.

• Coursework title:TruthTable34

29

8.8 Section / task 8.8 Producing a calendar

• Coursework summary: Write a program to test the equivalenceof threepropositional
expressions, each having fourvariables.

• Question: In this task you will write another version of thetruth table program, called
TruthTable34 , which shows a truth table forthreepropositional expressions which are
hard codedasmethods p1, p2 andp3 respectively, and which are expressions involving
four propositionalvariables, a, b, c andd. Your table will thus have 16 lines plus titles
and box lines, and 7 columns.

The three propositional expressions to hard code in your program are as follows.

p1 (((a || b) && c) || ((b || c) && d)) && (a || d)
p2 a && c || b && d || c && d
p3 (b || c) && (c || d) && (a || d)

If you have studied discrete mathematics you should be able to spot the relationship
between the first of these propositional expressions and theother two. What are those
relationships?

Undertake the usual tasks ofdesigning the program, implementing and testing it, and
finally recording your results.

8.8 Section / task 8.8 Producing a calendar

• Aim of example: To reinforce much of the material presented in this chapter. We also
revisitSystem.out.printf() .

• Coursework title:CalendarHighlight

• Coursework summary: Modify a calendar month printing program to produce a larger
calendar format and to highlight a certain date.

• Question: In this task you will write another version of the calendar program, called
CalendarHighlight , which produces the calendar in a wider format and also takesa
third command line argument, which is a day (1 to 31) that should be highlighted. The
wider format is produced by using fourcharacters per date instead of two. The desired
date should be highlighted by placing agreater than sign (>) before it and aless than
sign (<) after it. Here is an examplerun of the finished program.

30

Console Input / Output
$ java CalendarHighlight 3 28 9

| Su Mo Tu We Th Fr Sa |
| 01 02 03 04 05 |
| 06 07 08 >09< 10 11 12 |
| 13 14 15 16 17 18 19 |
| 20 21 22 23 24 25 26 |
| 27 28 |
| |

$ _

Undertake the usual tasks of planningtest data, designing the program, implementing
and testing it, and finally recording your results.

9 Chapter 9 Consolidation of concepts so far

10 Chapter 10 Separate classes

10.2 Section / task 10.2 Age history with Date class

• Aim of example: To introduce the principle of using more thanoneclassin a program,
and in particular, the idea of using a class as a template for theconstruction of objects.
We also introduceinstance variables, constructor methods, creatingnew objects, the
fact that aclassis atype and the use ofreferences.

• Coursework title:AddQuadPoly

• Coursework summary: Write aclassto store quadratic polynomials, and a program that
adds together two quadratic polynomials to form a third.

• Question: In this task you will create aclasscalled QuadPoly which will be used to
represent quadratic polynomials, such as 6x2 +4x+2. Don’t worry if Maths is not your
favourite subject – you’re not going to do anything too Mathematical. The class will
have threedouble instance variables, one for each of the three coefficients of a quadratic
polynomial. These will be declaredpublic. (If you have read ahead, then please donot
yet make themprivate.) The class will also have aconstructor method, which will
be passed the three coefficient values as itsmethod parameters. (The variable in these
polynomials will always bex, and so its name need not be stored.)

You will also write a program calledAddQuadPoly . This will take sixcommand line ar-
guments, these being two triples of coefficients, each triple beingthe coefficients of one
quadratic polynomial. It will create aninstanceof QuadPoly for each of the two given
quadratic polynomials. It will then create a third instance, representing theaddition of
the two given polynomials. Finally it will print out a reportshowing the addition. The
following is an examplerun .

31

10.3 Section / task 10.3 Improving the Date class: lessThan() and equals() methods

Console Input / Output
$ java AddQuadPoly 6 4 2 3 2 1

Polynomial: 6.0xˆ2 + 4.0x + 2.0
added to: 3.0xˆ2 + 2.0x + 1.0
results in: 9.0xˆ2 + 6.0x + 3.0
$ _

Note how the three polynomials are to be printed using ordinary text, with aˆ character
before the power instead of attempting to raise the 2 into a superscript, such as in 6.0x2.
Each polynomial is printed as follows, where the three question marks in the format are
replaced by the values of the three coefficients.

?xˆ2 + ?x + ?

If you are tempted to write the program without creating three instances ofQuadPoly
(because it would in fact be easier right now) then you are seriously missing the point!

Undertake the usual tasks of planningtest data, designing the classes, implementing
them, testing the program, and finally recording your results.

Optional extra: Extend the program so that it can add together any number of polyno-
mials listed as command line arguments, displaying the intermediate resulting polyno-
mials as it goes along. Make it be able to handle the cases of there being no arguments
(0x2+0x+0), just one polynomial, and the erroneous cases of the number of arguments
not being divisible by three!

10.3 Section / task 10.3 Improving the Date class: lessThan() and equals()
methods

• Aim of example: To introduce the concept ofinstance methods. We also look at com-
mon misunderstandings aboutvariables andreferences.

• Coursework title:CompareQuadPoly

• Coursework summary: Extend aclass that stores quadratic polynomials, and write a
program that compares the ‘size’ of two quadratic polynomials.

• Question: In this task you will copy theQuadPoly class from the previous task and
extend it, by adding twoinstance methods. The first one will compare the instance of
QuadPoly it belongs to with another one given as amethod parameter, andreturn true
if and only if they areequivalent, i.e. they represent the same polynomial. The second
instance method will also compare theQuadPoly object with another, but returntrue if
and only if this one isless thanthe other one. For a quadratic polynomial,a1x2+b1x+
c1 to be less than another,a2x2 + b2x+ c2 thena1 must beless thana2, or if they are
equal, thenb1 must be less thanb2, or if they are also equal, thenc1 must be less than
c2. (If you have read ahead, then please donot yet add atoString() instance method.)

You will also write a program calledCompareQuadPoly . This will take sixcommand
line arguments, this being two triples of coefficients, each triple being the coefficients
of one quadratic polynomial. It will create aninstance of QuadPoly for each of the

32

10.4 Section / task 10.4 Improving the Date class: toString() method

two given quadratic polynomials. It will then use the two instance methods to compare
them, to determine if they are equivalent, or the first one is less than, orgreater than the
second, and report the results. The following are some example runs.

Console Input / Output
$ java CompareQuadPoly 1 2 3 2 3 1

The polynomial: 1.0xˆ2 + 2.0x + 3.0
is smaller than: 2.0xˆ2 + 3.0x + 1.0
$ _

Console Input / Output
$ java CompareQuadPoly 3 2 1 3 2 1

The polynomial: 3.0xˆ2 + 2.0x + 1.0
is the same as: 3.0xˆ2 + 2.0x + 1.0
$ _

Console Input / Output
$ java CompareQuadPoly 3 2 1 1 2 3

The polynomial: 3.0xˆ2 + 2.0x + 1.0
is greater than: 1.0xˆ2 + 2.0x + 3.0
$ _

Undertake the usual tasks of planningtest data, designing the classes, implementing
them, testing the program, and finally recording your results.

Optional extra: Extend the program so that it can compare any number of polynomials
listed as command line arguments, displaying the intermediate resulting polynomials as
it compares each with the previous. At the end, it could report the smallest and largest
polynomials encountered.

10.4 Section / task 10.4 Improving the Date class: toString() method

• Aim of example: To reinforce the concept ofinstance methods. We also note that a
method might have nomethod parameters.

• Coursework title:AddQuadPoly and CompareQuadPoly with toString()

• Coursework summary: Extend aclass that stores quadratic polynomials, and modify
programs that add together, and compare the ‘size’ of, two quadratic polynomials.

• Question: In this task you will copy theQuadPoly class from the previous task and
further extend it, by adding aninstance methodcalled toString . This will return a
String representing the polynomial in the format previously introduced.

You will also copy the programsAddQuadPoly andCompareQuadPoly from the previous
tasks, and modify them to make appropriate use of the new instance method.

Undertake the usual tasks of planningtest data (consider if it will be different to the
previous version of each program),designing the modifications, implementing them,
testing the programs, and finally recording your results.

33

10.5 Section / task 10.5 Improving the Date class: addYear()method

10.5 Section / task 10.5 Improving the Date class: addYear()method

• Aim of example: To further reinforceinstance methods, meet Java’stoString() con-
vention and focus on the visibility ofinstance variables. We also see areturn type
which is aclass.

• Coursework title:QuadPoly with an addition method

• Coursework summary: Further extend aclass that stores quadratic polynomials, and
modify a program that adds together two quadratic polynomials.

• Question: In this task you will copy theQuadPoly class from the previous task and
make theinstance variables haveprivate visibility. You will also further extend it,
by adding aninstance methodwhich takes a given otherinstanceof QuadPoly as a
method parameterandreturn s anew QuadPoly object, being the result of adding this
QuadPoly instance to the given other one.

You will also copy the programAddQuadPoly from the previous task, and modify it to
make appropriate use of the new instance method.

Undertake the usual tasks of planningtest data(consider if it will be different to the pre-
vious version of the program),designing the modifications, implementing them, testing
the program, and finally recording your results.

Optional extra: Add more instance methods toQuadPoly to subtract a given other poly-
nomial, multiply this one by a constant and divide this one bya constant. Each of these
will produce a new instance ofQuadPoly . Then write a program calledQuadPolyCalculator
which permits arbitrary polynomial calculations. This will be based on the idea of an
accumulator polynomial, which starts off as being 0x2 +0x+0. Thecommand line ar-
guments consist of a sequence of operation codes, each followed by an operand, which
would either be a polynomial in the next three arguments, or asingle number. For ex-
ample, you might choose code 0 to represent addition, and this would be followed by
three arguments representing a polynomial to be added to theaccumulator. Code 2 might
be multiplication, which would be followed by a single number to be multiplied by the
accumulator. Each operation will produce output as it happens, and place its result back
in the accumulator. At the end, the value of the accumulator will be reported. You could
allow theless thanoperation to compare the accumulator with the following polynomial
operand, and store whichever is the smallest in the accumulator. This would permit the
program to be used to find the smallest of a sequence of polynomials, by preceding the
first one with the addition operation code, and the subsequent ones with the less than
operation code! You might add agreater than operation code too.

Hint: this would be a good use of aswitch statement.

34

11 Chapter 11 Object oriented design

11.2 Section / task 11.2 Age history revisited

• Aim of example: To introduce the principles ofobject oriented design. We also meet
Scanner , standard input, Java’spackagestructure andimport statement, thenull ref-
erence, final variables, multiplereturn statements, theline separator system prop-
erty, and take a look at makingstubs ofclasses and usingmulti-line comments.

• Coursework title:ShapeShift

• Coursework summary: Write a program to create and process two-dimensional shapes.

• Question: Here you will create a program calledShapeShift which does calculations
and manipulations of simple shapes. The main class has been written for you – here it is.

001: import java.util.Scanner;
002:
003: /* This program performs simple calculations and manipulat ions of simple
004: shapes expressed in two-dimensional coordinate geometry.
005:
006: First it asks the user to choose a shape, from a choice of three .
007: Then it prompts for details of the shape.
008: * A circle is specified by giving the X and then Y coordinate of its
009: centre, followed by its radius.
010: * A Triangle is specified by giving the X and Y coordinates of e ach of
011: its three corner points.
012: * A rectangle (always axis-aligned) is specified by giving t he X and Y
013: coordinates of two of its diagonally opposite corner points .
014:
015: Following this data, the user is prompted to specify an X offs et and a Y
016: offset.
017:
018: The program creates the specified shape, and also a similar o ne, in which
019: each point has been shifted by the X and Y offsets.
020:
021: The program then reports the following on the standard outpu t.
022: * The details of the original shape -- giving all the points
023: (one, three, or four) and, for a circle, its radius.
024: * The area and perimeter of the shape.
025: * The details of the shifted shape.
026: */
027: public class ShapeShift
028: {

029: // A scanner to interact with the user.
030: private static Scanner inputScanner = new Scanner(System.in);
031:
032:
033: // Helper method to read a point from the input.
034: private static Point inputPoint(String prompt)

35

11.2 Section / task 11.2 Age history revisited

035: {

036: System.out.print(prompt);
037: double x = inputScanner.nextDouble();
038: double y = inputScanner.nextDouble();
039: return new Point(x, y);
040: } // inputPoint
041:
042:
043: // The X and Y amount to shift the first shape to get the second.
044: private static double xShift, yShift;
045:
046:
047: // Helper method to read the X and Y shifts.
048: private static void inputXYShifts()
049: {

050: System.out.print("Enter the offset as X Y: ");
051: xShift = inputScanner.nextDouble();
052: yShift = inputScanner.nextDouble();
053: } // inputXYShifts
054:
055:
056: // The main method.
057: public static void main(String[] args)
058: {

059: // Obtain shape choice.
060: System.out.print("Choose circle (1), triangle (2), recta ngle (3): ");
061: int shapeChoice = inputScanner.nextInt();
062:
063: // Process the shape based on the choice.
064: switch (shapeChoice)
065: {

066: // Circle.
067: case 1:
068: Point centre = inputPoint("Enter the centre as X Y: ");
069: System.out.print("Enter the radius: ");
070: double radius = inputScanner.nextDouble();
071: Circle originalCircle = new Circle(centre, radius);
072: inputXYShifts();
073: Circle shiftedCircle = originalCircle.shift(xShift, ySh ift);
074: System.out.println();
075: System.out.println(originalCircle);
076: System.out.println("has area " + originalCircle.area()
077: + ", perimeter " + originalCircle.perimeter());
078: System.out.println("and when shifted by X offset " + xShift
079: + " and Y offset " + yShift + ", gives");
080: System.out.println(shiftedCircle);
081: break ;
082:
083: // Triangle.

36

11.2 Section / task 11.2 Age history revisited

084: case 2:
085: Point pointA = inputPoint("Enter point A as X Y: ");
086: Point pointB = inputPoint("Enter point B as X Y: ");
087: Point pointC = inputPoint("Enter point C as X Y: ");
088: Triangle originalTriangle = new Triangle(pointA, pointB, pointC);
089: inputXYShifts();
090: Triangle shiftedTriangle = originalTriangle.shift(xShi ft, yShift);
091: System.out.println();
092: System.out.println(originalTriangle);
093: System.out.println("has area " + originalTriangle.area()
094: + ", perimeter " + originalTriangle.perimeter());
095: System.out.println("and when shifted by X offset " + xShift
096: + " and Y offset " + yShift + ", gives");
097: System.out.println(shiftedTriangle);
098: break ;
099:
100: // Rectangle.
101: case 3:
102: Point diag1End1 = inputPoint("Enter one corner as X Y: ");
103: Point diag1End2 = inputPoint("Enter opposite corner as X Y: ");
104: Rectangle originalRectangle = new Rectangle(diag1End1, diag1End2);
105: inputXYShifts();
106: Rectangle shiftedRectangle = originalRectangle.shift(x Shift, yShift);
107: System.out.println();
108: System.out.println(originalRectangle);
109: System.out.println("has area " + originalRectangle.area ()
110: + ", perimeter " + originalRectangle.perimeter());
111: System.out.println("and when shifted by X offset " + xShift
112: + " and Y offset " + yShift + ", gives");
113: System.out.println(shiftedRectangle);
114: break ;
115:
116: // Bad choice.
117: default :
118: System.out.println("That wasn’t 1, 2 or 3!");
119: break ;
120: } // switch
121: } // main
122:
123: } // class ShapeShift

All you have to do is write the other classes.

The following are exampleruns of the program to help clarify the requirements.

37

11.2 Section / task 11.2 Age history revisited

Console Input / Output
$ java ShapeShift

Choose circle (1), triangle (2), rectangle (3): 1

Enter the centre as X Y: 0 0

Enter the radius: 1

Enter the offset as X Y: 2 2

Circle((0.0,0.0),1.0)
has area 3.141592653589793, perimeter 6.283185307179586
and when shifted by X offset 2.0 and Y offset 2.0, gives
Circle((2.0,2.0),1.0)
$ _

Console Input / Output
$ java ShapeShift

Choose circle (1), triangle (2), rectangle (3): 2

Enter point A as X Y: 0 0

Enter point B as X Y: 10 0

Enter point C as X Y: 0 20

Enter the offset as X Y: 5 10

Triangle((0.0,0.0),(10.0,0.0),(0.0,20.0))
has area 100.0, perimeter 52.3606797749979
and when shifted by X offset 5.0 and Y offset 10.0, gives
Triangle((5.0,10.0),(15.0,10.0),(5.0,30.0))
$ _

Console Input / Output
$ java ShapeShift

Choose circle (1), triangle (2), rectangle (3): 3

Enter one corner as X Y: 0 0

Enter opposite corner as X Y: 10 20

Enter the offset as X Y: 0 0

Rectangle((0.0,0.0),(10.0,0.0),(10.0,20.0),(0.0,20. 0))
has area 200.0, perimeter 60.0
and when shifted by X offset 0.0 and Y offset 0.0, gives
Rectangle((0.0,0.0),(10.0,0.0),(10.0,20.0),(0.0,20. 0))
$ _

Start by designing yourtest data in your logbook.

Your program will consist of fiveclasses,Point , Circle , Triangle , Rectangle and
the already givenShapeShift . Next identify and record thepublic instance methods
andclass methods for each of the four classes you will write. Endeavour to associate
behaviour (i.e.methods) with the most appropriate classes. Here are some hints.

– Which classes should have atoString() instance method?

– Should shape classes have methods to find the area and perimeter of a shape?

38

11.3 Section / task 11.3 Greedy children

– Should they additionally have a method to create a shifted shape from an existing
one?

– Shifting shapes requires creatingnew points which are shifts of old ones. Where is
that shifting best done?

– Perimeters of certain shapes are based on distances betweenpoints – does that sug-
gest an instance method in thePoint class?

– Are the pointsmutable objects or immutable objects? What about the shapes?

– All instance variables should beprivate, so you may need some instance methods
in some classes, to give read access to the instance variables. For example,Point
might havegetX() andgetY() .

Next you should writestubs for the three shape classes, so that you cancompileand try
out the main class.

Now design the implementations of your classes (at a level ofabstraction that is ap-
propriate to you) and then implement them. Do you want to think about the order of
implementation so you can compile them as you proceed? Will you use a stub forPoint ?

Here are some implementation hints.

– To calculate the area of a triangle, you can use Hero’s formula (also known as
Heron’s formula)[?].
Let a, b andc be the lengths of the sides of the triangle. Then the semi-perimeter,s
is

s= (a+b+c)/2

and thearea is
area=

√

s(s−a)(s−b)(s−c)

– Given two opposite corners of an axis-aligned rectangle, i.e. both ends of one diag-
onal,(x1,y1) and(x2,y2) the other two corners are found as(x1,y2) and(x2,y1).

Finally record your results. It may well be that during your implementation, you changed
your plan of which class should have what method. This is okay, but you should record
such changes, and the reason for them.

Optional extra: Dare you consider having another shape, which is an irregular four
sided polygon? Assuming the points are given in a sensible order, then computing the
perimeter would not be too hard, but how would you get the area?

11.3 Section / task 11.3 Greedy children

• Aim of example: To reinforceobject oriented design, particularly withmutable ob-
jects. We also meet multipleconstructor methods, class constants, thereturn state-
ment with no value,accessor methods, mutator methods, the dangers ofmethod pa-
rameters which arereferences, converting thenull reference to a string, andMath.random() .

• Coursework title:StudentsCalling

39

11.3 Section / task 11.3 Greedy children

• Coursework summary: Write a program that simulates the behaviour of students using
their mobile phones.

• Question: In this task you will create a program calledStudentsCalling which simu-
lates a simple scenario in which students purchase and use mobile phones.

– A student has a name which cannot be changed, and a mobile phone, although not
to begin with.

– A phone has a name (i.e. make and model number) and an account,both of which
are fixed. It also keeps track of the total number of seconds ofphone calls made on
it, starting with zero.

– An account has a provider (i.e. the name of the service provider) which is fixed and
a balance, in wholepence, which starts off as zero.

– A student may purchase a mobile phone, in which case they discard their previous
one if they have previously purchased one.

– A student may top up their phone with a whole number ofpounds. If they have no
phone, then an attempt to top up their phone is ignored!

– A student may make a call of desired duration, in seconds, on their phone. If they
have no phone, then an attempt to make a call is ignored!

– A phone may be topped up with a whole number ofpounds, which causes its ac-
count to be topped up with that same amount.

– A phone can have a call made on it, of a desired duration, whichcauses it to request
that call on its account. The accountreturn s the actual duration of the call, which
may beless thanthat desired (i.e. when there is not enough balance to pay forit).
The phone keeps track of the total actual duration of all the calls made on it.

– An account may be topped up with a whole number ofpounds. This adds to the
current balance.

– An account may have a call requested on it for a desired duration. In this wonderful
world, all account providers charge only one penny per second for any call! The
actual call duration will be limited to the current balance on the account. The bal-
ance is reduced by the actual duration. The actual duration is also returned as the
result of the call request.

– The main program will create some students, create some phones with accounts,
which the students purchase, and cause the students to make calls. At each stage
the behaviour of the program will be reported to thestandard output.

The following is an examplerun of the program to help clarify the requirements.

40

11.3 Section / task 11.3 Greedy children

Console Input / Output
$ java StudentsCalling

Creating student Chatty Charlie
Result:
Student(Chatty Charlie,null)

Creating student Norman No Friends
Result:
Student(Norman No Friends,null)

Creating student Popular Penny
Result:
Student(Popular Penny,null)

This next call has no effect, as has no phone!
Student(Chatty Charlie,null)
is making a call for desired 300 seconds
Result:
Student(Chatty Charlie,null)

This next top up has no effect, as has no phone!
Student(Norman No Friends,null)
is topping up by 20
Result:
Student(Norman No Friends,null)

Student(Chatty Charlie,null)
is buying phone Snotia BIFR
with account World@1
Result:
Student(Chatty Charlie,Phone(Snotia BIFR,0,Account(Wo rld@1,0)))

(Continued ...)

41

11.3 Section / task 11.3 Greedy children

(...cont.)

Student(Norman No Friends,null)
is buying phone Cyoo L8TR0N
with account 4FRN Touch
Result:
Student(Norman No Friends,Phone(Cyoo L8TR0N,0,Account(4FRN Touch,0)))

Student(Popular Penny,null)
is buying phone Tisonly 14U
with account Foney Friends
Result:
Student(Popular Penny,Phone(Tisonly 14U,0,Account(Fon ey Friends,0)))

Student(Chatty Charlie,Phone(Snotia BIFR,0,Account(Wo rld@1,0)))
is topping up by 10
Result:
Student(Chatty Charlie,Phone(Snotia BIFR,0,Account(Wo rld@1,1000)))

Student(Norman No Friends,Phone(Cyoo L8TR0N,0,Account(4FRN Touch,0)))
is topping up by 20
Result:
Student(Norman No Friends,Phone(Cyoo L8TR0N,0,Account(4FRN Touch,2000)))

Student(Popular Penny,Phone(Tisonly 14U,0,Account(Fon ey Friends,0)))
is topping up by 30
Result:
Student(Popular Penny,Phone(Tisonly 14U,0,Account(Fon ey Friends,3000)))

Student(Chatty Charlie,Phone(Snotia BIFR,0,Account(Wo rld@1,1000)))
is making a call for desired 300 seconds
Result:
Student(Chatty Charlie,Phone(Snotia BIFR,300,Account(World@1,700)))

This next call should be truncated to 700 seconds.
Student(Chatty Charlie,Phone(Snotia BIFR,300,Account(World@1,700)))
is making a call for desired 1200 seconds
Result:
Student(Chatty Charlie,Phone(Snotia BIFR,1000,Account (World@1,0)))

Student(Chatty Charlie,Phone(Snotia BIFR,1000,Account (World@1,0)))
is making a call for desired 10 seconds
Result:
Student(Chatty Charlie,Phone(Snotia BIFR,1000,Account (World@1,0)))

(Continued ...)

42

11.3 Section / task 11.3 Greedy children

(...cont.)

Student(Norman No Friends,Phone(Cyoo L8TR0N,0,Account(4FRN Touch,2000)))
is making a call for desired 10 seconds
Result:
Student(Norman No Friends,Phone(Cyoo L8TR0N,10,Account (4FRN Touch,1990)))

Student(Popular Penny,Phone(Tisonly 14U,0,Account(Fon ey Friends,3000)))
is making a call for desired 65 seconds
Result:
Student(Popular Penny,Phone(Tisonly 14U,65,Account(Fo ney Friends,2935)))

Student(Popular Penny,Phone(Tisonly 14U,65,Account(Fo ney Friends,2935)))
is making a call for desired 115 seconds
Result:
Student(Popular Penny,Phone(Tisonly 14U,180,Account(F oney Friends,2820)))

Student(Popular Penny,Phone(Tisonly 14U,180,Account(F oney Friends,2820)))
is making a call for desired 488 seconds
Result:
Student(Popular Penny,Phone(Tisonly 14U,668,Account(F oney Friends,2332)))

Student(Popular Penny,Phone(Tisonly 14U,668,Account(F oney Friends,2332)))
is making a call for desired 302 seconds
Result:
Student(Popular Penny,Phone(Tisonly 14U,970,Account(F oney Friends,2030)))

Student(Popular Penny,Phone(Tisonly 14U,970,Account(F oney Friends,2030)))
is making a call for desired 510 seconds
Result:
Student(Popular Penny,Phone(Tisonly 14U,1480,Account(Foney Friends,1520)))

Student(Popular Penny,Phone(Tisonly 14U,1480,Account(Foney Friends,1520)))
is making a call for desired 250 seconds
Result:
Student(Popular Penny,Phone(Tisonly 14U,1730,Account(Foney Friends,1270)))

Now let us discard a phone.
Student(Popular Penny,Phone(Tisonly 14U,1730,Account(Foney Friends,1270)))
is buying phone Simm UL8R
with account VerTuleTyat
Result:
Student(Popular Penny,Phone(Simm UL8R,0,Account(VerTu leTyat,0)))

$ _

Your program will consist of fourclasses,Student , Phone , Account andStudentsCalling .
The latter will contain themain method.

Start bydesigning these classes in your logbook, identifying thepublic instance methods

43

11.3 Section / task 11.3 Greedy children

andclass methods for each of them. Endeavour to associate behaviour (i.e.methods)
with the most appropriate classes.

Next you should design your ‘story’, that is, the sequence ofoperations you wish the
simulation to undertake. You should make your ‘story’ significantly different to the ex-
ample one above! That is, have different student names, phone names, account names,
different number of students, different order and number ofcalls, etc..

Next design the implementations of your classes (at a level of abstraction that is appro-
priate to you). Note that all calls toSystem.out.println() should be insideStudentsCalling :
the others are model classes. Then implement your classes. Do you want to think about
the order of implementation so you cancompile them as you proceed? Will you use
stubs?

Here are some implementation hints.

– You can use thenull reference, null , as the value for a student’s phone to begin
with.

– ThetoString() method ofStudent can rely on thetoString() method ofPhone
which in turn can use thetoString() method ofAccount .

– Useprivate helper methods in theStudentsCalling class, to save you repeating
code that prints out what is happening at each stage.

After implementation you should record your results. It maywell be that during your
implementation, you changed your plan of which class shouldhave what method. This
is okay, but you should record such changes, and the reason for them, in your logbook.

Optional extra: You can think of ways to make the simulation more realistic. For
example:

– Suddenly there is a period of inflation again, and account providers have to charge
more than one penny per second. Change your program so that anaccount has a
rate, expressed in pence per minute.

– Perhaps rates vary depending on what time of day the call is made?

– Accounts ought to have a unique account number, assigned when they are created.

– Consider having aProvider class, so an account has a provider. Perhaps all the
accounts for a particular provider have the same rate, but different providers have
different rates.

– Now the providers are in competition again, perhaps it should be possible to change
the account on an existing phone?

44

12 Chapter 12 Software reuse and the standard Java API

12.2 Section / task 12.2 A reusable Date class, with doc comments

• Aim of example: To explore the notion ofsoftware reuseand introducedoc comments.
We also introduce the convention of having acompareTo() instance method.

• Coursework title:StudentsCalling with doc comments

• Coursework summary: Adddoc comments to an existingclass.

• Question: Copy yourclasses from the coursework in Section 11.3 on page 40 and add
doc comments to thepublic items in them. Then run thejavadoc program and examine
the results. In particular, look at the summary sections andnote how the first sentence of
each doc comment has been used there.

12.5 Section / task 12.5 Simple Encryption

• Aim of example: To take a look atString manipulation, such as extracting individual
char values from aString . We also look at how comparisons between twochar val-
ues can be achieved, and the way we cancast betweenchar and int values, and meet
overloaded methods.

• Coursework title:RomanNumber

• Coursework summary: Write aclassthat allows for the conversion between decimal and
Roman numbers.

• Question: In this task you will create a reusableclasscalledRomanNumberwhich can be
used to convert between Roman Numbers and decimal numbers.

You will provide two constructor methods for this class. One will take anint and build
a RomanNumbercorresponding to that number. The other will take aString of Roman
digits and build aRomanNumbercorresponding to that number.

The class will also provide twoinstance methods. One will return an int , being the
decimal number corresponding to theRomanNumberinstance. The other instance method
will return a String , which is the Roman number representation of theRomanNumber
instance.

For the purposes of this exercise, you may assume your constructors will never be given
a non-positive number, or aString which is not a legal Roman number.

This class can be used to convert aninteger to its Roman equivalent string bycon-
structing an instance ofRomanNumber from the integer, and then accessing the string
value of it. To convert the other way, one could create an instance ofRomanNumberfrom
a string of Roman digits, and then access the integer value ofit.

The rules of Roman numbers are explained below.

45

12.5 Section / task 12.5 Simple Encryption

To help you choose names for the two instance methods, you should look at theAPI
documentation of theInteger class. That class can be used to convert betweenint
values andString representations in decimal, so it would be sensible to be consistent in
style of names in your class.

In order to test your class, write a program calledRomanNumberTest . This will accept
a Roman number string from the firstcommand line argument, convert it to an integer
and then using aloop, print that number and the next 19 numbers, each with its Roman
number equivalent, on thestandard output. The program may assume that the argument
is a legal Roman Number. Here is an examplerun .

Console Input / Output
$ java RomanNumberTest MMXVIII

(Output shown using multiple columns to save space.)

Roman for 2018 is MMXVIII Roman for 2028 is MMXXVIII
Roman for 2019 is MMXIX Roman for 2029 is MMXXIX
Roman for 2020 is MMXX Roman for 2030 is MMXXX
Roman for 2021 is MMXXI Roman for 2031 is MMXXXI
Roman for 2022 is MMXXII Roman for 2032 is MMXXXII
Roman for 2023 is MMXXIII Roman for 2033 is MMXXXIII
Roman for 2024 is MMXXIV Roman for 2034 is MMXXXIV
Roman for 2025 is MMXXV Roman for 2035 is MMXXXV
Roman for 2026 is MMXXVI Roman for 2036 is MMXXXVI
Roman for 2027 is MMXXVII Roman for 2037 is MMXXXVII
$ _

12.5.1 The Roman number system

In Roman numbers, there is no zero, nor any negative number. There are 7 digits and 6
pairs of digits, with values as follows.

Digit Value
M 1000
D 500
C 100
L 50
X 10
V 5
I 1

Digit pair Value
CM 900
CD 400
XC 90
XL 40
IX 9
IV 4

These are placed next to each other, with largest values on the left, and smallest on the
right. The number represented is simply the sum of the valuesof the digits and digit pairs.
The sample output from the test program (above) shows examples. Notice how each digit
pair consists of a digit followed by a greater valued digit, and that the value is the value
of the greater minus the value of the lesser. E.g. the value of"CM" is 1000−100. Perhaps
contrary to your intuition, the Romans did not have other pairs than these 6. One cannot
write "MIM" to mean 1999, instead it is written as"MCMXCIX": 1000 plus 900 plus 90
plus 9.

46

12.5 Section / task 12.5 Simple Encryption

12.5.2 How to convert to and from Roman numbers

To convert a Roman number into an integer, we can scan thecharacters in theString
from left to right and add the values of the characters to theint number being thus accu-
mulated. So we start this accumulation with the value zero. However, if the value of any
character isgreater than that of the previous one, then we have just had the second char-
acter of a digit pair. In this case we subtract the value previously added, twice, and then
add the value of this character. You may wish to treat the firstcharacter of the Roman
numberString differently from the others, as it has no previous one. For all the other
characters, we shall compare the value with the value of the previous character. Some
examples follow.

Roman Decimal
X I V

XIV 10 +1 -2 +5 14
C D X L I V

CDXLIV 100 -200 +500 +10 -20 + 50 +1 -2 +5 444
C M X C I X

CMXCIX 100 -200 +1000 +10 -20 +100 +1 -2 +10 999
M I M

MIM 1000 +1 -2 +1000 1999

Notice that the last line is an illegal Roman number string, yet thealgorithm suggested
will still produce a result, and effectively behaves as though "IM" actually is a legal digit
pair with the value 999. As said above, you may assume your constructors are not given
illegal strings, so there is no need for you to write code thatchecks legality.

Converting an integer into a Roman number is a little easier.We accumulate the sequence
of Roman digits in a resultString , starting with an empty string, as follows. While the
number isgreater than or equal to 1000, subtract a 1000 from it and append"M" to the
result. Now do this for 900 with"CM" , 500 with"D" , 400 with"CD" and so on.

12.5.3 Implementation tips

You may find it easiest to have twoinstance variables, one anint and the other aString .
Each constructor copies its given argument to one of the instance variables, and then
calculates the value of the other. You should consider having private methods to assist
in the conversions, and perhaps reduce the amount of repeated code.

12.5.4 Deliverables

First design yourtest data in your logbook, thendesign pseudo codefor your two
conversion algorithms, before implementing the classes. During implementation you
should document yourRomanNumber class withdoc comments. After completing the
test program, you should run thejavadoc program and browse the resultingindex.html
file.

47

13 Chapter 13 Graphical user interfaces

13.2 Section / task 13.2 Hello world with a GUI

• Aim of example: To give a first introduction to Javagraphical user interface (GUI)
programs, in particular, theclassesJFrame , Container andJLabel , together with the
java.awt andjavax.swing packages they belong to. We also talk about the idea of a
classextending another class.

• Coursework title:HelloWorld GUI in French

• Coursework summary: Write aGUI program to greet the world, in French.

• Question: In this task, you will take theHelloWorld GUI example and change it to greet
the world in French (or some other language).

Optional extra: Make two greeting windows appear (with the same greeting).

13.3 Section / task 13.3 Hello solar system with a GUI

• Aim of example: To introduce the notion oflayout managerand, in particular,FlowLayout .

• Coursework title:HelloFamily GUI

• Coursework summary: Write aGUI program to greet your family.

• Question: The coursework in Section 2.5 on page 6, asked you to produce a program
called HelloFamily which greeted a number of your relatives. In this task you will
write a version of that program which produces a window and greets the same relatives
using labels. Each greeting should use a separate label. Usea FlowLayout object to
manage the layout of the components in the window.

13.4 Section / task 13.4 Hello solar system with a GridLayout

• Aim of example: To introduce thelayout managercalledGridLayout .

• Coursework title:HelloFamily GUI with GridLayout

• Coursework summary: Write aGUI program to greet your family, using aGridLayout .

• Question: In this task, you will copy and change yourHelloFamily program to use a
GridLayout . Experiment with different values for the row and columnmethod param-
eters in order to see how these effect the layout.

In order to make it easier to try out different values for the parameters,designthe code
so that the program takes twointeger command line arguments – the values for the
number of rows and number of columns. These will then be passed to theconstructor
method and used by it to create an appropriateGridLayout object.

48

13.5 Section / task 13.5 Adding JLabels in a loop

Optional extra: Make your program produce 10 windows, each having a different gap
between the components. The row gaps should range from 2 to 20in steps of 2 pixels
and the column gaps from 4 to 40 insteps of 4.

13.5 Section / task 13.5 Adding JLabels in a loop

• Aim of example: To illustrate the idea of creatinggraphical user interface(GUI) com-
ponents in aloop.

• Coursework title:TimesTable usingJLabel s

• Coursework summary: Write a program to display a times table, using aGUI with
JLabel objects.

• Question: In this task you will write a program, calledTimesTable , which takes two
integer command line arguments,m andn. It displays anm-times table withn entries,
in a window. You can assume thatm andn will be integers, and thatn is non-negative.
Choose better names for yourvariables thanmandn! UseJLabel objects to display the
numbers and symbols and aGridLayout object to manage the layout. Choose horizontal
and vertical gaps so that the window is laid out nicely.

For example, when given the arguments 3 and 10, we should see something like the
following.

Optional extra: Find out how to set the colour of components, and choose a different
colour to be used for alternating rows.

49

13.7 Section / task 13.7 Stop clock

13.7 Section / task 13.7 Stop clock

• Aim of example: To reinforce the Javalistenermodel together withJButton , ActionEvent
andActionListener . We also introduce the idea of having theActionListener object
be theJFrame itself, and meetSystem.currentTimeMillis() .

• Coursework title:StopClock with split time

• Coursework summary: Modify a stop clock program so that it has a split time button.

• Question: In this task you will take theStopClock program and change it to add a split
time button. Your program should still be calledStopClock , and behave as follows.

– TheGUI has two buttons:Start/Stop andSplit .

– It has four output displays: the start time, stopped time, split time and elapsed time.
Each of these is aJLabel and each also has a fixedJLabel to explain it.

– The clock starts when theStart/Stop button is pressed. The current time is shown
as the start time.

– If the Split button is pressed while the clock is running, the clock will show the
elapsed time as the split time.

– If the Split button is pressed again while the clock is running, the splittime will
be updated.

– The clock is stopped by pressing theStart/Stop button, at which point it will
display the current time as the stopped time, and calculate,and display the elapsed
time. The split time will be unchanged.

– If the Split button is pressed while the clock is not running, nothing happens.

In order to implement this program, you will need to make use of the getSource()
instance methodof ActionEvent . This takes nomethod arguments andreturn s a
reference to theobject which was responsible for causing theevent. So, for example,
you may have code like the following.

if (event.getSource() == startStopJButton)
...

You will need to turn themethod variable startStopJButton into an instance vari-
able. Why is that?

Optional extra: Improve the GUI, from an end user’s point of view, by removingthe
start and stop times: show just the status instead.

Optional extra: Extend the program to allow the recording of several split times, with a
button for each split time.

Optional extra: Also, why not add a facility to pause and resume the clock?

50

13.8 Section / task 13.8 GCD with a GUI

13.8 Section / task 13.8 GCD with a GUI

• Aim of example: To introduceJTextField .

• Coursework title:GCDGUI for three numbers

• Coursework summary: Modify a GCD program that has aGUI , so that it finds the GCD
of three numbers.

• Question: In this task you will produce a version of theGCDprogram with aGUI , that
calculates the GCD ofthreenumbers rather than two. This will require you to add an
additional field to the interface, and alter the code of theclassso that it calculates the
appropriate value. As with the example in the section, the code for obtaining the GCD
should reside in a separateMyMath class.

Optional extra: The GCD program requires that the user entersinteger values. What
happens if he or she supplies values that are not integers? How might you go about
addressing this issue?

13.9 Section / task 13.9 Enabling and disabling components

• Aim of example: To explore the principle of enabling and disabling graphical user
interface (GUI) components, and revisitJButton andJTextField .

• Coursework title:StopClock using a text field and disabled split button

• Coursework summary: Modify a stop clock program so that the split time button is dis-
abled when the clock is not running.

• Question: In this task you will change yourStopClock program as follows.

– Have the start/stop button labelledStart when the clock is not running, andStop
when it is.

– Disable the split button when the clock is not running, enable it when the clock is
running.

– UseJTextField objects rather thanJLabel objects to display the times. Make it
so that the end user cannot edit the text showing in these textfields.

Optional extra: Make the stop clock more pretty by using colours appropriately.

13.12 Section / task 13.12 Single times table with a ScrollPane

• Aim of example: To introduce the use ofJScrollPane and revisitJTextField .

• Coursework title:ThreeWeights GUI

• Coursework summary: Write aGUI version of the program to show the weights that are
obtainable on a balance scale using three weights.

51

• Question: In this task you will write aGUI version of theThreeWeights coursework
example from Section 3.7 on page 12. The program should offerthe same functionality
as the original one, that is, the user provides three weightsand is then shown the possible
values that can be weighed using them.

The user input should be through the use of text fields, and theresults should be displayed
in a scrollable text area.

Rather than have 27System.out.println() calls as in the previous version of the
exercise, a simpler way to compute the results is to use threenested loops, one for each
weight. Eachloop variable will be a multiplier for the corresponding weight, going
through the values-1 , 0 and1. -1 represents placing that weight in the same pan as the
gold, 0 represents not using that weight, and1 represents placing that weight in the pan
opposite the gold.

14 Chapter 14 Arrays

14.2 Section / task 14.2 Salary analysis

• Aim of example: To introduce the basic concepts ofarrays, includingarray type, array
variables,array creation, array element access, array length andempty arrays. We
also meetMath.round() and revisitSystem.out.printf() anddivision by zero.

• Coursework title:Mark analysis

• Coursework summary: Write a program that analyses student coursework marks.

• Question: Write a program, calledMarkAnalysis , that takes alist of student coursework
marks and produces a report. The scores are entered by the user, after he or she has been
prompted to say how many there are. Each score is a whole number greater than or
equal to 0. The program should output the mean average, minimum andmaximum of
the scores, and a list of the scores, each along with their difference from the mean average
score, shown to two decimal places (usingSystem.out.printf()).

In your main method, you should first read the scores into anint array using oneloop,
before finding the minimum, maximum and mean using a second, and then printing the
results using a third. (You could combine the first two loops into one, but perhaps that
would be less clear?)

You may assume that any input values are valid. However, if the number of scores is not
at least one, your program should display a suitable messageand exit.

Here is an examplerun of the program.

52

14.3 Section / task 14.3 Sorted salary analysis

Console Input / Output
$ java MarkAnalysis

Enter the number of marks: 6

Enter mark # 1: 8

Enter mark # 2: 6

Enter mark # 3: 9

Enter mark # 4: 8

Enter mark # 5: 5

Enter mark # 6: 4

The mean mark is: 6.666666666666667
The minimum mark is: 4
The maximum mark is: 9

Person | Score | difference from mean
1 | 8 | 1.33
2 | 6 | -0.67
3 | 9 | 2.33
4 | 8 | 1.33
5 | 5 | -1.67
6 | 4 | -2.67

$ _

Hint: Use the followingformat specifier string. "%6d | %5d | %6.2f%n"

14.3 Section / task 14.3 Sorted salary analysis

• Aim of example: To reinforcearrays and introduce the idea ofsorting, together with
one simple sortingalgorithm . We also introduce thefor-each loop, and have an array
as amethod parameter to amethod.

• Coursework title:Mark analysis with sorting

• Coursework summary: Write a program that analyses student coursework marks, and
presents the results in asorted order.

• Question: Modify your program from the last task so that it presents the results in as-
cending order of mark. Use your own sort method, which can be based on the code in
the example for this section. (Could this change the way you find your maximum and
minimum?)

Here is an examplerun of the program.

53

14.4 Section / task 14.4 Get a good job

Console Input / Output
$ java MarkAnalysis

Enter the number of marks: 6

Enter mark # 1: 8

Enter mark # 2: 6

Enter mark # 3: 9

Enter mark # 4: 8

Enter mark # 5: 5

Enter mark # 6: 4

The mean mark is: 6.666666666666667
The minimum mark is: 4
The maximum mark is: 9

Person | Score | difference from mean
1 | 4 | -2.67
2 | 5 | -1.67
3 | 6 | -0.67
4 | 8 | 1.33
5 | 8 | 1.33
6 | 9 | 2.33

$ _

14.4 Section / task 14.4 Get a good job

• Aim of example: To examinearrays in which thearray elements arereferences to
objects. In particular, we see how this impacts onsorting with the use of acompareTo()
instance method. We also revisitSystem.out.printf() and meetString.format() .

• Coursework title:Mark analysis with student names and sorting

• Coursework summary: Write a program that analyses named student coursework marks,
and presents the results in asorted order.

• Question: Modify your program from the last task so that eachmark has an associated
named student. You will need to create aclasscalledStudent with two instance vari-
ables, one for the name of a student and the other for his or her mark. This should
provide acompareTo() instance methodwhich you will use in yoursort code, and a
toString() to help produce the report.

Here is an examplerun of the program.

54

14.5 Section / task 14.5 Sort out a job share?

Console Input / Output
$ java MarkAnalysis

Enter the number of students: 6

Enter the name of student 1: Helen

Enter the mark for ‘Helen’: 8

Enter the name of student 2: Andy

Enter the mark for ‘Andy’: 6

Enter the name of student 3: John

Enter the mark for ‘John’: 9

Enter the name of student 4: Karen

Enter the mark for ‘Karen’: 8

Enter the name of student 5: Sanjay

Enter the mark for ‘Sanjay’: 5

Enter the name of student 6: George

Enter the mark for ‘George’: 4

The mean mark is: 6.666666666666667
The minimum mark is: 4
The maximum mark is: 9

Person and Score | difference from mean
George got 4 | -2.67
Sanjay got 5 | -1.67
Andy got 6 | -0.67
Helen got 8 | 1.33
Karen got 8 | 1.33
John got 9 | 2.33
$ _

You should make appropriate use offor-each loops. Hint: Use the followingformat
specifierstring. "%-10s got %3d"

14.5 Section / task 14.5 Sort out a job share?

• Aim of example: To introducepartially filled array s witharray extension, array copy-
ing to make ashallow copyandreturn ing anarray from a method. We also look at
object sharingas we have three arrays containingreferences to the sameobjects. Along
the way we meet the use of aScanner on afile, enum types andsplit() on aString .

• Coursework title:Random order text puzzle

• Coursework summary: Write a random order text linesorting puzzle program.

• Question: In this coursework you will write a program that sets aninteractive puzzle for
the user to solve. The program isrun with acommand line argumentwhich is the name
of afile containing a few lines of text. These are read in and presented in a random order
to the user, who is invited to pick one line to be swapped with the last one, repeatedly,
until they are back in their original order.

55

14.5 Section / task 14.5 Sort out a job share?

The text might be part of the lyrics of a song, or a poem, or a quote, etc., or may have
some other quality about it that gives a clue for working out the correct order.

Here is an example run of the program.

Console Input / Output
$ java RandomOrderPuzzle test-data.txt

0 are sorted as they started off,
1 it obvious
2 what the correct
3 Is
4 should be now that they
5 i.e. in order of increasing word count?
6 order of these lines

Enter a line number to swap with the last one: 3

0 are sorted as they started off,
1 it obvious
2 what the correct
3 order of these lines
4 should be now that they
5 i.e. in order of increasing word count?
6 Is

Enter a line number to swap with the last one: 0

0 Is
1 it obvious
2 what the correct
3 order of these lines
4 should be now that they
5 i.e. in order of increasing word count?
6 are sorted as they started off,

Enter a line number to swap with the last one: 5

0 Is
1 it obvious
2 what the correct
3 order of these lines
4 should be now that they
5 are sorted as they started off,
6 i.e. in order of increasing word count?

Game over in 3 moves.
$ _

Write your solution in aclasscalledRandomOrderPuzzle . Themain methodwill create
a Scanner for the file, and pass it to theconstructor method to make aninstanceof
RandomOrderPuzzle . Then it will make anotherScanner for thetextual user interface.

The constructor method will read in the text, and store it in an array of String s, using

56

14.6 Section / task 14.6 Diet monitoring

array extensionas required. Then it will make a copy of this array into a second array,
and randomize the order of this copy.

The class will also provide threeinstance methods for use in the main method. One will
swap a given line of the copied array with its last line. Another will check to see whether
the lines of the copy array are (now) in the same order as the original one. The third is a
toString() which list the lines from the randomized copy in their current order.

Here is the main method, and aprivate instance method to randomize the order of a
given array.

...
011: public static void main(String[] args) throws Exception
012: {

013: Scanner fileScanner = new Scanner(new File(args[0]));
014: RandomOrderPuzzle puzzle = new RandomOrderPuzzle(fileScanner);
015:
016: Scanner inputScanner = new Scanner(System.in);
017: System.out.println(puzzle);
018: int moveCount = 0;
019: while (! puzzle.isSorted())
020: {

021: System.out.print("Enter a line number to swap with the last one: ");
022: puzzle.swapLine(inputScanner.nextInt());
023: System.out.println(puzzle);
024: moveCount++;
025: } // while
026: System.out.println("Game over in " + moveCount + " moves.") ;
027: } // main
...
084: private void randomizeStringArrayOrder(String[] anArray)
085: {

086: for (int itemsRemaining = anArray.length;
087: itemsRemaining > 0; itemsRemaining--)
088: {

089: int anIndex = (int) (Math.random() * itemsRemaining);
090: String itemAtAnIndex = anArray[anIndex];
091: anArray[anIndex] = anArray[anArray.length - 1];
092: anArray[anArray.length - 1] = itemAtAnIndex;
093: } // for
094: } // randomizeStringArrayOrder
...

14.6 Section / task 14.6 Diet monitoring

• Aim of example: To reinforce ideas met so far, and introducearray initializer andarray
searching, for which we revisit thelogical operators.

• Coursework title:Viewing phone call details

57

14.6 Section / task 14.6 Diet monitoring

• Coursework summary: Write a program to allow the user to viewcertain phone call
details.

• Question: Here you will write a program that reads in afile of phone call details, and al-
lows the user to see some of those calls with a total cost and duration. The firstcommand
line argument is the name of atext file containing the details of one phone call per line,
comprising the phone number, including spaces at the appropriate places, the duration of
the call, in the format hh:mm:ss, and the cost of the call, in pounds, as a decimal number.
These three items are separated by singletab characters. Here is some sampledata.

Console Input / Output
$ cat test-phone-calls.txt

07571 78764 00:00:16 0.120
01537 82608 00:00:04 0.070
01492 88229 01:02:58 0.860
08479 88844 00:03:56 0.070
08901 24241 00:00:33 0.060
07546 88323 00:02:40 0.250
07571 78764 00:07:12 0.910
08474 02751 00:05:37 0.150
0161 296 410 00:03:02 0.190
0161 296 682 00:00:57 0.090
01537 82608 00:00:20 0.070
01537 82608 00:30:10 0.450
08479 77777 00:02:50 0.070
07571 78764 00:06:23 0.800
07728 50344 00:04:20 0.380
0161 296 682 00:00:06 0.070
07571 78764 00:44:28 2.930
0161 803 487 00:15:59 0.260
0161 297 617 00:13:24 0.530
08476 05080 00:00:14 0.060
08476 05080 00:04:09 0.130
07571 78764 00:00:03 0.120
0161 803 487 00:00:48 0.070
08479 88844 00:01:05 0.060
08901 27274 00:02:30 0.090
07571 78764 00:08:18 0.630
0161 297 629 00:01:05 0.120
07936 84350 00:11:13 1.330
07936 84350 00:01:59 0.270
0161 297 629 00:00:01 0.090
07571 78764 00:46:27 3.060
08479 77777 00:03:17 0.070
07955 65414 00:20:41 1.400
01492 88229 01:24:12 0.850
$ _

The user selects a subset of the calls by entering a prefix of the phone numbers he or she
wishes to view. Here is an examplerun .

58

14.6 Section / task 14.6 Diet monitoring

Console Input / Output
$ java PhoneCalls test-phone-calls.txt

Enter phone number prefix, or Q to quit: 075

07571 78764 00:00:16 0.12
07546 88323 00:02:40 0.25
07571 78764 00:07:12 0.91
07571 78764 00:06:23 0.80
07571 78764 00:44:28 2.93
07571 78764 00:00:03 0.12
07571 78764 00:08:18 0.63
07571 78764 00:46:27 3.06

Calls matched: 8
Total duration: 01:55:47
Total cost: 8.82

Enter phone number prefix, or Q to quit: 0161 2

0161 296 410 00:03:02 0.19
0161 296 682 00:00:57 0.09
0161 296 682 00:00:06 0.07
0161 297 617 00:13:24 0.53
0161 297 629 00:01:05 0.12
0161 297 629 00:00:01 0.09

Calls matched: 6
Total duration: 00:18:35
Total cost: 1.09

Enter phone number prefix, or Q to quit: 0161 8

0161 803 487 00:15:59 0.26
0161 803 487 00:00:48 0.07

Calls matched: 2
Total duration: 00:16:47
Total cost: 0.33

Enter phone number prefix, or Q to quit: Q

$ _

You should create fourclasses.

Class list for PhoneBook

Class Description
PhoneCalls The main class containing themain method. It will make aninstance

of PhoneCallList and then prompt the user for input.
PhoneCallList An instance of this will represent thelist of phone calls and will contain

instances ofPhoneCall .

59

14.6 Section / task 14.6 Diet monitoring

Class list for PhoneBook

Class Description
PhoneCall An instance of this will represent a single phone call comprising phone

number, duration and cost.
Duration An instance of this represents a period of time which can be seen in

hh:mm:ss format, and which can be added to another duration to yield a
new one.

Here is the main method to get you started.

...
016: public static void main(String[] args) throws Exception
017: {

018: callList = new PhoneCallList(new Scanner(new File(args[0])));
019: Scanner inputScanner = new Scanner(System.in);
020: String userInput;
021: do

022: {

023: System.out.print("Enter phone number prefix, or Q to quit: ");
024: userInput = inputScanner.nextLine();
025: if (! userInput.equals("Q"))
026: System.out.println(callList.matchingCallsReport(use rInput));
027: } while (! userInput.equals("Q"));
028: } // main
...

You should think carefully where the logic to decide whethera particular phone call
matches the user’s input should go: is it to reside inPhoneCallList or PhoneCall ?
(Hint: is it about a phone call, or about a list?) Either way, you can use thestartsWith()
instance methodof theString class.

To help you further, here is the code for theDuration class.

001: // Representation of a time duration.
002: public class Duration
003: {

004: // Represented as a hh:mm:ss string and as total seconds.
005: private final String stringRep;
006: private final int totalSeconds;
007:
008:
009: // Constructs from a hh:mm:ss string.
010: public Duration(String requiredStringRep)
011: {

012: stringRep = requiredStringRep;
013: String[] parts = requiredStringRep.split(":");
014: int hours = Integer.parseInt(parts[0]);
015: int minutes = Integer.parseInt(parts[1]);

60

14.7 Section / task 14.7 A weekly diet

016: int seconds = Integer.parseInt(parts[2]);
017: totalSeconds = (hours * 60 + minutes) * 60 + seconds;
018: } // Duration
019:
020:
021: // Constructs from a total number of seconds.
022: public Duration(int requiredNoOfSeconds)
023: {

024: totalSeconds = requiredNoOfSeconds;
025: int hours = totalSeconds / 3600;
026: int minutes = (totalSeconds % 3600) / 60;
027: int seconds = totalSeconds % 60;
028: stringRep = String.format("%02d:%02d:%02d", hours, minu tes, seconds);
029: } // Duration
030:
031:
032: // Returns the hh:mm:ss representation.
033: public String toString()
034: {

035: return stringRep;
036: } // toString
037:
038:
039: // Adds this to another to create a new.
040: public Duration add(Duration other)
041: {

042: return new Duration(totalSeconds + other.totalSeconds);
043: } // add
044:
045: } // class Duration

Optional extra: Instead of merely a leading prefix of phone numbers, why not allow the
user to enter any pattern? (Hint: look at thematches() instance method of theString
class.)

Optional extra: Add the date and time of calls to the program (and its data).

14.7 Section / task 14.7 A weekly diet

• Aim of example: To introducetwo-dimensional arrays.

• Coursework title:Maze solver

• Coursework summary: Write a program that finds the shortest path through a maze.

• Question: The program you are going to write here will read intextual representations
of mazes and solve them. Mazes consist of a matrix of cells, each of which can be an
entrance, an exit, a hedge, or a space. Each maze must have at least one entry point, at
least one exit point, and at least one path of space cells between some entrance and exit.
Paths can only turn 90 degrees, that is, there is no use of diagonal movement. The job of

61

14.7 Section / task 14.7 A weekly diet

the program is to print out each maze showing theshortestpath from any entrance to its
nearest exit.

Here is sampledata, showing three very similar mazes, each stored in atext file. A
hedge cell is represented by a#, an entrance by a?, an exit by a! and a space by a space.

Console Input / Output
$ cat test-maze-1.txt test-maze-2.txt test-maze-3.txt

(Output shown using multiple columns to save space.)

#?################## #?################## #?##################
#
#
#
##
##
#
#####
#
##################!# ##################!# ##################!#
$ _

And here is the result ofrunning the program on that data, where the shortest path is
shown using dot (.) characters.

Console Input / Output
$ java MazeSolver test-maze-1.txt test-maze-2.txt test-ma ze-3.txt

(Output shown using multiple columns to save space.)

#?################## #?################## #?##################
#. # #. # #..................#
#.################ # #.################ # # ################.#
#.#...... # # # #.#...... # # # # # # # ..#
#.#.####.# # ## #.#.####.# # ## # # #### # # .##
#...# .######## ## #.#.# .######## ## # # # ########.##
.# # #.#.# .# # # # # #
.# ######### #.#.# .# ######### # # # # ###.#####
##...........# #...# ##...........# # # ###
##################!# ##################!# ##################!#
$ _

14.7.1 How will it work?

The solution is based on repeatedly making moves from entrances, fanning outwards
in all possible directions, until we reach an exit. We start the search at every entrance
simultaneously. In move one we fan out to every cell accessible from each entrance. In
move two we further fan out to every (new) cell accessible from each cell we accessed
in move one, and so on. In order to know which cells we have accessed in which move,
we set up atwo-dimensional array of numbers, the same dimensions as the maze, and
store the move count at each cell as we reach it. So, the entrances have a move count of

62

14.7 Section / task 14.7 A weekly diet

zero, those next to the entrances contain the number one, theneighbours of those contain
a two, and so on.

The following diagram shows this process for the first example maze above.

0

1 2

2

3

3 4

4

5

5

6

6

6

7

7

7

8

8

8

8

9

9

9

9

10

10

10

11

11

12

12

13

13 14

14 15

15

15

16

16

1617

17

17

17

18

18

18

18

19

19

19

19

19

20

20

20

2021

21

21

22

22

22

22

22

23

23

23

23

24

24

2425

25

25 2526 26

26

27

27 28 29

18 19 20

20 21 22

24

Entrance

Exit

And this one shows it for the third example maze.

0

1 2

2

3

3 4

4

5

5

6

6

7

7

8

8

9

9

10

10 11 12 13 14 15 16 17 18

19

Entrance

11

12

13

14

15 16 17 18 19 20 202121

21

22

22 22

22

23

2323

23

23 24

24

24

24

24 25

25

25

25

2525

24

25

26

26

26

26

26

26 27

27

27

27

28

28

28

28

28

28

29

29 29

2930

30 30 31 32 33

Exit

Note that, depending on the maze, it might be that not every space cell gets visited before
an exit is found.

0

1 2

2

3

3 4

4

5

5

6

6

7

7

8

8

9

9

10

10

Entrance

ExitExit

1098765321

0

Entrance

4

66

67

67 78 8

9

910

10

6

4 3 2

3

4

5

5

45

5 8

9 107 85

4

Having reached an exit, we stop fanning out and instead work backwards along the short-

63

14.7 Section / task 14.7 A weekly diet

est path to mark it.

Here ispseudo codefor thealgorithm .

move-count = 0
found-exit = false
while !found-exit

consider every cell in turn
if the cell value == move-count

consider each of its four neighbours in turn or until found ex it
if the neighbour cell is an exit

found-exit = true
mark the path back to the start from this cell

else if the neighbour cell is an unreached space
neighbour cell value = move-count + 1

move-count++
end-while

To mark the path back from the neighbour of the exit which has been reached, you do
something like the following.

path position is given as row and column of the exit’s neighbo ur
move-count = the value at this path position
while moveCount != 0

mark this path position as part of the path
move-count--
find the neighbour which holds the value move-count

path position = that neighbour’s row and column

14.7.2 Implementation help

You will find the following code useful to help youloop through the four neighbours of
each cell. (You may recall theremainder operator, %, from Section??on page??.)

private int[] neighbourOffsets = {-1, 0, 1, 0 };
...

for (int neighbour = 0; !foundAnExit && neighbour <= 3; neigh bour++)
{

int neighbourColumn = column + neighbourOffsets[neighbou r];
int neighbourRow = row + neighbourOffsets[(neighbour + 1) % 4];
...

} // for

Here is some of the solution to get you started.

001: import java.io.File;
002: import java.util.Scanner;
003:
004: /* Reads a maze representation from each file given as an argu ment
005: and prints it out showing the shortest route from any entranc e to an exit.

64

14.7 Section / task 14.7 A weekly diet

006: */
007: public class MazeSolver
008: {

009: public static void main(String[] args) throws Exception
010: {

011: for (String filename : args)
012: System.out.print(new MazeSolver(new Scanner(new File(filename))));
013: } // main
014:
015:
016: // The dimensions of the maze are fixed.
017: private static final int HEIGHT = 10;
018: private static final int WIDTH = 20;
019:
020: // The values for cells in the maze model.
021: // Start: this must be zero because you get there in zero steps .
022: private static final int START = 0;
023:
024: // Space, hedge, path and end: must all be negative
025: // so they are not ambiguous with a move count.
026: private static final int SPACE = -1;
027: private static final int HEDGE = -2;
028: private static final int PATH = -3;
029: private static final int END = -4;
030:
031: // The characters used in the file and output to represent the maze.
032: private static final char SPACE_REP = ’ ’;
033: private static final char HEDGE_REP = ’#’;
034: private static final char START_REP = ’?’;
035: private static final char END_REP = ’!’;
036: private static final char PATH_REP = ’.’;
037:
038: // The maze model. It is two bigger in each dimension so we can h ave an
039: // extra hedge around the whole maze. This means every real ce ll has 4
040: // neighbours, so we don’t need to check edges of the array.
041: private final int [][] maze = new int [HEIGHT + 2][WIDTH+ 2];
042:
043:
044: // Construct a MazeSolver from the given scanner for a file
045: // which must contain HEIGHT lines each of WIDTH characters.
046: public MazeSolver(Scanner input)
047: {

048: // First we place a surround of HEDGE cells.
049: for (int row = 0; row < HEIGHT + 2; row++)
050: maze[row][0] = maze[row][WIDTH + 1] = HEDGE;
051: for (int column = 0; column < WIDTH + 2; column++)
052: maze[0][column] = maze[HEIGHT + 1][column] = HEDGE;
053:
054: // Next we read the maze, assuming the file is valid.

65

14.7 Section / task 14.7 A weekly diet

055: // This goes in to positions 1 to HEIGHT and 1 to WIDTH
056: // leaving the surrounding hedge unchanged.
057: for (int row = 1; row <= HEIGHT; row++)
058: {

059: String mazeLine = input.nextLine();
060: for (int column = 1; column <= WIDTH; column++)
061: {

062: char inputChar = mazeLine.charAt(column - 1);
063: switch (inputChar)
064: {

065: case SPACE_REP: maze[row][column] = SPACE; break ;
066: case HEDGE_REP: maze[row][column] = HEDGE; break ;
067: case START_REP: maze[row][column] = START; break ;
068: case END_REP: maze[row][column] = END; break ;
069: } // switch
070: } // for
071: } // for
072:
073: // Then we solve it.
074: solve();
075: } // MazeSolver
076:
077:
078: // Each cell has four neighbours: these offsets help us find t hem.
079: private int [] neighbourOffsets = {-1, 0, 1, 0 };
080:
081:
082: // Find the shortest path from any START to any END.
083: // There must exist such a path or else....
084: private void solve()
085: {

...
112: } // solve
113:
114:
115: // Mark the path backwards from row, column.
116: private void markPathBackFrom(int row, int column)
117: {

...
138: } // markPathBackFrom
139:
140:
141: // The correct line separator for this platform.
142: private static final String NLS = System.getProperty("line.separator");
143:
144:
145: // Return a text representation of the maze.
146: public String toString()
147: {

66

148: String result = "";
149: for (int row = 1; row <= HEIGHT; row++)
150: {

151: for (int column = 1; column <= WIDTH; column++)
152: switch (maze[row][column])
153: {

154: case HEDGE: result += HEDGE_REP; break ;
155: case START: result += START_REP; break ;
156: case END: result += END_REP; break ;
157: case PATH: result += PATH_REP; break ;
158: // Anything else will be a space which is not part of the path.
159: default : result += SPACE_REP;
160: } // switch
161: result += NLS;
162: } // for
163: return result;
164: } // toString
165:
166: } // class MazeSolver

Note: your solution will probably have a different line count.

Coffee
time:

What happens if the program is run on a maze that does not have apath
from an entrance to an exit?

Optional extra: Improve your program so that it deals sensibly with bad mazes.

Optional extra: Perhaps usingint values for the cells is not a goodobject oriented
design approach. So, posh up your program by making it have aCell class, which
contains aninstance variablefor the cell type and a separate move count if it is a space
cell. You could take this further, e.g. each cell could also contain its row and column
array index, and anarray of references to the four neighbouring cells to make looping
through them even easier.

15 Chapter 15 Exceptions

15.2 Section / task 15.2 Age next year revisited

• Aim of example: To take a closer look atrun time error s, or as Java calls them,excep-
tions.

• Coursework title:FishTankVolume robustness analysis

• Coursework summary: Take a program you have seen before and analyse where it can
go wrong.

• Question: Take another look at theFishTankVolume program from Section?? on page
??. Make a list of all the circumstances that can cause anexceptionand another list of

67

15.3 Section / task 15.3 Age next year with exception avoidance

circumstances which merely produce inappropriate results.

15.3 Section / task 15.3 Age next year with exception avoidance

• Aim of example: To show how we can avoidexceptions usingconditional execution.
We also meet theCharacter class.

• Coursework title:FishTankVolume exception avoidance

• Coursework summary: Take a program you have seen before and make it avoidexcep-
tions.

• Question: Despite what we have just said about not being satisfied with the approach, you
are here going to try it. Write a version of theFishTankVolume program from Section
??on page??which avoidsexceptions.

15.4 Section / task 15.4 Age next year with exception catching

• Aim of example: To introduceexception catchingusing thetry statement. We also
take a look atstandard error .

• Coursework title:FishTankVolume exception catching

• Coursework summary: Take a program you have seen before and make itcatch excep-
tions.

• Question: Write another version of theFishTankVolume program from Section?? on
page??. This should not avoidexceptions, but insteadcatch them in a singlecatch
clause. (In the next task you can improve it by having multiple catchclauses.)

15.5 Section / task 15.5 Age next year with multiple exception catching

• Aim of example: To observe that there are many kinds ofexceptionand introduce the
idea of multipleexception catchingby having atry statement with manycatch clauses.

• Coursework title:FishTankVolume multiple exception catching

• Coursework summary: Take a program you have seen before and make itcatchmultiple
exceptions.

• Question: Write yet another version of theFishTankVolume program from Section??
on page??. This time it shouldcatch exceptions in appropriate multiplecatch clauses.

15.6 Section / task 15.6 Age next year throwing an exception

• Aim of example: To introduce the idea of creating anexceptionandthrow ing an excep-
tion when we have detected a problem, using thethrow statement.

68

15.7 Section / task 15.7 Single times table with exception catching

• Coursework title:FishTankVolume throwing exceptions

• Coursework summary: Take a program you have seen before and make it throw its own
exceptions andcatch them.

• Question: Write one more version of theFishTankVolume program from Section?? on
page??. This will throw exceptions for inappropriate inputs which would otherwise not
cause an exception, andcatch all the exceptions in appropriate multiplecatch clauses.

15.7 Section / task 15.7 Single times table with exception catching

• Aim of example: To illustrate the use ofexception catchingin graphical user interface
(GUI) programs.

• Coursework title:TimesTable with a ScrollPane catching exceptions

• Coursework summary: Take a program with aGUI , that you have seen before, and make
it catch exceptions.

• Question: Write a version of theTimesTable with aScrollPane program from Section
?? on page?? thatcatches theexceptioncaused by the user enteringdata which is not
a valid representation of anint .

15.8 Section / task 15.8 A reusable Date class with exceptions

• Aim of example: To introduce thethrows clausetogether with its associateddoc com-
ment tag. We also look at supplying anexception causewhen we create anexception,
and discuss the use ofRuntimeException s.

• Coursework title:Date class with nested try statements

• Coursework summary: Modify aclassso that it usesnested try statements.

• Question: Recall thealternativeaddDay() instance methodfrom a coffee time on page
??. Modify the Date classfrom this section to make it use that alternativenested try
statements approach forall instance methods which create anew Date .

Write a program calledTestRelativeDates to test your implementation. This should
contain amain method with hard-codedtest data. One simple approach would be to
create a ‘reference’ date, and then have aloop which takes it forwards one day at a time,
over a, say, two year period (including a leap year). Inside the loop you print out the
reference date together with five datesconstructed relatively from it.

69

16 Chapter 16 Inheritance

16.3 Section / task 16.3 The Person class

• Aim of example: To introduce the ideas ofsuperclass, subclass, inheritance, andis a
relationships.

• Coursework title:Stock control system

• Coursework summary: Write aclassthat can be used to keep track of stock items, and
test it.

• Question: Imagine you are setting up a computer parts shop, and will needsoftware
to keep track of stock and prices. You will have various kindsof stock item, but to
start with you will implement aclasscalledStockItem with the following properties.
In later coursework tasks you will make varioussubclasses of this. Aninstance of
StockItem represents a particular thing which the shop sells, with a fixed stock code,
variable quantity in stock and variable price.

Public method interfaces for classStockItem .

Method Return Arguments Description
Constructor int , int Create aStockItem with the given int

price (in whole pence) andint initial quan-
tity in stock. The price is exclusive of VAT
(sales tax). EachStockItem object is al-
located a unique fixedint stock code.

getStockCode int Returns the stock code for this stock item.
getStockType String Returns the string"Stock item type" .

This will be redefined in subclasses.
getDescription String Returns the string"A description of

the stock item" . This will be redefined
in subclasses.

getQuantityInStock int Returns the quantity in stock of this stock
item.

increaseStock void int Increases the stock level by the given
amount. If it is less than one, an
IllegalArgumentException is thrown
with a suitable message.

sellStock boolean int Attempts to reduce the stock level by the
given amount. If it is less than one, an
IllegalArgumentException is thrown
with a suitable message. If the amount is
otherwiseless than or equalto the stock
level, then the reduction is successful and
true is return ed. Else there is no effect,
but false is returned.

70

16.3 Section / task 16.3 The Person class

Public method interfaces for classStockItem .

Method Return Arguments Description
setPriceExVat void int Set the price of this item to the givenint .

This is the price before VAT.
getPriceExVat int Returns the price before VAT.
getVatRate double Returns the standard percentage VAT rate,

which is currently20.0 . This may be
redefined in some subclasses.

getPriceIncVat int Returns the price including VAT (as spec-
ified by getVatRate()) rounded to the
nearest penny.

toString String Returns a string giving the stock code,
the stock type, the description, the quan-
tity in stock, the price excluding VAT and
the price including VAT. It uses the appro-
priatemethods above to obtain the stock
type, description, quantity and prices.

To allocate a unique fixed stock code to eachStockItem object you might have the
following code.

...
007: // The number of stock items created so far.
008: private static int noOfStockItemsCreated = 0;
009:
010: // The fixed stock code of this item.
011: private final int stockCode;
...
021: public StockItem(int initialPriceExVat, int initialQuantityInStock)
022: {

023: noOfStockItemsCreated++;
024: stockCode = noOfStockItemsCreated;
...
027: } // StockItem
...

You will test this with a program calledTestStockItem . This will make some instances
of StockItem , increase stock, sell some stock and change the price, whilst printing out
the items in between.

An examplerun might be as follows.

71

16.4 Section / task 16.4 The AudienceMember class

Console Input / Output
$ java TestStockItem

Creating a keyboard stock item, 10 in stock @ 499.
SC1: Stock item type, A description of the stock item (10 @ 499 p/599p)
Creating a monitor stock item, 20 in stock @ 9999.
SC2: Stock item type, A description of the stock item (20 @ 999 9p/11999p)
Obtain 10 more keyboards.
SC1: Stock item type, A description of the stock item (20 @ 499 p/599p)
Obtain 20 more monitors.
SC2: Stock item type, A description of the stock item (40 @ 999 9p/11999p)
Sell 5 keyboards.
SC1: Stock item type, A description of the stock item (15 @ 499 p/599p)
Sell 10 monitors.
SC2: Stock item type, A description of the stock item (30 @ 999 9p/11999p)
Change keyboard price to 399.
SC1: Stock item type, A description of the stock item (15 @ 399 p/479p)
Change monitor price to 7999.
SC2: Stock item type, A description of the stock item (30 @ 799 9p/9599p)
$ _

16.4 Section / task 16.4 The AudienceMember class

• Aim of example: To finish introducingsuperclass, subclassandinheritance, and briefly
meetUML . Also, to introduce the principles of invoking theconstructor methodof the
superclass, and havinginstance methods thatoverride one from the superclass.

• Coursework title:Your first stock item!

• Coursework summary: Write asubclasswhich overrides someinstance methods.

• Question: Your new computer parts shop has obtained a load ofvery cheap mouse
mats, which are going to be your first item on sale. Create aclassMouseMat which
is asubclassof StockItem . This will override theinstance methods getStockType()
andgetDescription() with ones thatreturn "Mouse mat" and"Plain blue cloth,
foam backed" respectively.

Test this with a program calledTestMouseMat which makes aninstanceof MouseMat
(you would probably not want more than one instance), increasing and then selling some
stock and changing the price, whilst printing out the item inbetween.

16.5 Section / task 16.5 The Punter class

• Aim of example: To reinforce the ideas ofsuperclass, subclass, inheritance, invoking
the superclassconstructor method, andinstance methods thatoverride another.

• Coursework title:Your catalogue

• Coursework summary: Write anothersubclasswhichoverrides someinstance methods.

72

16.6 Section / task 16.6 The Person abstract class

• Question: Your mouse mats are selling like hot cakes and you dream of the days soon
to come when you will sell other things too. In fact, you decide it is time to have a
catalogue!

Create aclassCatalogue which is asubclassof StockItem . This will override the in-
stance methodsgetStockType() andgetDescription() with ones thatreturn "Catalogue"
and"List of all items and prices" respectively.

Your new class will also overridegetVatRate() with one thatreturn s zero, because
books do not have VAT charged on them.

Test this with a program calledTestCatalogue which makes aninstanceof Catalogue
(you would probably not want more than one instance) increasing and then selling some
stock and changing the price, whilst printing out the item inbetween.

16.6 Section / task 16.6 The Person abstract class

• Aim of example: To introduce the concepts ofabstract classandabstract method.

• Coursework title:An abstract stock item

• Coursework summary: Make aclassinto anabstract class.

• Question: Alter yourclasscalledStockItem so that it becomes anabstract class. There
are twoinstance methods which you should change to becomeabstract methods.

Confirm that you cannot makeinstances ofStockItem by attempting tocompileTestStockItem .
Check that your other test programsrun the same as they did before.

16.7 Section / task 16.7 The remaining simple subclasses of Person

• Aim of example: To reinforce the concepts covered in the chapter so far, and introduce
the ideas ofpolymorphism anddynamic method binding. We also meetfinal classes
andfinal methods.

• Coursework title:More stock items

• Coursework summary: Make some moresubclasses and explorepolymorphism and
dynamic method binding.

• Question: You have obtained a big box of CPUs, a bin bag full ofkeyboards and a crate
of hard discs. Create theclassesCPU, Keyboard andHardDisc , return ing the following
values fromgetStockType() andgetDescription() .

Class Result from getStockType() Result from getDescription()
CPU "CPU" "Really fast"
Keyboard "Keyboard" "Cream, non-click"
HardDisc "Hard disc" "Lots of space"

73

16.8 Section / task 16.8 The MoodyPerson classes

Write a program calledTestStockItemSubclasses which has aclass methodto test
just oneinstanceof aStockItem given to it as amethod parameter. This will increase
the stock, sell some stock and change the price, printing outthe item in between.

The class will also have amain method which builds anarray containing one instance
of eachsubclassof StockItem you have written so far, and then, in aloop, calls the
class method to test each one.

16.8 Section / task 16.8 The MoodyPerson classes

• Aim of example: To introduce the ideas of adding moreobject state and instance
methods in asubclass, testing for aninstance of a particularclass, andcasting to a
subclass. We also see how aconstructor method can invoke another from the same
class.

• Coursework title:Lots of different mouse mats!

• Coursework summary: Have additional state in somesubclasses.

• Question: Your shop is really beginning to take off – you now have several kinds of
mouse mat! This causes you to think again about yourMouseMat class. Only your
first ones fit the description which you previouslyhard coded, and so you decide that
a description suitable to particular mouse mats should be given when aninstance of
MouseMat is created. You realize that there may be other kinds of stockitem that have
similar simple variations in their descriptions, and so youdecide to create anotherab-
stract classwhich is asubclassof StockItem , calledTextDescriptionStockItem ,
and haveMouseMat be a subclass of that. Aninstanceof TextDescriptionStockItem
will be given its description when it is created. Also, because you anticipate that descrip-
tions might be refined due to customer feedback, they can be changed later.

Public method interfaces for classTextDescriptionStockItem .

Method Return Arguments Description

Constructor String, int , int Creates an instance of
TextDescriptionStockItem with
the given textual description,int initial
price (in whole pence) andint initial
quantity. The price is exclusive of
VAT (sales tax).

getDescription String Returns the description that was given
to theconstructor method.

setDescription void String Sets the description to the given string.

Read the rest of this task, and then draw aUML class diagram showing the fullinheri-
tance hierarchy, from StockItem downwards, as it will be when you have finished the
task.

74

16.11 Section / task 16.11 The Game class

After drawing your diagram, implement theTextDescriptionStockItem class.

Now changeMouseMat so that it is asubclassof TextDescriptionStockItem and
removegetDescription() from it.

Alter TestStockItemSubclasses so that it makes two instances ofMouseMat with dif-
ferent descriptions and prices. Add an extraclass methodthat tests aTextDescriptionStockItem
by making some change to its description (e.g. adding some text to it). Alter the exist-
ing class method that tests aStockItem so that, if theStockItem is also an instance
of TextDescriptionStockItem , it will call your new class method to perform those
additional tests.

You have also obtained various books about building computers that you would like to
sell. Create the classBook which is another subclass ofTextDescriptionStockItem .
Remember that books are zero rated for VAT. Get rid of yourCatalogue class – you
have decided that your catalogue is better off being an instance ofBook . Alter your test
program so that it also creates some instances ofBook – including one for your catalogue.

16.11 Section / task 16.11 The Game class

• Aim of example: To illustrate the difference betweenis aandhas arelationships.

• Coursework title:Shopping baskets

• Coursework summary: Write aclasseachinstanceof which has anumber of instances
of another class stored in it.

• Question: As always, read the whole of this task and then planin your logbook what
classes you need, including whatmethods they will have, before starting your imple-
mentation.

Your computer parts shop has so many customers now that you wish to computerize the
selling of your products. Write aclasscalledStockItemPurchaseRequest which has
a StockItem and anint quantity of that stock item required by a customer.

Write another class calledShoppingBasket which can contain any number of stock
item purchase requests, usingarray extension. This should have anadd() instance
methodwhich takes (areferenceto) aStockItem and anint required quantity, and adds
a correspondingStockItemPurchaseRequest to the shopping basket.

It will also have atoString() giving the contained stock item purchase requests, one
per line.

And finally, it will have another instance method calledcheckout . This will go through
the stock item purchase requests and sell them (reducing thestock quantities), if there
are enough quantity in stock, or not otherwise. The successful purchase requests will
be removed from the shopping basket, leaving only those thatwere not purchased. The
result will be aString indicating for each purchase request whether it was purchased or
not, along with the details of it, all followed by the total price with and without VAT. Test
this with a program calledTestShoppingBasket . Here is a sample implementation for
that – feel free to alter it if you wish.

75

16.11 Section / task 16.11 The Game class

001: public class TestShoppingBasket
002: {

003: public static void main(String[] args)
004: {

005: StockItem[] stockItems =
006: {

007: /* 0 */ new MouseMat("Plain blue cloth, foam backed", 150, 10),
008: /* 1 */ new MouseMat("Pink vinyl with fluffy trim", 350, 10),
009: /* 2 */ new Book("List of all items and prices", 150, 10),
010: /* 3 */ new Book("Build a gaming monster", 1799, 0),
011: /* 4 */ new CPU(1500, 10),
012: /* 5 */ new HardDisc(5500, 10),
013: /* 6 */ new Keyboard(200, 10)
014: };
015:
016: System.out.println("Stock before purchase:");
017: for (StockItem stockItem : stockItems)
018: System.out.println(stockItem);
019: System.out.println();
020:
021: ShoppingBasket shoppingBasket = new ShoppingBasket();
022: shoppingBasket.add(stockItems[0], 2);
023: shoppingBasket.add(stockItems[2], 1);
024: shoppingBasket.add(stockItems[4], 8);
025: shoppingBasket.add(stockItems[5], 9);
026: shoppingBasket.add(stockItems[4], 3);
027: shoppingBasket.add(stockItems[6], 8);
028: shoppingBasket.add(stockItems[3], 1);
029:
030: System.out.println("Shopping basket filled up:");
031: System.out.println(shoppingBasket);
032: System.out.println();
033:
034: System.out.println("Performing Checkout:");
035: System.out.println(shoppingBasket.checkout());
036: System.out.println();
037:
038: System.out.println("Shopping basket after checkout:");
039: System.out.println(shoppingBasket);
040: System.out.println();
041:
042: System.out.println("Stock after checkout:");
043: for (StockItem stockItem : stockItems)
044: System.out.println(stockItem);
045: } // main
046:
047: } // class TestShoppingBasket

Here is a samplerun of the above code.

76

16.11 Section / task 16.11 The Game class

Console Input / Output
$ java TestShoppingBasket

Stock before purchase:
SC1: Mouse mat, Plain blue cloth, foam backed (10 @ 150p/176p)
SC2: Mouse mat, Pink vinyl with fluffy trim (10 @ 350p/411p)
SC3: Book, List of all items and prices (10 @ 150p/150p)
SC4: Book, Build a gaming monster (0 @ 1799p/1799p)
SC5: CPU, Really fast (10 @ 1500p/1763p)
SC6: Hard disc, Lots of space (10 @ 5500p/6463p)
SC7: Keyboard, Cream, non-click (10 @ 200p/235p)

Shopping basket filled up:
Shopping basket:
2 of SC1: Mouse mat, Plain blue cloth, foam backed (10 @ 150p/1 76p)
1 of SC3: Book, List of all items and prices (10 @ 150p/150p)
8 of SC5: CPU, Really fast (10 @ 1500p/1763p)
9 of SC6: Hard disc, Lots of space (10 @ 5500p/6463p)
3 of SC5: CPU, Really fast (10 @ 1500p/1763p)
8 of SC7: Keyboard, Cream, non-click (10 @ 200p/235p)
1 of SC4: Book, Build a gaming monster (0 @ 1799p/1799p)

Performing Checkout:
Checkout report:
Purchased 2 of SC1: Mouse mat, Plain blue cloth, foam backed (8 @ 150p/176p)
Purchased 1 of SC3: Book, List of all items and prices (9 @ 150p /150p)
Purchased 8 of SC5: CPU, Really fast (2 @ 1500p/1763p)
Purchased 9 of SC6: Hard disc, Lots of space (1 @ 5500p/6463p)
Not purchased 3 of SC5: CPU, Really fast (2 @ 1500p/1763p)
Purchased 8 of SC7: Keyboard, Cream, non-click (2 @ 200p/235 p)
Not purchased 1 of SC4: Book, Build a gaming monster (0 @ 1799p /1799p)
Total price ex vat: 63550p
Total price inc vat: 74653p

Shopping basket after checkout:
Shopping basket:
3 of SC5: CPU, Really fast (2 @ 1500p/1763p)
1 of SC4: Book, Build a gaming monster (0 @ 1799p/1799p)

(Continued ...)

77

16.12 Section / task 16.12 The Worker classes

(...cont.)

Stock after checkout:
SC1: Mouse mat, Plain blue cloth, foam backed (8 @ 150p/176p)
SC2: Mouse mat, Pink vinyl with fluffy trim (10 @ 350p/411p)
SC3: Book, List of all items and prices (9 @ 150p/150p)
SC4: Book, Build a gaming monster (0 @ 1799p/1799p)
SC5: CPU, Really fast (2 @ 1500p/1763p)
SC6: Hard disc, Lots of space (1 @ 5500p/6463p)
SC7: Keyboard, Cream, non-click (2 @ 200p/235p)
$ _

Hint: in order to delete successfully purchased items from theShoppingBasket , checkout()
might create another (empty)ShoppingBasket into which it adds theStockItem and re-
quired quantity ofunsuccessfulrequests. At the end it can copy theinstance variables
of this temporaryShoppingBasket to replace those of the original one.

As usual, record in your logbook any changes you needed to make to your plan.

16.12 Section / task 16.12 The Worker classes

• Aim of example: To show an example of asuperclasswhich is (appropriately) not an
abstract class. We also show how we can use aninstance methoddefined in the super-
class, from asubclasswhichoverrides it.

• Coursework title:Loads of disc space

• Coursework summary: To write a non-abstract classwhich has asubclass, and use an
instance methoddefined in thesuperclassfrom a subclass whichoverrides it.

• Question: Read the whole of this task, and then draw aUML class diagram showing the
full inheritance hierarchy, from StockItem downwards, as it will be when you have
finished the task.

Your shop just keeps getting better – now you have a whole variety of different sizes of
hard disc on offer. Alter yourHardDisc classso that theconstructor method takes
an additionalmethod parameter which is the size of the disc in gigabytes. Alter
the getDescription() instance methodso that itreturn s, for example,"500GB of
space" – the actual number being the given size, of course.

And then you get a delivery of an amazing new kind of hard disc that is so reliable it is
guaranteed to keepdata safe from disc crash for a specified number of years. Write a
subclassof HardDisc calledReliableHardDisc . Its constructor method takes one extra
parameter which is the guarantee period. Itoverrides getDescription() with one that
appends, for example,", guaranteed 20 years" to the string obtained by the same
instance method in thesuperclass– the actual number being the given guarantee period,
of course.

Alter your TestStockItemSubclasses class to include the size for theHardDisc s and
also add at least oneReliableHardDisc .

78

16.13 Section / task 16.13 The CleverPunter class

16.13 Section / task 16.13 The CleverPunter class

• Aim of example: To reinforceinheritance concepts, and complete the modelclasses of
the Notional Lottery program.

• Coursework title:Making it more realistic

• Coursework summary: Add more complexity to aninheritance hierarchy at appropriate
places.

• Question: The computer parts shop example has been a little over simplified so far. In
this task you will add more complexity to make it all a bit morerealistic. You can add
what you like, but here are some suggestions.

– CPUs have a vendor, architecture and speed.

– Hard discs have a physical size, vendor, rotational speed and cache/buffer size.

– Keyboards have colour, vendor, number of keys, and possiblespecial features de-
scription.

– Perhaps every stock item could have a changeable part of its description, rather than
just theTextDescriptionStockItem class.

Think of more ideas. Then identify the most appropriate place in theinheritance hi-
erarchy to add each complexity, and implement them. You will add moreinstance
variables, instance methods and alter existing instance methods as required. For exam-
ple, getDescription() should perhaps incorporate the additional instance variables in
its result.

16.15 Section / task 16.15 The Object class and constructor chaining

• Aim of example: To introduce theclassObject and the fact that theconstructor method
of thesuperclassis invoked implicitly by default. We also take a more thorough look at
constructor chaining.

• Coursework title:Exploring constructor chaining

• Coursework summary: Add tracing to existingconstructor methods in order to explore
constructor chaining.

• Question: AddSystem.out.println() calls to theconstructor methodof eachStockItem
classprinting the name of the class. Add each call at the earliest point in the body of the
constructor method that thecompiler will let you. Once you have successfullycompiled
the classes, predict what the additional output will be fromyourTestStockItemSubclasses
programbeforeyou run it. Then run it and see if you were right.

79

16.16 Section / task 16.16 Overloaded methods versus override

16.16 Section / task 16.16 Overloaded methods versus override

• Aim of example: To take a closer look atoverloaded methods and in particular how
an intendedoverride can accidentally become an overload. We revisit the overloaded
methodsSystem.out.println() , and look attoString() from theObject class.

• Coursework title:Using the@Override annotation

• Coursework summary: Add to yourinstance methods thatoverride another, ananno-
tation which helps protect against errors.

• Question: Go through your solutions to the tasks in this chapter and add the@Override
override annotation to all instance methods whichoverride another.

Also identify all the places where we should have put it in theexample code.

17 Chapter 17 Making our own exceptions

17.3 Section / task 17.3 The Date class with its own exceptions

• Aim of example: To introduce the idea of making our ownexceptions.

• Coursework title:GreedyChildren with exceptions

• Coursework summary: Add your ownexceptions to theGreedyChildren example.

• Question: Copy theclassesGreedyChild and IceCreamParlour from the example in
Section 11.3 starting on page 39. Add two new classesGreedyChildException and
IceCreamParlourException , both subclasses ofRuntimeException . These should
be able to handle causes, even though you might not need to usethem at this stage.

Identify all the places inGreedyChild andIceCreamParlour where themethods might
be given badmethod arguments, and make themthrow appropriateexceptions. (Hint:
bear in mind that some of these arguments arereferences.) Recall that Java does not
force you to havethrows clauses forunchecked exceptions, but you nevertheless should
do so for this task when such are possible.

Test the new features of each class using dedicated programscalledTestGreedyChildExceptions
andTestIceCreamParlourExceptions respectively. These should contain separatetry
statements for each possible exceptional situation.

17.4 Section / task 17.4 The Notional Lottery with exceptions

• Aim of example: To reinforce the idea of defining our ownexceptions, and further it by
having two of our own exceptionclasses, where one is asubclassof the other.

• Coursework title:MobileIceCreamParlour with exceptions

80

17.4 Section / task 17.4 The Notional Lottery with exceptions

• Coursework summary: Add asubclassof your ownexceptionto theGreedyChildren
example.

• Question: Now we have asubclassof IceCreamParlour representing what is, in effect,
an ice cream van!

001: // An IceCreamParlour with the additional feature of needin g to use fuel.
002: public class MobileIceCreamParlour extends IceCreamParlour
003: {

004: // The amount of fuel left in the tank.
005: private double fuelLeft = 0;
006:
007:
008: // Construct a mobile ice cream parlour -- given the required name.
009: public MobileIceCreamParlour(String name)
010: {

011: super (name);
012: } // MobileIceCreamParlour
013:
014:
015: // Put fuel in the tank.
016: public void obtainFuel(double amount)
017: {

018: fuelLeft += amount;
019: } // obtainFuel
020:
021:
022: // Use some fuel by driving.
023: public void drive(double desiredFuelUsed)
024: {

025: double fuelUsed = desiredFuelUsed <= fuelLeft ? desiredFuelUsed : fuelLeft;
026: fuelLeft -= fuelUsed;
027: } // drive
028:
029:
030: // Return a String giving the name and state.
031: @Override
032: public String toString()
033: {

034: return super .toString() + "[fuel " + fuelLeft +"]";
035: } // toString
036:
037: } // class MobileIceCreamParlour

Create a subclass ofIceCreamParlourException calledMobileIceCreamParlourException .
Implement the aboveMobileIceCreamParlour class, but make itthrow suitableexcep-
tions. Test this using a program calledTestMobileIceCreamParlourExceptions .

81

18 Chapter 18 Files

18.2 Section / task 18.2 Counting bytes from standard input

• Aim of example: To introduce the principle of readingbytes fromstandard input using
InputStream , meet thetry finally statement and see that anassignment statement
is actually anexpression– and can be used as suchwhen appropriate. We also meet
IOException and briefly talk about initial values ofvariables.

• Coursework title:A check sum program

• Coursework summary: Write a program to produce acheck sumof thestandard input.

• Question: The problem of being able to detect whether afile of data has changed since
a previous version has many applications in computing. For example, if you download a
file from the Internet, how can you be sure that your copy of it is correct and has not been
corrupted? Or, imagine a program,run every night, that generates individual timetables
for students, compares each of them with the timetable from the day before, and emails
the latest copy if it has changed.

You might expect that the only way to see if a file has changed isto compare itbyte by
byte with the original, but this is not so. An alternative is to calculate some kind ofcheck
sum of the file and compare it with the number obtained from the original file. A check
sum is a number that is afunction of the file contents, computed in such a way that even
a tiny change in the file causes a difference to the number. Perhaps the website could
tell you what the number should be (as long as you use the same check sumalgorithm).
Similarly, the timetable program need remember only the check sum for each student
from the night before.

In this task you will write a program calledCheckSum which reads all the bytes from
standard input and outputs a single number onstandard output. You should handle
exceptions in the same way as we did for the example in this section. You will use the
BSD check sum[?] algorithm which has been around for many years. There are more
sophisticated and complex alternatives available nowadays, however this simple one is
still fairly good.

For eachbyte in the input, the check sum computed so far is subjected to arotate
right , and then that byte is added to it. A rotate right means eachbit of the num-
ber moves one place to the right, with the rightmost bit rotating to the leftmost place.
For example, the 16-bit number 1100110011001100 becomes 0110011001100110, and
0011001100110011 becomes 1001100110011001.

The BSD algorithm computes a 16-bit check sum, which you willstore in a 32-bitint .
So you need to take care that the rotation is done on only the lower 16 bits and the upper
16 always remain zero. Here is thealgorithm expressed inpseudo code.

int checkSum = 0
for every byte from the input

rotate checkSum right by one bit, treating it as a 16 bit numbe r.
checkSum += byte
restrict checkSum to 16 bits.

82

18.3 Section / task 18.3 Counting characters from standard input

end-for
output checkSum

To rotatecheckSum right by one bit, whilst treating it as a 16 bit number, you canuse the
following pseudo code. (Note that 32768 is 215.)

if checkSum is even
checkSum /= 2

else
checkSum /= 2
checkSum += 32768

You may prefer to express32768 in your Java code as ahexadecimal integer literal, in
the form0x8000 . (Also, you may prefer to find out about the bitshift operators and use
one of those instead ofdivision).

To restrictcheckSum to 16 bits you can use the following code, which works because
you have just added a valueless than256 to a value that was less than 65536 (which is
216).

if checkSum >= 65536
checkSum -= 65536

You may prefer to express65536 as0x10000 . (Also, you may prefer to find out about
the integer bitwise operators and use one of those instead of anif statement.)

To perform a check sum of the data in a file, rather than input typed at the keyboard, you
can redirectstandard input to come from that file, using< on thecommand line. If
you are using a Unix environment, you can probably test your program by comparing its
output with that obtained from thesum command (which also outputs the size of the file
as a number of one kilobyte blocks). Otherwise the book website has some example files
for you to try, along with their correct check sums.

Console Input / Output
$ java CheckSum < CheckSum.java

51871
$ sum CheckSum.java

51871 2
$ _

(The check sum foryour program code will probably not be the same as the one above.)

18.3 Section / task 18.3 Counting characters from standard input

• Aim of example: To introduce the principle of readingcharacters, instead ofbytes, from
standard input, usingInputStreamReader .

• Coursework title:Counting words

• Coursework summary: Write a program to count the number of words in itsstandard
input .

83

18.4 Section / task 18.4 Numbering lines from standard input

• Question: Write a program,WordCount which reads thecharacters from itsstandard
input , counting how many words that contains, and reports the number on itsstandard
output. You should handleexceptions in the same way as we did for the example in this
section.

A character is either awhite spacecharacter, such asspace character, tab character,
or new line character; or it is part of a word. To determine whether achar c is white
space, you can useCharacter.isWhitespace(c) .

A word is a non-empty sequence of any non-white space characters, preceded either by
the beginning of thefile, or a white space character, and followed either by the end of
the file, or a white space character. There may be more than onewhite space character
before and/or after a word, including before the first word, and after the last one.

Hint: the start of a word is at a character which is itself not white space, and which is
either the first character in the input, or was preceded by a white space character.

Alternatively, think of the input as being:

– A possibly empty sequence of white space characters.

– A possibly empty sequence of words, each being:

∗ A non-empty sequence of non-white space characters.

∗ A possibly empty sequence of white space characters.

As usual, designtest data in advance ofdesigning your program.

18.4 Section / task 18.4 Numbering lines from standard input

• Aim of example: To introduce the principle of reading lines fromstandard input, using
BufferedReader .

• Coursework title:Deleting a field

• Coursework summary: Write a program to delete a field in tab separated text from the
standard input.

• Question: Write a program calledDeleteField which copies itsstandard input to its
standard output, line by line, except that it deletes one of the fields on each line. The
fields are separated by a singletab character, and are numbered from one upwards. The
number of the field to be deleted is given as acommand line argument.

Here is an examplerun .

84

18.4 Section / task 18.4 Numbering lines from standard input

Console Input / Output
$ java DeleteField 2

Name Coursework Exam Total

Name Exam Total
Fred Bloggs 55 65 60

Fred Bloggs 65 60
Susan Smart 100 90 95

Susan Smart 90 95
ˆD

(Of course, in practice the program would be most useful if the input was being redirected
from afile, rather than literally being typed in line by line – the aboveis really just for
testing.)

You might find the following code helpful.

...
024: // Divide the line into fields using tab as a delimiter.
025: String[] fields = inputLine.split("\t");
026: String editedLine = "";
027: if (fields.length < fieldToDelete)
028: editedLine = inputLine;
029: else

030: {

031: // We build the new line in parts.
032: // Add the fields before the one to be deleted.
033: for (int index = 0; index < fieldToDelete - 1; index++)
034: if (editedLine.equals("")) editedLine = fields[index];
035: else editedLine += "\t" + fields[index];
036: // Add the fields after the one to be deleted.
037: for (int index = fieldToDelete; index < fields.length; index++)
038: if (editedLine.equals("")) editedLine = fields[index];
039: else editedLine += "\t" + fields[index];
040: } // else
...

You should handleexceptions in the same way as we did for the example in this section
(except you will need to consider problems relating to the command line argument).

If you wanted to delete two fields, and also yourdata was in atext file, then you could
redirect the standard input to come from it, and pipe thestandard output into the input
of another run of your program.

85

18.5 Section / task 18.5 Numbering lines from text file to textfile

Console Input / Output
$ cat input.txt

Name Coursework Exam Total
Fred Bloggs 55 65 60
Susan Smart 100 90 95
$ java DeleteField 3 < input.txt | java DeleteField 2

Name Total
Fred Bloggs 60
Susan Smart 95
$ _

The above should also work on Microsoft Windows (except usetype rather thancat if
you want to list the original text file).

18.5 Section / task 18.5 Numbering lines from text file to textfile

• Aim of example: To introduce the principle of reading from atext file and writing to
another, usingBufferedReader with FileReader andPrintWriter with FileWriter .
We also meetFileInputStream , OutputStream , FileOutputStream andOutputStreamWriter .

• Coursework title:Deleting a field, from file to file

• Coursework summary: Write a program to delete a field in tab separated text from afile,
with the results in another file.

• Question: Write a version of yourDeleteField program from Section 18.4 on page
84, that takes its input from a namedfile and puts its output in another named file. You
should handleexceptions in the same way as we did for the example in this section.

18.6 Section / task 18.6 Numbering lines from and to anywhere

• Aim of example: To illustrate that reading fromtext files and fromstandard input is
essentially the same thing, as is writing totext files and tostandard output. We also
look at testing for the existence of afile using theFile class, and revisitPrintWriter
andPrintStream .

• Coursework title:Deleting a field, from anywhere to anywhere

• Coursework summary: Write a program to delete a field in tab separated text either from
standard input or afile, with the results going to eitherstandard output or another file.

• Question: Write a version of yourDeleteField program from Section 18.5 on page 86,
that takes its input fromstandard input or a namedfile, and puts its output onstandard
output or in another named file. You should handleexceptions in the same way as we
did for the example in this section.

86

18.7 Section / task 18.7 Text photographs

18.7 Section / task 18.7 Text photographs

• Aim of example: To see an example of readingbinary files, where we did not choose the
file format . This includes the process of turningbytes into ints, using ashift operator
and aninteger bitwise operator.

• Coursework title:Encoding binary in text

• Coursework summary: Write a program to encode abinary file as anASCII text file , so
that it can be sent in an email.

• Question: Have you ever wondered how it is that you can send abinary file , such as an
image, as an attachment inside an email message, when in factan email is actually an
ASCII [?] text file? The answer is simple: the binary file is coded as ASCII text when
the email is constructed, and decoded back to binary again when the email is opened at
the other end.

Search on the Internet to find out about a program calleduuencode and how it codes
sequences of 3bytes, each using all 8bits as in a binary file, into sequences of 4 ASCII
characters, each using only 6 bits. (3×8 = 4×6.) Or, if you are using Unix then there
is a good chance the program is already installed and you can find out about it usingman
-a uuencode .

Write your own program calledUuencode which performs this function. Itscommand
line argument should be the name of thefile to be encoded, and the result should go to
standard output. You should handleexceptions using the same style as the example in
this section. You can test your program by converting a binary file to ASCII, converting
it back to binary again using a standarduudecode program (take care not to replace the
original with the decoded one!), and comparing that result with the original.uudecode
is available from the Internet or is probably installed if you are using Unix. You could
use yourCheckSum program to undertake the comparison (or on Unix you could usethe
cmp program).

The followingpseudo codemight help (after you have found out about the format that
uuencode produces).

write the header -- assume file mode 600
create an array to hold the bytes for one line (partially fill ed)
read next byte
while next byte is not -1

process a line of bytes and read next byte
output a line representing zero number of bytes
output the trailer line

We can refine this to the following.

write the header -- assume file mode 600
create an array to hold the bytes for one line (partially fill ed)
read next byte
while next byte is not -1

while next byte is not -1 and array is not full
put next byte in the array

87

18.8 Section / task 18.8 Contour points

read next byte
end-while
output the number of bytes on this line
loop over the line array in groups of 3 bytes

calculate the 4 output bytes for those 3 bytes
output the 4 output bytes

end-loop
output an end of line

end-while
output a line representing zero number of bytes
output the trailer line

You will also find the following code fragments helpful!

...
009: // Write a single result byte as a printable character.
010: // Each byte is 6-bit, i.e. range 0..63.
011: // Thus adding 32 makes it printable, except for 0 which would become space
012: // and so we add 96 instead -- a left single quote (‘).
013: private static void writeByteAsChar(int thisByte)
014: {

015: System.out.print((char) (thisByte == 0 ? 96 : thisByte + 32));
016: } // writeByteAsChar
...
056: // Calculate 4 result bytes from the 3 input bytes.
057: int byte1 = lineBytes[byteGroupIndex] >> 2;
058: int byte2 = (lineBytes[byteGroupIndex] & 0x3) << 4
059: | (lineBytes[byteGroupIndex + 1] >> 4);
060: int byte3 = (lineBytes[byteGroupIndex + 1] & 0xf) << 2
061: | lineBytes[byteGroupIndex + 2] >> 6;
062: int byte4 = lineBytes[byteGroupIndex + 2] & 0x3f;
063: // Now write those result bytes.
064: writeByteAsChar(byte1);
065: writeByteAsChar(byte2);
066: writeByteAsChar(byte3);
067: writeByteAsChar(byte4);
...

Optional extra: Write theUudecode program too!

18.8 Section / task 18.8 Contour points

• Aim of example: To show an example of writing and readingbinary files where we
choose thedata format, usingDataOutputStream andDataInputStream classes.

• Coursework title:Saving greedy children

• Coursework summary: Add features to some existing modelclasses so they can be writ-
ten and read back frombinary files.

88

• Question: Copy theGreedyChild and IceCreamParlour classes from Section 11.3
starting on page 39 and add code so they can be written to aDataOutputStream and read
back from aDataInputStream . You do not need to save theIceCreamParlour that a
GreedyChild is in – so when aGreedyChild is read back, he or she will always not be
in a parlour. Test your new features with a program calledTestGreedyChildrenIO .

Optional extra: Figure out how to save and restore theIceCreamParlour that aGreedyChild
is in. Perhaps eachIceCreamParlour could have a unique ID number? Maybe that num-
ber would also be anarray index? You may want to ensure that allIceCreamParlour s
are read (and hence written) before anyGreedyChild is read.

Optional extra: (Challenge!) Find out aboutObjectInputStream andObjectOutputStream
and use those instead.

19 Chapter 19 Generic classes

19.2 Section / task 19.2 A pair of any objects

• Aim of example: To explore potential problems of having a containerobject that can
hold instances of anyclass, in particular that we need protection against us erroneously
getting thetype wrong when we extract items from the container. We also introduce the
idea ofboxing anint within an Integer .

• Coursework title:A triple

• Coursework summary: Write aclassthat can store a triple ofobjects, and use it.

• Question: Write aclasscalledTriple , similar toPair , except that itsinstances each
store threeobjects.

Write a class calledIntArrayStats containing aclass methodgetStats() which takes
anarray of ints andreturn s aTriple containing the maximuminteger in the array, the
minimum, and also the mean of all the values. You will need tobox the first two inside
Integer objects, and the third inside aDouble .

Test your work with the following program which measures howmuch the mean of aset
of numbers differs from the average of its minimum and maximum.

001: // Program to measure how much the mean of the integer command line arguments
002: // differs from the average of their minimum and maximum.
003: // (Warning: this program does not catch RuntimeExceptions .)
004: public class MeanMinMaxMinusMean
005: {

006: public static void main(String[] args) throws RuntimeException
007: {

008: int [] array = new int [args.length];
009: for (int index = 0; index < args.length; index++)
010: array[index] = Integer.parseInt(args[index]);
011:
012: Triple stats = IntArrayStats.getStats(array);

89

19.3 Section / task 19.3 A generic pair of specified types

013: int max = ((Integer)stats.getFirst()).intValue();
014: int min = ((Integer)stats.getSecond()).intValue();
015: double mean = ((Double)stats.getThird()).doubleValue();
016: System.out.println((min + max) / 2.0 - mean);
017: } // main
018:
019: } // class MeanMinMaxMinusMean

If you run the program with a set of consecutive numbers, the result should come out as
0.0 .

Coffee
time:

What commonbug could cause the result to be0.5 when the program is
given a list of consecutive numbers of a length which is even?

Experiment to see what happens when you make the same kind of mistake in the above
program as we did in the example in this section.

19.3 Section / task 19.3 A generic pair of specified types

• Aim of example: To introduce the idea ofgeneric classes, and show how it can be used
to avoid the problems explored in the previous section.

• Coursework title:A generic triple

• Coursework summary: Write ageneric classthat can store a triple of specific kinds of
objects, and use it.

• Question: Rewrite yourclasses from Section 19.2 on page 89 so thatTriple becomes a
generic class, and the other classes are altered appropriately.

(If you have read ahead, please do not useautoboxing – you will learn more by saving
that for a separate task.)

19.4 Section / task 19.4 Autoboxing and auto-unboxing of primitive val-
ues

• Aim of example: To expose Java’s implicit conversion between values ofprimitive type s
andinstances of the corresponding wrapperclasses.

• Coursework title:A generic triple, used with autoboxing

• Coursework summary: Write ageneric classthat can store a triple of specific kinds of
objects, and use it; this time usingautoboxingandauto-unboxing.

• Question: Rewrite yourclasses from Section 19.3 on page 90 so thatautoboxing and
auto-unboxing is used appropriately.

90

19.5 Section / task 19.5 A conversation of persons

19.5 Section / task 19.5 A conversation of persons

• Aim of example: To introduce the idea of abound type parameter, in particular, one
that mustextendsome othertype.

• Coursework title:A moody group

• Coursework summary: Write ageneric classthat can store a collection of a particular
kind of MoodyPerson objects, from the Notional Lottery example, and make them all
happy or unhappy at the same time.

• Question: This coursework is set in the context of the Notional Lottery game from Sec-
tion ??on page??.

Write ageneric classcalledMoodyGroup that contains a collection of somesubclassof
MoodyPerson objects, rather like theConversation classdoes withPerson . However,
instead of aspeak() instance method, MoodyGroup should havesetHappy() . This
will take abooleanand pass it to the instance method of the same name belonging to each
of the MoodyPerson s in the group. You will recall that onlyMoodyPerson s have the
setHappy() instance method, whereas the more generalPerson does not.

Test your class with a program calledTestMoodyGroup . This will do the following.

– Create aninstanceof MoodyGroup<Teenager> and populate it with a small number
of Teenager s.

– InvokesetHappy() with falseand print out the group.

– InvokesetHappy() with true and print out the group again.

– Create a second moody group which can contain any kind ofMoodyPerson , and
populate it with aWorker and one of thesameTeenager s which was put into the
first group.

– InvokesetHappy() on the second group withtrue and print out the group.

– InvokesetHappy() on the second group withfalseand print out the group.

– Print out the first group one more time to show that the teenager which is in both
groups stands out from the others.

20 Chapter 20 Interfaces, including generic interfaces

20.3 Section / task 20.3 Sorting a text file using an array

• Aim of example: To introduce the idea oftotal order and theComparable interface.
We also meet theArrays class.

• Coursework title:Sort a text file

• Coursework summary: Implement the program tosort a text file.

91

20.4 Section / task 20.4 Translating documents

• Question: Write the programSort as described in the example for this section. The
following fragments may help you.

...
006: import java.util.Arrays;
...
055: Arrays.sort(lineArray, 0, noOfLinesReadSoFar);
...

20.4 Section / task 20.4 Translating documents

• Aim of example: To exploregeneric interfaces, observe thatComparable is generic,
see thatString implements it, meetequals() from Object and talk about consistency
with compareTo() . We also introducegeneric methods,binary search, revisitArrays
and note that aninterface canextendanother.

• Coursework title:Minimum and maximum Comparable

• Coursework summary: Write ageneric method to find the minimum and maximum
items in anarray of Comparable items.

• Question: Write aclasscalled MinMaxArray which has oneclass methodthat takes
an array . It will be a generic methodwith one type parameter that is comparable
with itself, and the array shall have thatarray base type. It will return an instanceof
the generic classPair from Section?? on page??, comprising the minimum and the
maximum items from the array, based on thenatural ordering of the items. It should
throw an IllegalArgumentException if the array is empty or non-existent.

Test your class with a program calledTestMinMaxArray .

20.5 Section / task 20.5 Sorting valuables

• Aim of example: To introduce the idea that aclasscanimplement manyinterfaces, and
explore what it means for aninterface to extendanother. We also take another look at
having consistency betweencompareTo() andequals() .

• Coursework title:Analysis ofcompareTo() and equals()

• Coursework summary: Undertake an analysis of previous usesof compareTo() and
equals() instance methods.

• Question: We saw examples ofcompareTo() andequals() instance methods in vari-
ousclasses before this chapter. Now that you know about theComparable interface and
theequals() instance method from theObject class – which takes (areferenceto) an
Object as amethod parameter, find all those previous places and identify the changes
we should make. Record them in your logbook.

92

21 Chapter 21 Collections

21.2 Section / task 21.2 Reversing a text file

• Aim of example: To introduce the Javacollections framework, and in particular the idea
of list collections, theList interface and theArrayList class.

• Coursework title:Sorting election leaflets

• Coursework summary: Write a program tosort election information leaflets into delivery
order.

• Question: Being disillusioned with the main political parties, you have recently joined
the newly formed “Sort it out” party. As an election is looming, they have asked you
to distribute campaign material in your area. They have sentyou a stack of leaflets for
each street, each with a label on the front showing the names of its recipients. Here are
examples of two labels.

Augustus Belcher,
Regents Crescent

Joanne Smith and Lionel Brown,
Regents Crescent

How ‘sorted out’,they think. That is, until you tell them they have failed to print the
house numbers on the leaflets, only the street names! They quickly email you atext file
for each street, containing the recipient names for each house, in house number order. For
example, thefile for Regents Crescent is calledregents-crescent.txt , and contains
the following.

Console Input / Output
$ cat regents-crescent.txt

1 Joanne Smith and Lionel Brown
2 Augustus Belcher
3 Fatima Bacon and Gaynor White
4 Celina Simmons and Rupert Rodgers-Smythe
5 Ahmed Hussain
6 Samuel Peacock and Sarah Peacock
7 Hsin Cheng Liu
8 Blanche Peacock and Harry Peacock
$ _

The first line is the names of the people who live at number one Regents Crescent, the
second is the names for number two, and so on. The party officials tell you tosort the
leaflets into this order before delivering them.

However, you are cleverer than that. You will write a programto sort a file into delivery
order, that is, the order of walking up one side of the street and down the other. As it
happens, you know that all the streets in your area are symmetrical, with odd numbered
houses on the left, and even numbered ones on the right, both ascending in the same
direction.1

1In this simplistic world, obviously the houses on the outer curve of Regents Crescent have bigger gardens

93

21.2 Section / task 21.2 Reversing a text file

In this task you will write the delivery order sorting program, calling it StreetOrder .
It should take twocommand line arguments, the name of the original file, and the
sorted file to be created. It should work by reading the lines from the input file into an
ArrayList of String s. Then it shouldloop forwards through all the even indices of the
list, printing the lines to the output file. That will be the details for the odd numbered
houses. Finally it should loopbackwardsthrough the odd indices of the list and print
those lines. So the output for the above input would be as follows.

Console Input / Output
$ java StreetOrder regents-crescent.txt regents-crescent -sorted.txt

$ cat regents-crescent-sorted.txt

1 Joanne Smith and Lionel Brown
3 Fatima Bacon and Gaynor White
5 Ahmed Hussain
7 Hsin Cheng Liu
8 Blanche Peacock and Harry Peacock
6 Samuel Peacock and Sarah Peacock
4 Celina Simmons and Rupert Rodgers-Smythe
2 Augustus Belcher
$ _

The program should be able to handle files which have an odd number of lines – some of
the streets are a cul-de-sac of detached houses with one in the middle at the bottom.

Here is a reasonable set oftest cases for the program.

Test case description
1 No command line arguments.
2 Only one command line argument.
3 An input file that does not exist.
4 An output file that has a leading directory that does not exist.
5 An output file that has a leading directory which is not writable

(e.g. the root directory on Unix,/).
6 An input file with no odd numbered houses and no even numbered houses

(e.g. /dev/null or nul).
7 An input file with one odd numbered house and no even numbered houses

(i.e. one line).
8 An input file with one odd numbered house and one even numberedhouse

(i.e. two lines).
9 An input file with two odd numbered houses and one even numbered house

(i.e. three lines).
10 An input file with two odd numbered houses and two even numbered houses

(i.e. four lines).
11 An input file with three odd numbered houses and two even numbered houses

(i.e. five lines).
12 An input file with three odd numbered houses and three even numbered houses

(i.e. six lines).

than those across the road!

94

21.3 Section / task 21.3 Sorting a text file using an ArrayList

As usual, devisetest data, beforedesigning the program, and create input files ready for
testing. Record this in your logbook.

Now design and implement the program. You should handleexceptions in the same
way as we did for the example in this section. After implementation,run the program
with the tests you designed beforehand. Record in your logbook the outcome and any
unexpected results together with their cause and how you fixed anybugs.

21.3 Section / task 21.3 Sorting a text file using an ArrayList

• Aim of example: To reinforce the use ofArrayList , in particular, showing uses of the
set() instance methodof a List . We also note that anarray can be created from a
List , and vice versa. Finally, we look at theCollections classand observe that it has
a sort() generic method.

• Coursework title:Sorting election leaflets, withcompareTo()

• Coursework summary: Write a program tosort election information leaflets into delivery
order, using acompareTo() instance method.

• Question: In this task you will write the same program as in the coursework for Section
21.2 on page 93, but in a different way.

Create aclasscalledDeliveryHouseDetails , which isComparable with itself. This
will store a house number in aninstance variable, and the person name details (in-
cluding the house number) in another. It will have anaccessor methodto obtain the
person names. It will also have anotherinstance method, compareTo() , which orders
DeliveryHouseDetails objects by delivery order. Here is somepseudo code.

compareTo (other)
{

if both house numbers are odd
return this house number minus the other one

else if both house numbers are even
return the other house number minus this one

else if this house number is odd
return -1

else
return 1

}

This will cause aList of DeliveryHouseDetails objects, when processed by
Collections.sort() , to besorted into the required delivery order, as described in the
coursework for Section 21.2 on page 93. Convince yourself this is true and write notes
about it in your logbook.

Copy yourStreetOrder class from the previous version, and modify it so that it creates
aDeliveryHouseDetails object for each input line and stores it in theArrayList . You
can simply count the lines to obtain the house number – there is no need to extract it from
the details on the line. After loading the details the program will use sort() from the

95

21.4 Section / task 21.4 Prime numbers

Collections class to sort them, then it can print them out bylooping through them all,
and extracting the person details.

Implement theDeliveryHouseDetails class. Note, you should also include anequals()
instance method which is consistent withcompareTo() . The following code should do
the trick.

...
043: // Equivalence test, consistent with compareTo.
044: @Override
045: public boolean equals(Object other)
046: {

047: if (other instanceof DeliveryHouseDetails)
048: return houseNumber == ((DeliveryHouseDetails)other).houseNum ber;
049: else

050: return super .equals(other);
051: } // equals
...

After implementation,run the program with the same tests you used for the first version,
and record the results in your logbook. Now, think about which approach is best, and
write notes in your logbook.

21.4 Section / task 21.4 Prime numbers

• Aim of example: To introduce the idea ofset collections, theSet interface and the
HashSet class. For this we explorehash tables and meethashCode() from Object .
We also see that the classInteger implements Comparable<Integer> .

• Coursework title:Finding duplicate voters

• Coursework summary: Write a program to detect people votingmore than once in voting
records.

• Question: The government have been encouraging more peopleto vote, and one of the
features of a new system is that voters are allowed to do so in any polling station within
a certain radius of their home, rather than just one. The ideais that more people can vote
at lunch time, near to where they work. Unfortunately, this opens up additional potential
for multiple voting, by people visiting more than one station! The officials have collected
data from across the region, and want you to write a program to detect multiple votes.
The input is in the form of atext file consisting of two lines per vote. The first line
uniquely identifies the voter by their name, house number andpost code. The second
line records the time and location of the vote cast. The location is the name of a polling
station, in the form of an area name and an identity number, such asManchester 538 .
For example, here is a (cut down) set of data.

96

21.4 Section / task 21.4 Prime numbers

Console Input / Output
$ cat voting.txt

(Output shown using multiple columns to save space.)

Rupert Rodgers-Smythe, 4, M25 7QZ Sarah Peacock, 6, M25 7QZ
07:37 Manchester 538 14:59 Manchester 537
Fatima Bacon, 3, M25 7QZ Joanne Smith, 1, M25 7QZ
10:01 Manchester 538 15:09 Manchester 538
Samuel Peacock, 6, M25 7QZ Giles Schubert, 3, M19 4FK
10:25 Manchester 538 16:19 Manchester 189
Sarah Peacock, 6, M25 7QZ Blanche Peacock, 8, M25 7QZ
10:25 Manchester 538 16:37 Manchester 538
Phillip Jones, 13, M1 0KY Ahmed Hussain, 5, M25 7QZ
10:32 Manchester 605 17:21 Manchester 538
Lionel Brown, 1, M25 7QZ Gaynor White, 3, M25 7QZ
11:17 Manchester 538 18:50 Manchester 538
Margaret Chopin, 9, M37 9MP Sarah Peacock, 6, M25 7QZ
12:14 Manchester 299 19:01 Manchester 539
Rupert Rodgers-Smythe, 4, M25 7QZ Annette Longbridge, 8, M9 6QP
12:27 Manchester 099 19:07 Manchester 314
John Bach, 11, M2 9WQ Harry Peacock, 8, M25 7QZ
13:27 Manchester 308 19:21 Manchester 538
Hsin Cheng Liu, 7, M25 7QZ Margaret Chopin, 9, M37 9MP
13:27 Manchester 538 19:30 Manchester 308
Celina Simmons, 4, M25 7QZ Augustus Belcher, 2, M25 7QZ
14:12 Manchester 538 20:59 Manchester 538
Gregory Beethoven, 5, M17 8XJ Sarah Peacock, 6, M25 7QZ
14:22 Manchester 009 20:59 Manchester 540
$ _

They want your program to detect and report duplicate voter identifications, followed by
the number of duplicates found. So, the output for the above input would be as follows.

Console Input / Output
$ java DuplicateVoters voting.txt voting-duplicates.txt

$ cat voting-duplicates.txt

Rupert Rodgers-Smythe, 4, M25 7QZ
Sarah Peacock, 6, M25 7QZ
Sarah Peacock, 6, M25 7QZ
Margaret Chopin, 9, M37 9MP
Sarah Peacock, 6, M25 7QZ
There were 5 duplicate votes
$ _

Your program should use aHashSet to store the voter identifications, i.e. the first line
of each pair of lines. (It will just skip over and ignore the second line of each pair – in
this version.) If when adding to thisset, usingadd() , the result of the addition isfalse,
then the voter was already present and so the voter identification being added must be a
duplicate.

The program should be calledDuplicateVoters , and take twocommand line argu-

97

21.5 Section / task 21.5 Sorting a text file using a TreeSet

ments, the first being the name of the input file, the second being the name of the result-
ing report file.

To save time, you may test your program using just the above sample data.

21.5 Section / task 21.5 Sorting a text file using a TreeSet

• Aim of example: To introduce theTreeSet class, for which we exploreordered binary
trees andtree sort. We also meet theIterator interface, together with how it is used
on aList and aSet , especially aTreeSet .

• Coursework title:Sorting election leaflets, using aTreeSet

• Coursework summary: Write a program tosort election information leaflets into delivery
order, using aTreeSet .

• Question: In this task you will write the same program as in Section 21.2 on page 93
in a third way. You will use yourDeliveryHouseDetails classagain, but instead of
building aList of the objects, you will insert them into aTreeSet . Then, instead of
sorting them usingsort() from theCollections class, you will access the elements
via theIterator of theTreeSet .

Copy yourStreetOrder class from the previous version, and modify it. After imple-
mentation,run the program with the same tests you used for the previous versions, and
record the results in your logbook. If all three programs areworking, then their outputs
should be identical – there are, of course, no duplicate lines in the inputdata.

21.8 Section / task 21.8 Word frequency count sorted by frequency

• Aim of example: To introduce theHashMap class, and the fact that acollection can be
built to initially contain the same values as some other collection. We also take a look at
how we can go about making a goodoverride of thehashCode() instance methodof
Object .

• Coursework title:Finding duplicate voters, using aHashMap

• Coursework summary: Write a program to detect people votingmore than once in voting
records, using aHashMap.

• Question: The election officials are very pleased with your work from the task in Section
21.4 on page 96 but they have found so many duplicate votes that they would now like
you to modify the way the results are presented, to make them easier to process!

All they ask is that each time a duplicate vote is found, your program outputs it, together
with the time and location of the duplicateand the time and location of thefirst occur-
rence of the naughty voter. So, the output for the input shownin Section 21.4 on page 96
would be as follows.

98

21.9 Section / task 21.9 Collections of collections

Console Input / Output
$ java DuplicateVoters voting.txt voting-duplicates.txt

$ cat voting-duplicates.txt

Rupert Rodgers-Smythe, 4, M25 7QZ
Duplicate: 12:27 Manchester 099
First occurrence: 07:37 Manchester 538

Sarah Peacock, 6, M25 7QZ
Duplicate: 14:59 Manchester 537
First occurrence: 10:25 Manchester 538

Sarah Peacock, 6, M25 7QZ
Duplicate: 19:01 Manchester 539
First occurrence: 10:25 Manchester 538

Margaret Chopin, 9, M37 9MP
Duplicate: 19:30 Manchester 308
First occurrence: 12:14 Manchester 299

Sarah Peacock, 6, M25 7QZ
Duplicate: 20:59 Manchester 540
First occurrence: 10:25 Manchester 538

There were 5 duplicate votes
$ _

Your program should use aHashMap to store the voter identifications processed so far,
each mapped on to theirfirst occurring time and location. So, the voter identifications
will be keys, and the time and locations will be values in the map. Your program will
read through thefile as before, but this time it will not ignore the time and location lines.
For each vote, it will check in theHashMap to see if that voter identification is already
present – by usingget() to try and retrieve the time and location of their first vote. If
this is the first occurrence of the voter identification (i.e.the result fromget() is thenull
reference) then all is well, and the voter identification mapped to the time and location
is put() into themap. If on the other hand the voter identification is already in the
map, then it is to be printed, along with the new time and location and the first time and
location (retrieved from the map).

21.9 Section / task 21.9 Collections of collections

• Aim of example: To explore the idea that the elements of acollection can themselves
be collections, and so quite complexdata structures can be built.

• Coursework title:Finding duplicate voters, using aHashMap of LinkedList s

• Coursework summary: Write a program to detect people votingmore than .QNonce in
voting records, .QOonce, using aHashMap of objects containing aLinkedList .

• Question: The election officials are very sorry to bother youagain, but they have a new
idea to make the processing of duplicate voting even more easy. They now would like the
results grouped by fraudulent voter! (Of course, if you had been given the opportunity,
you may well have pointed this out during requirements analysis at the start!)

99

21.9 Section / task 21.9 Collections of collections

This version of the program should produce the following results from thedata shown
in Section 21.4 on page 96.

Console Input / Output
$ java DuplicateVoters voting.txt voting-duplicates.txt

$ cat voting-duplicates.txt

Rupert Rodgers-Smythe, 4, M25 7QZ
07:37 Manchester 538
12:27 Manchester 099

Sarah Peacock, 6, M25 7QZ
10:25 Manchester 538
14:59 Manchester 537
19:01 Manchester 539
20:59 Manchester 540

Margaret Chopin, 9, M37 9MP
12:14 Manchester 299
19:30 Manchester 308

$ _

The order of the voters might be different. Also note that your customers no longer desire
to have a count of the duplicate votes.

Your program should use aHashMap to store the voter identifications, each mapped on to
anobject which contains aLinkedList of all the time and location lines for that voter
identification. Once the inputfile has been read, your program will iterate through the
values of thismap looking for ones which have more than one vote, and reportingthose
it finds.

A LinkedList is arguably better than anArrayList for storing the vote details of each
voter, as eachlist just gets items added on the end, and then finally scanned via its
Iterator . This means we do not get the inefficiency ofLinkedList , because we are
not accessing its elements in a random order, but we do benefitfrom each one being the
exact size needed – most of them will contain only one item, and there will be very many
of them.

The elements of theHashMap should beinstances of aclasscalledVoterRecord , which
you will write. This will contain twoinstance variables, the identity of a voter, and a
LinkedList of his or her voting times and locations, in the order found inthe file. Its
constructor method will be given the identity of the voter. It will have aninstance
method to add a voting time and location. Another instance method will return the
number of times the person has voted. ThetoString() instance method should give
a multi-lineString representing theVoterRecord object, including the identity of the
voter and the times and locations of voting, ready for use in the output of the program.

To obtain the efficiency of usingLinkedList s, you must use anIterator when scan-
ning through theLinkedList in a VoterRecord to build the result of itstoString() ,
rather than accessing each element by itslist index.

Optional extra: Predict the effect of changing yourHashMap to aTreeMap , and try it.

100

22 Chapter 22 Recursion

22.3 Section / task 22.3 Lecture attendance

• Aim of example: To introduce the idea of arecursive algorithm, with an example of
one that is not intended for use on a computer.

• Coursework title:Finding the most populated row

• Coursework summary: Describe arecursive algorithm to be followed by humans.

• Question: Describe arecursive algorithm for finding from the lecture theatre the size of
the row which contains the most people.

Optional extra: Also find the number of the row with most people in it – assume the
rows are numbered from one, from front to back, and that everyrow has at least one
person in it. (You cannot just assume the answer is the back row. . . !)

22.4 Section / task 22.4 Sum of ages of descendants

• Aim of example: To reinforce the idea of arecursive algorithm, with another example
of one that is not intended for use on a computer. This one would not be easy to perform
iteratively.

• Coursework title:An iterative sum of ages algorithm

• Coursework summary: Attempt to write aniterative algorithm that does the same work
as a complexrecursive algorithm.

• Question: Attempt to write aniterative version of the instructions to obtain the sum of
the ages of the woman’s descendants. It has to be instructions that would really work
(albeit the woman herself only exists in fantasy). Hint: tryhard, but be prepared to give
up.

22.5 Section / task 22.5 Factorial

• Aim of example: To introduce the idea of arecursive method, present a simple example
and talk about common misunderstandings. We also look at what it means for a recursive
method to bewell definedand comparerecursion with iteration .

• Coursework title:.QNReversing lines .QO
Reversing lines

• Coursework summary: Write a program to copystandard input to standard output but
with the lines in reverse order, so that the first input line comes out last.

• Question: Write a program calledReverseLines to copystandard input to standard
output but with the lines in reverse order, so that the first input line comes out last. Your

101

22.6 Section / task 22.6 Fibonacci

main method will set up aBufferedReader and aPrintWriter , and pass these as
method arguments to anotherclass method, which shall be arecursive method.

The recursive method will read the input lines and output them. It will not use tail
recursion, in that it will perform some workafter therecursive method call.

Think of an abstract sequence,seq , as either being empty, or being a head,seq.head ,
followed by a tail,seq.tail , itself a possibly empty sequence. Here ispseudo codefor
printing such an abstract sequence,inputSeq , in reverse.

if inputSeq is not empty
recursively output inputSeq.tail
output inputSeq.head

end-if

In this case, you are using aBufferedReader to obtain the sequence of lines, line by
line, and the act of reading a line tells you whether you have read them all, and if not,
moves the input onto the remaining lines, i.e. the tail. You will need avariable to save
the head line. So we can recast the above general pseudo code as follows.

String head line
if trying to read the head line does not yield null

recursively read and output the tail lines
output the head line

end-if

For brevity, you may be skimpy withexceptionhandling – just declare that eachmethod
throws Exception .

22.6 Section / task 22.6 Fibonacci

• Aim of example: To show an example of arecursive methodwhich hasmultiple recur-
sion.

• Coursework title:A more efficient Fibonacci

• Coursework summary: Implement Fibonacci using anarray to remember the results.

• Question: Write a version of theFibonacci classwith a recursive methodthat has the
same structure as the one here, but is made efficient by storing the result forf ib n in
an array at array index n. This technique to avoid recomputing results is sometimes
known as amemo function.

22.7 Section / task 22.7 Number puzzle

• Aim of example: To solve a problem, using arecursive methodwith multiple recur-
sion, which would be quite tricky to solveiteratively. Along the way, we look at the
process ofdesigninga recursive algorithm.

• Coursework title:Extending NumberPuzzle

102

22.8 Section / task 22.8 Dice combinations

• Coursework summary: Add two morerecursive method calls to adoubly recursive
method.

• Question: Extend ourNumberPuzzle program so that the other twoarithmetic opera-
tors are included. Hint: formultiplication , there is no point making arecursive method
call if the target is not divisible by the number being ignored – infact doing so would
lead to erroneous solutions (due tointeger truncation).

Optional extra: For a real challenge, why not allow brackets in the sequence?

22.8 Section / task 22.8 Dice combinations

• Aim of example: To show an example of arecursive methodwhich hasmultiple recur-
sionwith recursive method calls inside aloop.

• Coursework title:Anagrams

• Coursework summary: Write a program to output all the anagrams of a word given as a
command line argument.

• Question: Write a program calledAnagrams which outputs all the permutations of a
string given as acommand line argument. Themain method will, for efficiency, turn
the first (and only) command line argument into achar array , using thetoCharArray()
instance methodof the String class. It will also set up two other arrays of the same
length, one, oftype char[] to build the current permutation, and another, of typeboolean[] ,
to record whethercharacters from the given string have been used so far in the permuta-
tion being constructed. It will then call arecursive methodto print all the permutations.

Here ispseudo codefor the recursive method.

printPermutations(int currentIndex)
{

if currentIndex has gone past the end of the permutation arra y
print out the permutation

else
for each index in the char array made from the given string

if the character at that index is not already used in the permu tation
mark it as being in use (using the boolean array)
put that character in the permutation at currentIndex
printPermutations(currentIndex + 1)
mark the character as NOT being used in the permutation

end-if
end-for

end-else
}

Note that if the given string contains duplicate characters, then there will be duplicate
permutations produced. This is fine.

Optional extra: Do it in a differentrecursiveway, which does not need thebooleanarray
nor a secondchar array. (Hint: swap the character at the givenarray index with each

103

22.10 Section / task 22.10 Tower of Hanoi

other one at a greater index, in turn.)

Optional extra: Do it without usingrecursion.

22.10 Section / task 22.10 Tower of Hanoi

• Aim of example: To devise a remarkably shortrecursive methodsolution to a seemingly
very tricky puzzle.

• Coursework title:Tower of Hanoi with peg values

• Coursework summary: Extend a Hanoi solving program to show the state of the pegs.

• Question: Write a version of the Tower of Hanoi program whichactually models the discs
on the pegs and prints them out at each move. You should have a separateclasscalled
Peg which models the actual discs on a particular peg. The disc sizes could be stored in
a partially filled array , the value atarray index i being the size of the disc at location
i on the peg. Or you could perhaps find out about the standardclassjava.util.Stack ,
and make asubclassof that.

Here is sample output fromrunning the program with acommand line argumentof 4.

Console Input / Output
$ java Hanoi 4

0 Start: L=< 4 3 2 1 > M=< > R=< >
1 L to M: L=< 4 3 2 > M=< 1 > R=< >
2 L to R: L=< 4 3 > M=< 1 > R=< 2 >
3 M to R: L=< 4 3 > M=< > R=< 2 1 >
4 L to M: L=< 4 > M=< 3 > R=< 2 1 >
5 R to L: L=< 4 1 > M=< 3 > R=< 2 >
6 R to M: L=< 4 1 > M=< 3 2 > R=< >
7 L to M: L=< 4 > M=< 3 2 1 > R=< >
8 L to R: L=< > M=< 3 2 1 > R=< 4 >
9 M to R: L=< > M=< 3 2 > R=< 4 1 >

10 M to L: L=< 2 > M=< 3 > R=< 4 1 >
11 R to L: L=< 2 1 > M=< 3 > R=< 4 >
12 M to R: L=< 2 1 > M=< > R=< 4 3 >
13 L to M: L=< 2 > M=< 1 > R=< 4 3 >
14 L to R: L=< > M=< 1 > R=< 4 3 2 >
15 M to R: L=< > M=< > R=< 4 3 2 1 >

$ _

22.11 Section / task 22.11 Friend book

• Aim of example: To show an example ofrecursion based on walking through arecur-
sive data structure. We also have aprivate constructor method.

• Coursework title:Family trees

104

22.11 Section / task 22.11 Friend book

• Coursework summary: Write a program to model family ancestry.

• Question: Write a program that enables the ancestry of people to be stored and printed
out. You will wantobjects of type Person with a name and asetof other persons who
are that person’s immediate children. There’s no need to model marriage (after all in
modern life, many family ‘tree’s are not that simple). So if we wish to store two parents
of a collection of children then we have those children contained separately in each of
the parent’s objects. (This permits the two parents of one child to have different sets of
children.)

Your otherclass, containing themain method should be calledFamilyTree .

Thedata should be stored in atext file calledparent-children.txt . Each line consists
of the name of a parent, followed by alist of his or her children, all separated by spaces.

The program should read this text file and take the name of a person as the firstcom-
mand line argument. It will then print out that person and his or her descendantsas a
‘family tree’. In theory the data should not contain any cycles (a person being their own
descendant), however it might – so you should ensure therecursion cannot attempt to
proceed forever.

To avoid distraction, you may ignoreexception catchingif you wish.

Here is some sample data (based on the UK Royal Family[?]).

Console Input / Output
$ cat parent-children.txt

George-V Edward-VIII George-VI Mary Henry George John
Victoria-Mary Edward-VIII George-VI Mary Henry George Joh n
Edward-VIII
Wallis-Simpson
George-VI Elizabeth-II Margaret
Elizabeth-Bowes-Lyon Elizabeth-II Margaret
Elizabeth-II Charles Anne Andrew Edward
Philip Charles Anne Andrew Edward
Charles William Harry
Diana William Harry
$ _

And here is the corresponding output forGeorge-V .

105

Console Input / Output
$ java FamilyTree George-V

+--George-V has 6 child(ren): Edward-VIII George George-V I Henry John Mary
| +--Edward-VIII has 0 child(ren):
| +--George has 0 child(ren):
| +--George-VI has 2 child(ren): Elizabeth-II Margaret
| | +--Elizabeth-II has 4 child(ren): Andrew Anne Charles Ed ward
| | | +--Andrew has 0 child(ren):
| | | +--Anne has 0 child(ren):
| | | +--Charles has 2 child(ren): Harry William
| | | | +--Harry has 0 child(ren):
| | | | +--William has 0 child(ren):
| | | +--Edward has 0 child(ren):
| | +--Margaret has 0 child(ren):
| +--Henry has 0 child(ren):
| +--John has 0 child(ren):
| +--Mary has 0 child(ren):
$ _

Optional extra: What simple change could you make so that the children of a person are
listed in the order they were added (which would probably be the order of birth), rather
than alphabetically by name? (Hint: look at theapplication programming interface
(API) documentation forjava.util.LinkedHashSet .)

23 Chapter 23 The end of the beginning

106

	Chapter 1 Introduction
	Section / task 1.6 Our first Java program
	Section / task 1.7 Our second Java program

	Chapter 2 Sequential execution and program errors
	Section / task 2.2 Hello world
	Section / task 2.3 Hello world with a syntactic error
	Section / task 2.4 Hello world with a semantic error
	Section / task 2.5 Hello solar system
	Section / task 2.6 Hello solar system with a run time error
	Section / task 2.7 Hello anyone
	Section / task 2.8 Hello anyone with a logical error
	Section / task 2.9 Hello solar system, looking at the layout

	Chapter 3 Types, variables and expressions
	Section / task 3.2 Age next year
	Section / task 3.4 Age next year with a command line argument
	Section / task 3.5 Finding the volume of a fish tank
	Section / task 3.6 Sum the first N numbers -- incorrectly
	Section / task 3.7 Disposable income
	Section / task 3.8 Sum the first N numbers -- correctly
	Section / task 3.9 Temperature conversion

	Chapter 4 Conditional execution
	Section / task 4.2 Oldest spouse 1
	Section / task 4.3 Oldest spouse 2
	Section / task 4.4 Film certificate age checking

	Chapter 5 Repeated execution
	Section / task 5.2 Minimum tank size
	Section / task 5.3 Minimum bit width
	Section / task 5.5 Compound interest: known target
	Section / task 5.6 Compound interest: known years
	Section / task 5.7 Average of a list of numbers
	Section / task 5.8 Single times table
	Section / task 5.9 Age history
	Section / task 5.10 Home cooked Pi

	Chapter 6 Control statements nested in loops
	Section / task 6.2 Film certificate age checking the whole queue
	Section / task 6.3 Dividing a cake (GCD)
	Section / task 6.4 Printing a rectangle
	Section / task 6.5 Printing a triangle
	Section / task 6.6 Multiple times table
	Section / task 6.7 Luck is in the air: dice combinations

	Chapter 7 Additional control statements
	Chapter 8 Separate methods and logical operators
	Section / task 8.2 Age history with two people
	Section / task 8.3 Age history with a separate method
	Section / task 8.4 Dividing a cake with a separate method for GCD
	Section / task 8.5 Multiple times table with separate methods
	Section / task 8.6 Age history with day and month
	Section / task 8.7 Truth tables
	Section / task 8.8 Producing a calendar

	Chapter 9 Consolidation of concepts so far
	Chapter 10 Separate classes
	Section / task 10.2 Age history with Date class
	Section / task 10.3 Improving the Date class: lessThan() and equals() methods
	Section / task 10.4 Improving the Date class: toString() method
	Section / task 10.5 Improving the Date class: addYear() method

	Chapter 11 Object oriented design
	Section / task 11.2 Age history revisited
	Section / task 11.3 Greedy children

	Chapter 12 Software reuse and the standard Java API
	Section / task 12.2 A reusable Date class, with doc comments
	Section / task 12.5 Simple Encryption

	Chapter 13 Graphical user interfaces
	Section / task 13.2 Hello world with a GUI
	Section / task 13.3 Hello solar system with a GUI
	Section / task 13.4 Hello solar system with a GridLayout
	Section / task 13.5 Adding JLabels in a loop
	Section / task 13.7 Stop clock
	Section / task 13.8 GCD with a GUI
	Section / task 13.9 Enabling and disabling components
	Section / task 13.12 Single times table with a ScrollPane

	Chapter 14 Arrays
	Section / task 14.2 Salary analysis
	Section / task 14.3 Sorted salary analysis
	Section / task 14.4 Get a good job
	Section / task 14.5 Sort out a job share?
	Section / task 14.6 Diet monitoring
	Section / task 14.7 A weekly diet

	Chapter 15 Exceptions
	Section / task 15.2 Age next year revisited
	Section / task 15.3 Age next year with exception avoidance
	Section / task 15.4 Age next year with exception catching
	Section / task 15.5 Age next year with multiple exception catching
	Section / task 15.6 Age next year throwing an exception
	Section / task 15.7 Single times table with exception catching
	Section / task 15.8 A reusable Date class with exceptions

	Chapter 16 Inheritance
	Section / task 16.3 The Person class
	Section / task 16.4 The AudienceMember class
	Section / task 16.5 The Punter class
	Section / task 16.6 The Person abstract class
	Section / task 16.7 The remaining simple subclasses of Person
	Section / task 16.8 The MoodyPerson classes
	Section / task 16.11 The Game class
	Section / task 16.12 The Worker classes
	Section / task 16.13 The CleverPunter class
	Section / task 16.15 The Object class and constructor chaining
	Section / task 16.16 Overloaded methods versus override

	Chapter 17 Making our own exceptions
	Section / task 17.3 The Date class with its own exceptions
	Section / task 17.4 The Notional Lottery with exceptions

	Chapter 18 Files
	Section / task 18.2 Counting bytes from standard input
	Section / task 18.3 Counting characters from standard input
	Section / task 18.4 Numbering lines from standard input
	Section / task 18.5 Numbering lines from text file to text file
	Section / task 18.6 Numbering lines from and to anywhere
	Section / task 18.7 Text photographs
	Section / task 18.8 Contour points

	Chapter 19 Generic classes
	Section / task 19.2 A pair of any objects
	Section / task 19.3 A generic pair of specified types
	Section / task 19.4 Autoboxing and auto-unboxing of primitive values
	Section / task 19.5 A conversation of persons

	Chapter 20 Interfaces, including generic interfaces
	Section / task 20.3 Sorting a text file using an array
	Section / task 20.4 Translating documents
	Section / task 20.5 Sorting valuables

	Chapter 21 Collections
	Section / task 21.2 Reversing a text file
	Section / task 21.3 Sorting a text file using an ArrayList
	Section / task 21.4 Prime numbers
	Section / task 21.5 Sorting a text file using a TreeSet
	Section / task 21.8 Word frequency count sorted by frequency
	Section / task 21.9 Collections of collections

	Chapter 22 Recursion
	Section / task 22.3 Lecture attendance
	Section / task 22.4 Sum of ages of descendants
	Section / task 22.5 Factorial
	Section / task 22.6 Fibonacci
	Section / task 22.7 Number puzzle
	Section / task 22.8 Dice combinations
	Section / task 22.10 Tower of Hanoi
	Section / task 22.11 Friend book

	Chapter 23 The end of the beginning

