
Intro Lab 2

Using the Linux desktop

Contents
2.1 Logging in . 42
2.2 Setting up your environment . 43
2.3 Reading email in terminal mode . 43
2.4 Browsing the Web . 48
2.5 X Windows and GNOME . 51
2.6 X Windows . 54
2.7 Window Managers . 55
2.8 Starting a graphical environment automatically 56
2.9 Configuring Thunderbird . 59
2.10 Text Editors . 59
2.11 Shell environment variables . 60
2.12 Reinforcing your command line skills . 61
2.13 That’s all for now . 74

Find these notes at tinyurl.com/introlabs, handy for following web links in the text.

In this lab session we’re going to explore some of the features of Unix in a bit more depth, this
time using the desktop PCs rather than your Raspberry Pi (we’ll return to using that in the
next lab). We’ll explore some of the more advanced features of the command line and various
useful tools that will help you understand how a typical Unix system is organised. Almost
everything that you learn using Linux on the desktop machine is equally applicable to the
Raspberry Pi, and vice versa.

2.1 Logging in

Make sure the desktop PC is booted into Linux, and log in using your University username
and password (not the username and password you used on the Pi). Remember that nothing
will appear on the screen when you type your password. You should be greeted with a similar,
but rather longer, command prompt to the one you saw in the previous lab.

You are now logged in to a PC that is part of our Department’s Linux network. Type pwd pwdto
find out which directory you are in. It should be something like /home/x12345zz, where the

September 9, 2019 42

http://tinyurl.com/introlabs
http://en.wikibooks.org/wiki/Guide_to_Unix/Commands/File_System_Utilities#pwd

Introductory Labs Using the Linux desktop

part after the /home/ is your username. This is your home directory, which is not actually
stored on the desktop PC but on a central fileserver. This means that, whichever machine you
use in the lab, you will always see the same home filestore.

The environment you are now in is known as terminal mode. This is a way of interacting
with the computer via a screen containing only text, without the now familiar windows and
images. All interaction is done using a command line interface (CLI), typing commands into
a program known as a shell. When the terminal occupies the entire screen, as it does here, it is
known as console mode. Later we will be using a graphical environment, but for now we will
stick to terminal mode interaction and start off by reading mail.

2.2 Setting up your environment

IMPORTANT: If you have previously set up your Linux account here (e.g. you were a Foun-
dation student last year, or are repeating your 1st year), please speak with the person run-
ning the lab now before continuing. This is so we can check you are happy with the changes
that will be made to your account.

As you will see later, Linux makes use of special control files which are normally hidden from
view. These files all have names beginning with a dot character (’.’) and are usually referred
to as ‘dotfiles’. The following command will copy a standard set of these files to your account.

Type this now:

$ /opt/teaching/bin/copy-SL-bashdotfiles

2.3 Reading email in terminal mode

You’re probably familiar with reading email using either a web-based interface, a graphical
desktop application (such as Outlook, Thunderbird or Mac Mail) or using an app on a smart-
phone or tablet. Today you’re going to do something slightly different, and configure a text-
based mail client so that you can read your University email while using a terminal. The email
client we’re going to use is called Mutt mutt, which is fairly simple to configure and straightforward
to use (according to its author, Michael Elkins, “All mail clients suck. This one just sucks less”).
There are plenty of other similarly lean text-based email clientsW, and you may at some point
want to check out Alpine as a sensible alternative to Mutt or for the historically-curious, Elm
(if you want a really hardcore terminal-mode experience of mail, look up MailxW).

First, let’s confirm that Mutt is actually installed.

To see if Mutt is installed and is accessible to you, use the which whichcommand. Type:

$ which mutt

This should respond with /bin/mutt, telling us that the mutt command has been put in the
/bin directory on our system.

List the contents of /bin by typing

$ ls /bin

43

http://en.wikibooks.org/wiki/Guide_to_Unix/Commands
http://en.wikipedia.org/wiki/List_of_email_clients
http://en.wikipedia.org/wiki/Mailx
http://en.wikibooks.org/wiki/Guide_to_Unix/Commands/Finding_Files#which

Introductory Labs Using the Linux desktop

and notice that here we’re using ls lsto look at the contents of a directory other than the one
we’re currently in by passing the directory name as an argument. A whole load of things
should scroll past on the screen; most of them won’t mean anything to you right now, but
don’t worry, we’ll look at some of the important ones soon enough. Now that’s a lot of stuff to
look through, and depending on the size of your screen the command we’re looking for may
have scrolled off the top. So let’s try to narrow our results down a bit. Type:

$ ls /bin/ma*

and you should be given a much smaller list of things from the /bin directory; only those
starting with the letters ma. The asterisk symbol is interpreted as being a ‘wildcard’ that stands
for ‘anything of any length, including length zero’, so the command you’ve just typed means
‘list the contents of the /bin directory, showing only files that start with the letters ma and then
are followed by zero or more other characters’ (notice that the man command that you used in
the last session is there amongst the results).

You could narrow this down even further by typing ls /bin/man*, in which case you’ll only
get files from /bin that start with the letters man. Note that if you leave off the asterisk from
your command, you’ll be asking for files that are called exactly ma or man, which isn’t what you
want here.

So far we’ve been getting you to do a fair amount of typing, and now we have to admit that
you’ve been typing a lot more than you actually need to (it’s good practice though, so we’re
not feeling too guilty at this stage). The default Linux command line has a feature similar to
autocomplete that you’ll have seen on web forms and in graphical tools, that saves you typing
full commands by suggesting possible alternatives.

Type ls / but don’t hit Enter, and instead press the Tab key twice. You’ll be shown a list of
sensible things that could follow what you’ve typed – in this case it’s the list of the contents of
the system’s root directory. Now type the letter u (so that the line you’ve typed so far should
read ls /u) and hit Tab once. This time your command will be expanded automatically to
ls /usr/ since that’s the only possible option. Press Tab twice now, and you’ll get shown the
contents of /usr/. Type b, and press Tab to expand the command to /usr/bin/, and then
press Enter to execute the command.

The autocompleteW function you’re using here is more commonly called tab complete by Unix
users. If you press Tab once and there’s exactly one possible option that would autocomplete
what you’ve typed so far, then that option gets selected; if there are multiple possible things
that could complete your command, then Tab will complete as far as it it can, then pressing
Tab a second time shows you all of them, giving you the option to type another character or
two to narrow down the list. Learning to use this will save you a lot of typing, because not
only does it reduce the number of characters you type, it also helps you see the possibilities at
the same time. Very usefully, it also saves you from making lots of typing mistakes.

Here are some other handy command line tricks for you to try out (give them each a go now
so that you remember them for later):

• You can use the up and down arrow keys to cycle back and forth through the list of
commands you’ve typed previously.

• The left and right arrows do what you expect, and move the insertion point (often re-
ferred to as the cursor) back and forth. Pressing <ctrl>a will move you to the start of
the line, and <ctrl>e to the end of the line (much faster than moving backwards and
forwards character-by-character).

44

http://en.wikibooks.org/wiki/Guide_to_Unix/Commands/File_System_Utilities#ls
http://en.wikipedia.org/wiki/Autocomplete

Introductory Labs Using the Linux desktop

Breakout 2.1: File extensions

If you’ve mostly used Windows or macOS via a GUI, then you’re probably
used to files such as cheese.jpg, where you would interpret cheese as being
the file name and jpg as being the file extension. Some operating systems –
notably Windows – have the notion of a filename extensionW of a particular

number of characters built in; for example things ending with exe, bat or com mean that
they are executable files. In Unix, a file extension is merely a convention that’s not enforced
or meaningful to the operating system. So although it’s common to give files a suffix that
makes it easy for a human to guess what kind of file it is, Unix itself just treats these as
part of the file name. In fact, you can have multiple ‘file extensions’ in a name, to indicate
a nesting of file types. In the previous lab the file quake3.tar.gz is a tar archive that has
been gzipped, but the presence of the .tar and .gz parts are really just there to tell the
user how to treat the file.

• <ctrl>c aborts the current line, so if you’ve typed a line of gibberish, don’t waste time
deleting it one character at at time, just <ctrl>c it!

• Typing history lists all the commands you’ve typed in the recent past, useful if you’ve
forgotten something.

• Pressing <ctrl>r allows you to retrieve a command from your history by typing part
of the line (e.g. if you searched for ‘whi’ now, it’ll probably find the ‘which mutt’ line
you typed a while back). Pressing <ctrl>r again steps through possible matches (if
there is more than one).

• Pressing <ctrl>t swaps the two characters before your cursor around. What, really?
Yes: you’ll be surprised how often you type characters in the wrong order!

Back to configuring your email client. Before we use mutt, we need to point it at the incoming
and outgoing email servers, and we’ll do this by creating a configuration file.

We’ve created a template file for you to get going with. Make sure you are in your home di-
rectory, then use the curl command as in the last lab session to fetch the template from
https://syllabus.cs.manchester.ac.uk/ugt/COMP10120/files/mutt-template

Remember, you’re going to need to use a switch argument to tell curl curlwhat it should call
the file it’s fetched: call it anything you like, but mutt-template is a perfectly good name (if
you’re feeling uncomfortable about a file that doesn’t have a file-extension, see Breakout 2.1
for more information). Let’s look at the file to see what’s in it. Type

$ less mutt-template

and you should see the following written to the screen:

mutt configuration - for AY19
#
Change the following three lines to match your
University of Manchester account details
set my_user_name="firstname.secondname@student.manchester.ac.uk"
set my_imap_server_name= [IMAP SERVERNAME]

45

http://en.wikipedia.org/wiki/Filename_extension
https://syllabus.cs.manchester.ac.uk/ugt/COMP10120/files/mutt-template
http://en.wikibooks.org/wiki/Guide_to_Unix/Commands

Introductory Labs Using the Linux desktop

Breakout 2.2: Spaced out filenames

Because of its roots in the early days of computing long before the advent
of graphical user interfaces, Unix filenames tend not to have spaces in them
because this conflicts with the use of a space to separate out commands and
their arguments. The Unix filesystem does allow spaces in filenames, but

you’ll have to use a technique called ‘escaping’ if you want to manipulate them from the
command line; this involves prefixing spaces in filenames with the backslash character \
to tell the command line not to interpret what follows the space as a new argument. For
example, a file called my diary.txt would be typed as my\ diary.txt. It’s a bit ugly,
but it works fine.

set realname = "Real Name"

Change the following line to a different editor if you prefer.
set editor = "nano"

###
Shouldn't need to change any more from here on
###
set imap_user = $my_user_name
set from = $my_user_name
set folder = "imaps://$my_imap_server_name:993"
set spoolfile = "+INBOX"
set smtp_url = "smtp://$my_user_name@$my_imap_server_name:587"

The less lesscommand is used to display textual content from files and other sources (if you want
to know why it has such an odd name, look at Breakout 2.3). One of less’s features is that
it ‘pages’ through text, so that if the file you are looking at won’t fit on one screen, pressing
the space key will move you on to the next ‘page’; you may notice that the man mancommand you
used in the previous lab session actually used less to display the manual pages.

Don’t worry too much about the details of this file for now. If you’re already familiar with
how IMAP and SMTP work together to provide your email service, then you’ll be able to see
what the contents of this template mean; if you’re not, don’t worry. We just need to edit the
file to contain your details rather than the fake ones in the template you’ve just downloaded.
But let’s play it safe: rather than editing the actual file you downloaded, just in case you make
a mistake, let’s first make a copy of the file in your home directory.

Quit less (using the same technique you used to quit the man command in the last lab session),
and then enter

$ cp mutt-template mutt-template-copy

Did you type all of that? If so, you’ve wasted several precious key presses! You could have
typed cp mu, and then pressed Tab to expand it to cp mutt-template, and then do the same

46

http://en.wikibooks.org/wiki/Guide_to_Unix/Commands/File_Viewing#less
http://en.wikibooks.org/wiki/Guide_to_Unix/Commands/Getting_Help#man

Introductory Labs Using the Linux desktop

Breakout 2.3: Less is more

As we’ve mentioned before, many of Unix’s commands are plays on words,
puns, or jokes that seemed funny to the command’s creator at the time.
Though this gives Unix a rich historical background, it does rather obscure
the purpose of some commands. A prime example of this is the less com-

mand, used to page through text files that are too large to fit on a single screen without
scrolling.

Early versions of Unix included a command called more more, written by Daniel Halbert from
University of California, Berkeley in 1978, which would display a page’s worth of text
before prompting the user to press the space bar in order to see more of the file. A more
sophisticated paging tool, called less on the jokey premise that ‘less is more’ was written
by Mark Nudelman in the mid 1980s, and is now used in preference to more in most Unix
systems, including Linux.

thing again to create the start of the second argument, finally adding on the -copy bit yourself.
It’s a good habit to get into and will save you a lot of time over the next few years.

The basic form of the cp cpcommand takes two arguments, the first being the file you want to
copy, and the second being the name of the file that will be created. Confirm that there is
indeed a new file in your home directory using ls, and that its contents are what you expect
using less (how would you find out what else the cp command could do?).

To modify the file, you’ll need to use a text editor. Type

$ nano mutt-template-copy

to invoke the nano editor. Although fairly basic, the nano editor has all the features you’ll
need to make these changes, and helpfully shows you the various keyboard shortcuts to do
particular things such as saving and quitting at the bottom of the screen (remember, the caret
symbol (^) is shorthand for ‘ctrl’, so ^X means ’<ctrl>X’).

Now use it to make the following changes:

• Edit the line that starts set my_user_name to include your University email address.

• Edit the line that starts set my_imap_server_name to include the server name that you
obtained from the Outlook client in My Manchester.

• Edit the line that starts set realname to include your real name, in whatever way you
want it to appear in outgoing emails. Please use your proper name here and not a funny
nickname.

When you’ve made the changes, write out the file to your filestore and quit back to the com-
mand line. Then use less to confirm that the file now looks exactly as you want it to.

Now, mutt expects the file containing its configuration information to have a particular name,
and that’s not mutt-template-copy, so we’ll need to do something about that. The Unix mv mv

command is used to rename files or directories (it’s short for ‘move’), so use that to change the
name of the file to .muttrc by typing, not forgetting the dot at the start of the second filename

$ mv mutt-template-copy .muttrc

47

http://en.wikibooks.org/wiki/Guide_to_Unix/Commands/File_Viewing#more
http://en.wikibooks.org/wiki/Guide_to_Unix/Commands
http://en.wikibooks.org/wiki/Guide_to_Unix/Commands/File_System_Utilities#mv

Introductory Labs Using the Linux desktop

mv may seem like an odd name for a command that is used to rename a file, but it actually has
a number of uses, including moving a file from one part of the file hierarchy to another. You’ll
see more examples of this in a later lab session.

Rather like cp, mv takes two arguments; but instead of making a copy of the file, mv just changes
the name of the file given as the first argument to that of the second.

Type ls to confirm that the file name has changed as you’d expect.

Oh. But it’s gone! Actually, no, it’s still there, it’s just hidden! There’s a Unix convention
that filenames starting with a full-stop symbol don’t appear when you type ls in its basic
form, because these are normally configuration files that you don’t need to see on a day to
day basis (the ‘rc’ part of the .muttrc name stands for resource configuration, another Unix
convention). So to see these files you’ll need to add an extra switch argument to ls. Use the
man command, with an appropriate argument, to find out what this switch is, and then use the
switch to confirm that the .muttrc file does indeed exist.

Using this switch on ls will reveal several other so-called dotfiles that have been lurking in
your home directory all along.

If you’re confident that you now have a file called .muttrc containing the correct configura-
tion, you can now type mutt to start the program.

It should be reasonably clear how you use mutt to send and receive email; if you get stuck
there are plenty of online tutorials to help you out. Send yourself a test email to make sure
that everything is working, and when you’re confident you’ve mastered the basics of sending
and reading using this tool, quit mutt to get back to the command line. One thing you should
note is that mutt doesn’t have its own editor for composing emails, so will use nano unless
you change this to something else in the .muttrc file.

2.4 Browsing the Web

Although you will have experienced The Web so far as a highly graphical system, the technol-
ogy that underpins it is for the most part text-based, and it is (just about!) possible to browse
web pages using a terminal-mode application. It might seem like an odd thing to do, but
there’s an important point to be made here, so bear with us.

Try browsing the Department’s web pages using lynx lynxby typing

$ lynx https://studentnet.cs.manchester.ac.uk

Rather like mutt, the lynx program has just about enough on-screen help for you to be able to
browse around a little without any additional instructions from us. You may find that when
you follow some links, nothing very much appears to have happened; but scroll right down
the page and you should see the content that you’re looking for.

You’ll probably find using lynx an unsatisfying experience: tolerable, and probably okay in
an emergency, but not how you’d ideally like to browse the web. And you might be wonder-
ing why we’ve even bothered to get you to try viewing the web through a text-only interface.
Apart from the absence of images and videos etc., the main difference between using some-
thing like lynx and a regular browser such as Chrome, Firefox, Safari or Internet Explorer, is
that you’ll notice that web pages have been made into much more linear affairs than when they
are rendered in a graphical environment. While you might expect to see the navigation links
neatly arranged on the left or top of the page with the main content prominently displayed in

48

http://en.wikibooks.org/wiki/Guide_to_Unix/Commands

Introductory Labs Using the Linux desktop

the centre, seen through a purely textual interface it’s all one big stream of stuff, and it’s very
hard to distinguish between the navigation links and the main content.

Now consider what the web ‘looks’ like if you are visually impaired or blind and have to use a
screen-reader (a voice-synthesiser program that vocalises the text that’s on-screen) to interact
with your computer. Whereas a sighted person can easily cope with a two-dimensional layout
that allows you to be aware of multiple things at the same time (i.e. you can be reading the
main content of the page, but conscious of the fact that there’s a navigation bar on the left for
when you need it), if instead you are listening to a voice reading the contents of the page out
to you, it’s only possible to be hearing one thing at a time. And what’s more, you have to
remember what has been read out in the past in order to make sense of what you are hearing
now; you can’t just ‘flick back’ a paragraph or two by moving your eyes, instead you have to
instruct the screen reader to backtrack and re-read something. So the experience of using the
web if you are visually impaired has some things in common to interacting with web-pages
using lynx.

You’ll soon be designing your own web-based systems as part of the Team Project in the later
stages of COMP10120; making them accessible to visually impaired readers is something you
should keep in mind. Try using lynx to browse some of your favourite websites, and you’ll
almost certainly find that the level of ‘accessibility’ on the Web varies considerably!

2.4.1 Pipes and Redirects

One of the fundamental philosophies of Unix – and one that is a sensible philosophy when
you’re building any computer system really – is that the operating system is composed from
lots of simple sub-systems, each of which performs one clearly defined task. To do something
more complex than any of the individual tools allows you to do on its own, you are expected
to combine components yourself. At the command line, Unix makes this quite simple, so let’s
give it a go.

First, use lynx to look at the BBC’s weather page at www.bbc.co.uk/weather and have a
quick browse around to get familiar with what it looks like. Then quit lynx and get back to
the command prompt before typing:

$ lynx -dump http://www.bbc.co.uk/weather

Note the addition of the -dump argument before the URL this time. Instead of running as an
interactive browser, lynx should have just output the text that it would have displayed for
that page to the screen, and then ended. Now, most of the text of the page will have scrolled
off the top of the screen, so let’s use the less command to allow us to page through lynx’s
output in a more controlled manner. Type:

$ lynx -dump http://www.bbc.co.uk/weather | less

Did you type all that? Hopefully not – remember you can use the up and down arrow keys to
get previous commands back at the interactive prompt, and then just modify or extend them
to save wearing out your fingers.

To explain what’s happened here, you’ll have to understand the concepts of standard in and
standard out, which are a neat and extremely powerful idea that is fundamental to the way
tools (and programs generally) work in a Unix environment.

49

http://studentnet.cs.manchester.ac.uk/ugt/COMP10120/syllabus
http://www.bbc.co.uk/weather

Introductory Labs Using the Linux desktop

Every Unix program has access to a number of ways of communicating with other parts of
the operating system. One, standard in, allows a stream of data to be read by the program;
another, called standard out, gives the program a way of producing text. By default, when
you execute things at the command prompt, the shell arranges for a program’s standard in to
be connected to whatever you type at the keyboard, and for its standard out to be connected to
whatever display you’re using at the time (this is a bit of an over simplification, but it’ll do for
now). It’s quite easy to arrange for standard in and standard out to be connected up differently
though, and that’s what you’ve just done.

The vertical bar ‘|’ before less is called the pipe symbol, and it is used to join the output of
one command to the input of another; so in this case we have connected the standard output
from lynx directly to the standard input of less. When less is invoked without a filename
argument, it expects to get its input from standard in.

As well as being able to join commands together, you can use the idea of manipulating stan-
dard in/out to create or consume files instead. Try:

$ lynx -dump http://www.bbc.co.uk/weather > weather.txt

and then use ls to confirm that a file called weather.txt has been created, and use less

to look at its contents (which should be just the text from the weather web-page we’ve been
looking at already). Here the ‘>’ symbol redirects the standard out of the lynx command so
that instead of going to the screen it gets put into a named file.

To finish off this first contact with pipes and redirects, we’ll use a new command called grep grep

along with lynx to create a simple command of our own that tells you what the weather is like
in Manchester (there are very few labs with windows onto the outside world in the Kilburn
Building, so this may be more useful than you think!).

grep is a hugely powerful and useful utility, designed for searching through plain-text files.
Learning to master grep will take more time than we have in this lab, since you’ll have to
understand the idea of regular expressions to make full use of it (we’ll come to those in a later
lab). For now, we’ll use it in its very simplest form. Type:

$ grep BBC weather.txt

and you should see a list of all the lines from weather.txt that contain the word ‘BBC’. Use
less to have a look for other terms to ‘grep’ for (you might want to try something like ‘Sunny’
to give you a list of all the places where the weather is nice, for example).

Rather like less, if grep isn’t given the name of a file as its last command-line argument (in
this case we used weather.txt), it will operate on standard input instead of grepping through
a file (yes, it’s quite okay to use grep as a verb from now, no one will look at you funny). Use
this knowledge to join together lynx and grep so that the output is a single line describing the
weather in Manchester at the time we run the command. The output should look something
like:

Manchester Sunny Intervals

As a final flourish, let’s create a new a way of accessing this new ‘weather in Manchester’ tool
that you’ve created. Type:

$ alias mankyweather="[YOUR COMMAND GOES HERE]"

50

http://en.wikibooks.org/wiki/Guide_to_Unix/Commands

Introductory Labs Using the Linux desktop

Figure 2.1
Scientific Linux’s default graphical user interface and window manager, GNOME 3. The
screen is almost empty but clicking on ‘Applications’ on the far left of the top menu bar opens
a menu of apps. Clicking on the ‘power’ icon on the far right gives the ‘log out’ option as
shown in Figure 2.2.

replacing [YOUR COMMAND GOES HERE] with the full command line you created to dis-
play the Manchester weather, being careful not to introduce extra spaces around the equals
sign =. Then try typing

$ mankyweather

to see the result. Okay, so this probably won’t replace your favourite weather web page or
app, but it’s early days yet! Note that this alias will disappear once you exit the shell in which
you created this, for example when you logout and login again. We will see in a later lab how
to make such aliases permanent.

2.5 X Windows and GNOME

Next you’re going to start up one of Linux’s many graphical user interfaces. Type:

$ startx

You’ll see a chunk of text scroll up the screen briefly before being presented with something
that looks like the screenshots in Figures 2.1 and 2.2, although the background may look
slightly different.

Take a few minutes to explore the graphical environment. Even if you’ve never used Linux
before, you’ll probably find the general principles of this environment quite familiar: there are

51

Introductory Labs Using the Linux desktop

Figure 2.2
Logging out from GNOME 3.

Breakout 2.4: GNOME and Mutter

It’s quite common to refer to GNOME as a ‘window manager’, but technically
it is much more than that; it’s actually a collection of tools, applications and
other programs that together form a graphical desktop environment. The
window manager component of GNOME 3 is called MutterW.

icons on the desktop giving you access to the computer via a graphical file browser, and at
the top of the screen a menu-bar allows you to start various applications and utilities. The full
manual for this environment – which is called GNOME 3 – is available online at

https://help.gnome.org/users/

but you’ll probably be able to work out everything you need to get you going by poking
around at the various buttons. Unlike the Raspberry Pi where you have complete control over
the operating system via the sudo command, the lab machines are configured so that you can’t
do any long-term damage to the setup. Apart from accidentally deleting your own files (and
right now you have very little important stuff to accidentally delete!), there’s nothing much
you can do that will cause problems, so feel free to explore a bit.

Perform the following tasks:

1. Find two different ways to start a terminal window.

2. Find two different ways to start the Firefox web-browser.

3. Use Firefox to visit the Department’s UG home page: studentnet.cs.manchester.ac.uk/ugt/

4. Work out how to change the desktop theme and choose one you like.

5. Create a keyboard shortcut for starting Firefox, to provide a third way of starting it.

6. Find the Vector GraphicsW drawing application called Inkscape, and use it to draw a sim-
ple self-portrait. We just want you to spend a couple of minutes getting used to the kind
of things that Inkscape can do – it will be very useful later in your degree programme
when you’re going to need to draw diagrams to go in your reports. For now any old

52

http://en.wikipedia.org/wiki/Mutter_(software)
https://help.gnome.org/users/
http://studentnet.cs.manchester.ac.uk/ugt/
http://en.wikipedia.org/wiki/Vector_graphics

Introductory Labs Using the Linux desktop

Figure 2.3
This is a picture of Mister Noodle drawn by Steve using Inkscape. It took about two minutes,
though in reality had he spent any more time on it there would be no obvious improvement in
the quality of the artwork.

Breakout 2.5: Inkscape and GIMP: Vector and bitmap graphics

Inkscape is a vector graphics drawing package; it allows you to draw and ma-
nipulate different shapes to create pictures and diagrams. It is ideal for draw-
ing diagrams and figures. When you’re using a tool such as Inkscape you’re
manipulating geometrical shapes such as points, lines and curves. One of

the big advantages of this approach is that images look the same regardless of what mag-
nification you use. In these notes we’ve tried where possible to use vector images, so
you should be able to zoom into the pages on the electronic version without seeing any
‘pixellation’ happening. GIMP, on the other hand, is a bitmap based image manipulation
package; it treats images as being made up of lots of coloured dots (pixels). GIMP is great
for editing photographs and creating certain types of artwork, but it’s not hugely useful
for drawing diagrams.

It’s worth understanding the pros and cons of these two different approaches to graphics,
it’ll save you a lot of heartache later on and you’ll end up creating more professional
looking figures in your documents. The Wikipedia page on vector graphicsW provides a
good explanation of the different approaches.

doodle will do quite nicely (look at what Steve drew in Figure 2.3, we’re really not set-
ting the bar very high at all here!). Make sure you save this file, we’re going to need it
later.

7. Figure out how to log out of the graphical environment.

If you’ve completed step 7 you should now be back at the command prompt where you typed
startx

startx

a little while back. Before returning to the graphical environment where you’ll spend
most of your time, it’s important to understand how the graphical interface you’ve just been
using works as part of the Unix operating system.

If you remember back to the first Raspberry Pi lab, we pointed out that the shell (bash bash) that
you’re using to interpret commands is ‘just a program’ that happens to interpret input from
the user, execute commands, and display the results. The graphical environment you’ve just
used is similar – just a program (or actually, collection of programs) that runs on the operating

53

http://en.wikipedia.org/wiki/Vector_graphics
http://en.wikibooks.org/wiki/Guide_to_Unix/Commands
http://en.wikibooks.org/wiki/Guide_to_Unix/Commands
http://en.wikibooks.org/wiki/Guide_to_Unix/Commands

Introductory Labs Using the Linux desktop

system.

But what do we mean by ‘execute commands’? You’ve probably got the hang of the fact by
now that most of the things that happen in Unix are just programs stored somewhere on the
file system (remember, you found some of them in the /bin directory). When you press Enter
at a shell prompt, the shell checks that what you’ve typed has a valid syntax, and then starts
up a new process in which that program executes. The process is mostly independent of
the shell program that started it, gets on with doing whatever it was designed to do, and
when it finishes it tells the shell that it’s done, and the shell gives you another prompt for the
next instruction. Something very similar happens when you run the startx command: the
graphical environment starts executing, and when you select the ‘log out’ option, it returns you
back to the shell so you can issue another command. Notice that you haven’t been ‘logged out’
of Linux, but rather just out of the graphical environment – we’ll show you how to configure
things so that ‘log out’ in the GUI really does log you out in a little while. But first, let’s take a
step back now and look at what the startx command has actually done.

2.6 X Windows

Unlike macOS and Windows and most mobile operating systems, Linux doesn’t really have a
graphical windowing environment ‘built in’; what you’ve seen just now is a series of programs
that co-operate with one another to create the familiar WIMP environment (if you don’t know
what WIMP means yet, go back and read Breakout 1.1 from earlier in these notes).

User Applications

Window Manager Con!guration

Window Manager

X Server

Unix / Linux

Graphics Drivers

Graphics Hardware

Graphics ‘Stack’

User

Hardware

Figure 2.4
The layered structure of Linux’s graphical system, with software nearest to the underlying
hardware at the bottom, and software closest to the user at the top.

When you ran Quake and the snake game on the Pi in the previous lab, these programs took
direct control of the graphics subsystem in order to display the game. The startx command
runs a system called X WindowsW, which also takes control of the computer’s graphics system,
but on its own doesn’t really do anything very exciting apart from allow other programs to
then share the display. Along with X Windows, another system called a Window ManagerW

54

http://en.wikipedia.org/wiki/X_Window_System
http://en.wikipedia.org/wiki/Window_manager

Introductory Labs Using the Linux desktop

was started, and this is what you see drawing the buttons and menus and window controls for
the graphical user interface. There are two things going on here: first the X Windows system
is running that allows stuff to be drawn to regions of the screen; and second the Window
Manager which is doing all the WIMPy stuff like providing all the controls that allow windows
to be moved and resized.

2.7 Window Managers

One of the interesting effects of the X architecture, shown in Figure 2.4, is that it separates
out the system that draws stuff onto the screen from the one that deals with creating buttons,
sliders and windows, and enables you to choose a window manager that best suits the way
you work; some people like ‘rich’ environments like GNOME, whereas others like ‘lean’ cut-
down window managers.

The startx command can be used to fire up window managers other than GNOME, but the
syntax used for doing this varies quite a lot from one Linux distribution to another, and in the
case of the version of Scientific Linux we’re using, its behaviour is a bit confusing. To make it a
little easier for you to experiment with different window managers, we’ve provided you with
a bespoke command csstartx that makes things a bit simpler. Because this is a program that
we’ve added outselves to the Linux distribution, we’ve followed the convention of not putting
it in one of the system’s own directories of commands (such as /usr/bin), which means that
it won’t get found automatically in the way that other commands you’ve used so far will, so
for now you’ll have to explicitly type its full absolute path name, and we’ll show you how to
modify this behaviour shortly.

Type:

$ /opt/teaching/bin/csstartx startkde

and you should find that a different graphical desktop environment, KDE, starts up. Experi-
ment with this for a minute or two just to get a feel for what it’s like, and then quit back to the
command-line prompt.

As well as GNOME and KDE, which both follow fairly similar interaction paradigms to the
graphical environments of other operating systems, there are many alternative graphical in-
terfaces for Linux.

Use the table that follows to explore some of these by using the value from the ‘Command’
column as the first command-line argument to csstartx instead of startkde. In each window
manager make sure you figure out how to create a terminal window, so you can get some work
done!

Name Command Description

Fvwm fvwm A lean window manager with virtual desktops Hint: Click the
left mouse button.

AnotherLevelUp ALU A customised version of fvwm developed here in CS by John,
and still his favourite desktop environment (may contain bright
colours). Hint: Click the left mouse button.

Fluxbox fluxbox A lean but highly customisable window manager. Hint: Click
the right mouse button.

Openbox openbox Similar to Fluxbox; lean and highly configurable. Hint: Click the
right mouse button.

Awesome awesome A very very lean tiling window manager. Hint: Right click on
the black background. To exit press windows-shift-Q.

55

Introductory Labs Using the Linux desktop

Breakout 2.6: Tiling window managers

It’s likely that you are so familiar with the way that windows are managed on
operating systems like Windows or macOS that you’ve never really thought
about alternatives. Awesome and Xmonad are very minimalist window man-
agers, probably quite unlike anything you’ve used before. Most WIMP en-

vironments that you’ll have used so far make you the user responsible for the position
and size/shape of the windows that represent tools and applications on the desktop. The
upside of this is that you can arrange things exactly as you like them; the downside is that
you probably use up an amount of time doing that arrangement, and often end up with a
layout that wastes some of the desktop’s usable space. Awesome is what’s called a ‘tiling’
window manager; instead of giving you detailed control over the exact shape of windows,
it lays them out on the screen in one of several configurations designed to maximise the
use of space. Because you can’t drag or resize windows with the mouse, there’s no need
for the usual window decorations, so you save a few pixels this way too.

There’s no doubt that these window managers are at the hard-core end of the window
manager spectrum, and are designed for experienced users that need a very large numbers
of windows open at once, probably spread over several physical displays (as in Figure 2.5).
Apart from the ‘tiling’ aspect, it gives you virtually no visual cues as to how to perform
various actions, most of which are designed to be invoked via keyboard shortcuts (in fact,
Awesome is designed so that you can use all of its features without needing to touch the
mouse at all.) Once you’ve remembered all the keyboard combinations, using a window
manager like Awesome or Xmonad can be extremely efficient in terms of time and screen-
space.

As you become more familiar with Unix principles, keep the fact that you can easily swap
window managers in mind. Most likely there will come a point where the graphical niceties of
environments like GNOME become unnecessary, and perhaps even a distraction from getting
work done, and you might find that a slimmed down window manager suits you better as a
more experienced ‘power user’. For the rest of these exercises, though, we’ll assume you’re
using GNOME (if you’re confident enough to use something else, then translating our instruc-
tions to make sense in whatever environment you’ve chosen won’t be too big a problem).

2.8 Starting a graphical environment automatically

Now, if you’re going to use the graphical environment as your primary interface (and, as the
jobs we ask you to do get more complex, you’re going to need to!), you may find it slightly
annoying to have to log into a lab machine, start the graphical environment, log out of the
graphical environment when you’re done and then remember to also log out of the terminal envi-
ronment before you leave (because if you don’t do this, other people will have access to your account!).

Back in the previous lab session we explained that when you log into a Unix machine, an
interactive shell is created for you to run commands from, and that the shell is ‘just a program’
like any other that just happens to be the one nominated to be the first thing to run when you
log in.

What about nominating the graphical environment as the first thing to run instead? We’ve al-
ready pointed out that it’s ‘just a program’ too, so that should be okay? Although in theory it’s

56

Introductory Labs Using the Linux desktop

Figure 2.5
The Awesome window manager showing around 20 windows tiled over 6 physical displays.
Reproduced from awesome.naquadah.org with kind permission of Julien Danjou, one of
Awesome’s primary authors.

possible to do this, in practice it’s a bad idea: shells are quite simple self-contained programs,
whereas graphical environments are much more complex systems relying on hundreds of files
to be installed in the right places in order to work. You certainly don’t want to set your system
up in a way that if the graphical environment gets damaged in some way you can’t log in at
all.

Instead we’ll show you a rather safer way to get the GUI to fire up when you log in.

When you first run the bash shell on login, it looks for a file in your home directory called
.bash_profile and executes any commands it finds in there as though you’d typed them at
the keyboard; so this is a useful place to put the command to start the graphical environment.
Use the ls -a command to confirm that there’s already a file in your home directory called
.bash_profile, and then use less to look at its contents (There should also now be one called
.bash_history, take a look at it and it should become obvious how the history command,
and the ‘reverse search’ function you used earlier work).

.bash_profile should look something like this:

.bash_profile

Get the aliases and functions
if [-f ~/.bashrc]; then
. ~/.bashrc
fi

User specific environment and startup programs

PATH=$PATH:$HOME/.local/bin:$HOME/bin

export PATH

57

http://awesome.naquadah.org

Introductory Labs Using the Linux desktop

though don’t worry if there are slight differences. We’ll come back to what these instructions
mean in a later lab.

Start up the nano nanoeditor, and use it to add the following as a new line at the end of your
.bash_profile:

/opt/teaching/bin/csstartx

Use less to check that this line has now been added to your file.

If you’ve already decided you want to try out something other than GNOME as your default
window manager, add the appropriate command from the table after csstartx.

Now log out, and log back in again; you should find that the graphical environment fires up
automatically.

Next, quit out of whichever graphical environment you’ve chosen and. . . oh dear, you’re back
at the command prompt, rather than logged out completely.

Now this could be really confusing; you’ve created a situation where you don’t have to start
the graphical environment up manually, but you do have to remember to log out twice when
you’ve finished using it, once from the GUI and again from the console prompt. Yuck.

Fortunately there’s a relatively easy fix for this.

At the command prompt, type the following:

$ exec man ls

You should find that the man command has done exactly what you normally would expect,
but that instead of returning you to the command prompt when you’ve finished reading the
man page, you’ve been unceremoniously logged out! Log back in again (sorry about that).

The exec command changes the way in which the shell deals with whatever command fol-
lows it. Instead of starting a new process in which to run your command and waiting in the
background for that command to complete, the shell gives up the process in which it itself is
running, and hands it over to the command you’ve issued. So when that command finishes,
there is no shell to come back to. And because in this case the shell was the first program that
got run when you logged in, the Unix system logs you out since there’s nothing else you can
do.

Experiment by running exec /opt/teaching/bin/csstartx execand then logging out of the
graphical environment as you did a moment ago; this time you should find that you’ve auto-
matically been logged out of the console too.

Use the nano editor to alter the line you’ve just added to .bash_profile so that it now reads

exec /opt/teaching/bin/csstartx

Now log out, either by typing logout, or pressing <ctrl>d to tell the shell that its input
has ended. Now log back in again; if all has gone to plan then you should see the graphical
environment fire up automatically; and when you quit the graphical environment, you should
be returned to the Linux login prompt.

Hurray!

Before we leave this section on graphical environments, there’s one quirk that we’ve got to deal
with to avoid causing problems later on. As we said earlier, instructions in the .bash_profile
file get executed when you log in to a Unix machine.

58

http://en.wikibooks.org/wiki/Guide_to_Unix/Commands
http://en.wikibooks.org/wiki/Guide_to_Unix/Commands

Introductory Labs Using the Linux desktop

This works fine when you login directly to a PC from the console, but will cause problems if
you login remotely from another machine, as you will in the next lab. So we need to arrange
things so that we only try to start up the graphical environment if the user has logged in from
the console, and not via a remote connection.

Replace the line you’ve just added containing csstartx at the end of .bash_profile with the
lines:

case $(tty) in
/dev/tty1) exec /opt/teaching/bin/csstartx
esac

Note that the character after /dev/tty is the digit 1 and not the letter l.

This piece of ‘shell script’ reads something like ‘in the case where the terminal device being
used is the physical console, then execute the graphical environment’. We won’t explain the
exact meaning of this piece of code now but will do in a lecture; for now just make sure you’ve
typed it exactly as written here.

You should now log out and login again to check that the graphical environment starts up,
shuts down and logs you out as expected.

If you’ve mistyped any of the lines in .bash_profile you may find that when you try to log
in, you’re instantly logged out. Don’t panic and call for some help from the lab staff; it’s a
common mistake and an easy one to rectify!

2.9 Configuring Thunderbird

Rather than explain the Thunderbird configuration here we refer you to an illustrated guide to
this process, which you can find at https://wiki.cs.manchester.ac.uk/index.php/
How_to_set_up_Office_365_Mail_in_Thunderbird, written by a fellow student.

Follow all three steps in the process described in this document.

Once your Inbox appears in Thunderbird, using it to compose and send email should be fairly
self-explanatory, but if you’re stuck there are plenty of Thunderbird tutorials available on the
web.

2.10 Text Editors

A great deal of the lab work you will be doing over your time here will involve you creating
text files of various kinds, often source files in a programming language such as PythonW, JavaW,
PHPW or CW, or HTMLW files for use on the web. There are specialist tools called Integrated
Development EnvironmentsW or IDEs that can be used for programming; you will meet these
later in your programme. However, for many purposes, the simplest, and best, tool for creating
such files is a simple text editor. You have already met one such tool, nano, which is fine for
work at the console or quick modifications of existing files, but for more extensive work an
editor that takes advantage of X’s graphical capabilities is more appropriate.

The Linux environment in which you will be working offers many such editors, including the
default GNOME editor gedit, the KDE editor kate and the grand-daddy of all editors, emacs.
These three are illustrated in Figures 2.6 and 2.7. They are all shown ready to edit a Java source
file; note that they all use the fact that this is Java source to highlight key words within the text.

59

https://wiki.cs.manchester.ac.uk/index.php/How_to_set_up_Office_365_Mail_in_Thunderbird
https://wiki.cs.manchester.ac.uk/index.php/How_to_set_up_Office_365_Mail_in_Thunderbird
http://en.wikipedia.org/wiki/Python_(programming_language)
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/PHP
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Integrated_development_environment

Introductory Labs Using the Linux desktop

Figure 2.6
gedit

(a) kate (b) emacs
Figure 2.7

Other editors

When you have some free time, please do experiment with some of the text editors available
and find one that you like; in the meantime you should probably use gedit.

2.11 Shell environment variables

When you used the csstartx command, you had to prefix this with its full pathname, which
is /opt/teaching/bin/. It would be useful if you didn’t have to type it every time you want
to use a program from there; luckily there’s a way of doing this. When you type a command
on the command line, the shell looks for a program of that name in a number of places. These
places are determined by the value of a shell environment variableW called PATH. You can see
what its current value is by using the command

$ echo $PATH

60

http://en.wikipedia.org/wiki/Environment_variable

Introductory Labs Using the Linux desktop

This will show a long list of directories, separated by colons (:).

There are many other shell variables already set for you. They can be seen by running the shell
command set set(do this now). How do you stop the output scrolling off the screen? Most of
these variables won’t make much sense to you at the moment, but among them are HOME, PWD
and HOSTNAME; you can check their values using echo echo. What do think their values represent?

You can set the value of a shell variable at the command line, for example type:

$ MYVAR=42
$ echo $MYVAR

Note that there should be no spaces either side of the = sign and that the variable’s name is
MYVAR and its value is obtained by using $MYVAR. If a variable is given a value on the com-
mand line in a terminal window like this its value is only available in the shell running in that
window.

The way to make the change permanent is to modify your .bash_profile file. Use gedit to
modify .bash_profile by adding the following line immediately before the existing line starting
with PATH.

PATH=$PATH:/opt/teaching/bin:/opt/common/bin:/opt/scripts

This won’t have any effect until you logout and login again. So do that now and run echo

$PATH and you will see the new value, which contains your own bin directory, now preceded
by the three /opt directories.

2.12 Reinforcing your command line skills

This section is designed to help you practise your command line skills in preparation for next
week’s start of regular lab activities. You’ve already used most of these commands in previous
labs, but please don’t rush through this section since we’ll be explaining their behaviour in a
bit more detail, and introducing you to some of the extra options they provide, as well as some
of the pitfalls that lie in wait for the over-zealous command line user.

You’ve probably figured this out already, but it’s worth making explicit here: for Unix com-
mands, it’s usually the case that no news is good news. So when you run a program from
the shell, if you get no response other than your command-prompt back, that almost always
means that the command has done what you asked it to (whether you asked it to do what you
wanted it to do is, of course, an entirely different matter!). Generally speaking, for most simple
Unix commands, you can assume that the absence of an error message means that something
has worked. And of course, if you get an error or warning message back from a command, it
is crucially important that you read it, understand it, and act on it, rather than just ploughing
on regardless. If you ignore errors and warnings, bad things happen. This is true in the Unix
command world, and probably isn’t a bad philosophy for life in general either.

Anyway, back to the exercise and some practice of manipulating files and directories. In pre-
vious labs you’ve already encountered three directories of particular interest:

• The root directory (/) is the top level of the file system.

• Your current working directory which is the one you are ‘in’ at the moment (and is
shown by the output from pwd). This can also be referenced using a single dot (.), as you
did when starting up Quake Arena using ./ioquake3.arm in your first Pi lab.

61

http://en.wikibooks.org/wiki/Guide_to_Unix/Commands
http://en.wikibooks.org/wiki/Guide_to_Unix/Commands/Miscellaneous#echo

Introductory Labs Using the Linux desktop

• Your home directory (~) which is the top level of your own filestore and where cd cd

(change directory) with no arguments will take you. The value of this is also available
as $HOME, so the following all have the same effect:

$ cd

or

$ cd ~

or

$ cd $HOME

And no matter what is your current working directory, you can list the files in your home
directory with either of these commands.

$ ls ~

or

$ ls $HOME

You should recall the difference between an absolute path (one that starts with a /) and a
relative path (one that does not start with / but is instead ‘found’ relatively by starting from
the current working directory). You’ve met the ‘double dot’ notation (..) to mean ‘go up one
level’, as in ls .. or perhaps more often cd .., or even cd ../x/y and so forth.

Speaking of ls, you will from time to time need to use its -a switch argument to ask it to show
‘hidden’ files beginning with a dot, and/or -l (a letter l, not a digit 1) to make it show details
about the files it lists.

2.12.1 Creating a directory structure

Use the mkdir mkdir(make directory) command to create some directories. Type:

$ cd
$ mkdir INTRO

and check that this directory has indeed appeared using ls.

It’s important that directories we ask you to make for your work have exactly the names we
specify: Unix will let you use any names you like, but so that lab staff know where to look
for work when you get marked, and so that the system you’ll be using to submit your work
knows what you’re submitting, it’s very important that you follow these conventions for your
lab work. Any files and directories you create for your own purposes outside of lab work can
of course be named and organised however you like.

If you made a mistake, e.g. intro instead of INTRO, you can remove the directory while it is
still empty with the rmdir rmdircommand: e.g.

62

http://en.wikibooks.org/wiki/Guide_to_Unix/Commands/File_System_Utilities#cd
http://en.wikibooks.org/wiki/Guide_to_Unix/Commands/File_System_Utilities#mkdir
http://en.wikibooks.org/wiki/Guide_to_Unix/Commands

Introductory Labs Using the Linux desktop

$ rmdir intro

And then try to make it correctly.

Now go into your INTRO directory and let’s make some directories for four imaginary INTRO
exercises.

$ mkdir ex1 ex2 ex3 ex4

Now return to your home directory.

Your directory structure should now look something like this:

$HOME

INTRO

ex1 ex2 ex3 ex4

The easiest way to check this is to use ls from your home directory with the -R flag. This
shows the whole tree below your current working directory (as with other commands we’ve
encountered before such as chmod chmod, here the -R is short for recursivelyW – if you’ve not looked
up what this means yet, now is a good time to do that).

$ ls -R

2.12.2 Copying, moving, and removing files

This subsection re-introduces three commands used for copying, moving and removing files.
We’ll first describe each command and then you’ll get an opportunity to practise using them.

Copying files: cp

The cp (copy) command has two forms.

The first general form is

$ cp [FILENAME] [FILENAME]

For example

$ cp file1 file2

63

http://en.wikibooks.org/wiki/Guide_to_Unix/Commands
http://en.wikipedia.org/wiki/Recursion

Introductory Labs Using the Linux desktop

makes a copy of the file file1 and calls it file2. If a file called file2 already exists, the existing
file2 will be overwritten with a copy of file1 and lost without warning. Using the -i option to
cp will ask you if this is about to occur.

The second form is slightly different:

$ cp [FILENAME(S)] [DIRECTORYNAME]

For example

$ cp file1 file2 file3 dirname

This copies the files file1, file2 and file3 into the directory dirname, again overwriting
any files already there with the same names.

Removing/deleting files: rm

The command rm rm(remove) is used to delete files.

$ rm [FILENAME(S)]

throws away the specified files. Always take great care when using rm: unlike putting things
in the ‘trash’ or ‘recycle bin’ in a desktop environment, the effects of rm are not reversible, and
you don’t get any warning before files are deleted forever. Like cp, rm has a -i option which
asks you if you really mean it. This option can be particularly useful if you are using wildcards
in you command line arguments.

Moving / renaming files: mv

The mv (move) command is similar to cp, but it just moves the files rather than makes copies.
Again we have the two forms

$ mv [FILENAME] [FILENAME]

and

$ mv [FILENAME(S)] [DIRECTORYNAME]

The effect is similar to copying followed by removing the sources of the copy, except it is more
efficient than that (most of the time). For example

$ mv file1 file2

is like doing

$ cp file1 file2
$ rm file1

and

$ mv file1 file2 file3 dirname

64

http://en.wikibooks.org/wiki/Guide_to_Unix/Commands/File_System_Utilities#rm

Introductory Labs Using the Linux desktop

Breakout 2.7: Taking out the trash

You now know enough about the behaviour of the filesystem to know what’s
actually going on when you put files in the ‘recycle bin’ or ‘trash can’ in
a desktop environment such as you get with macOS, Windows or Gnome.
When you ‘move to trash’ in these environments, you’re not deleting the

file but instead using an equivalent of the mv command to move the file from its current
location into a special directory that represents the trash can. When you tell the graphical
environment to ‘empty trash’, you’re actually invoking something equivalent to rm, which
actually does delete the file from the filesystem.

is like doing

$ cp file1 file2 file3 dirname
$ rm file1 file2 file3

Using mv will preserve the timestamps on files, whereas the combination of cp and rm will not,
since new files are being created.

Now for some practice. Go to your home directory by typing:

$ cd

and copy the file called fortunes in the /usr/share/games/fortune directory to your cur-
rent working directory, by typing

$ cp /usr/share/games/fortune/fortunes .

Note that the dot (meaning, of course, your current directory) is essential. If you now do an
ls, you should see that the file called fortunes has appeared in your directory:

$ ls

If no file called fortunes has appeared, the following will probably provide an explanation.
If it did appear, read this anyway, just to check that you understand what you did right.

The cp command needs at least two arguments. In this case, the file you are copying is
/usr/share/games/fortunes, and the directory you are copying it to is ‘.’ (that is, your
current working directory; remember every directory has a reference to itself within it, called
‘.’) If you missed out the dot, or mis-spelt /usr/share/games/fortunes, or missed out one
of the spaces, it won’t have worked. In particular, you may well have got an error message
like:

cp: missing destination file
Try ‘cp --help' for more information.

or

cp: /usr/share/games/fortunes/frotunes: No such file or directory

65

Introductory Labs Using the Linux desktop

Breakout 2.8: fortune

At the moment we’re just going to be using the fortunes file as something to
copy and move around, so its contents are not important, but it’s one of the
source files used by the Unix fortuneW command, which we will be playing
with later.

fortuneW is a simple program that displays a random message from a database of (suppos-
edly) humorous quotations, such as those that can be found in the US in fortune cookiesW

(hence the name). It also contains jokes (of a sort!) and bits of poetry.

If you get the first message, it means you used the command with the wrong number of ar-
guments, and nothing will have happened. The other is an example of what you might see if
you mistype the first argument. If you do get an error message you need to give the command
again, correctly, to copy the fortunes file across.

You should now have a copy of the file in your home directory. You’ll have to get into the
habit of not having all your files in your home directory, otherwise you will quickly have an
enormous list of stuff that will take you ages to find anything in. The use of subdirectories
provides a solution to this problem, which is why you created some earlier. Moving this file to
the ‘correct’ place gives you a chance to practise the mv command.

Move the file fortunes to your INTRO/ex4 directory.

Now go to your INTRO/ex4 directory and check that the file has appeared there.

To make sure you understand cp, mv, and rm, go through the following sequence (in your
INTRO/ex4 directory), checking the result by looking at the output from ls at each stage:

$ cp fortunes fortune1
$ ls
$ cp fortunes fortune2
$ ls
$ mv fortune1 fortune3
$ ls
$ cp fortune3 fortune4
$ ls
$ rm fortune2
$ ls
$ rm fortune1
$ ls

You’ll notice that rm fortune1 behaves differently to rm fortune2; if you can’t figure out
why, ask a member of lab staff for help.

2.12.3 Wild cards

An asterisk (commonly referred to as star) in a filename is a wild card which matches any
sequence of zero or more characters, so for instance, if you were to type (don’t actually do it!)

$ rm *fred*

66

http://en.wikipedia.org/wiki/Fortune_(Unix)
http://en.wikipedia.org/wiki/Fortune_(Unix)
http://en.wikipedia.org/wiki/Fortune_Cookies

Introductory Labs Using the Linux desktop

then all files in the current directory whose names contain the string ‘fred’ would be removed.

Try the effect of

$ ls fortune*

and

$ ls *tun*

Now try

$ echo *tun*

Our previous use of * has always been in conjunction with ls which might have led you to
think that the wild card was being expanded by ls. In fact the expansion is done by the
shell, bash, which means that the effect is true for anything you type on the command line.
Wildcards are a very powerful and useful feature of the command line, and as with anything
powerful and useful can be used or mis-used, so it’s important that you know what you’re
doing with them.

One place where you must take care with wild cards is the dotfiles – these are files whose
names begin with a dot (.), because the asterisk will not match a . at the start of a file name.
To see what this means try the following

$ cd
$ ls *bash*

and

$ ls .*bash*

and see the different output.

2.12.4 Quotas

The command

$ quota

shows you what your file store quota is, and how much of it you are actually using. This is
only of academic interest now, but may become very important later in the year! You may find
that you are unable to save files if you use more than your quota of file store. It is important
that, if this happens, you do something about it immediately.

2.12.5 Putting commands together

Before you forget that you’re in your home directory, change back to your INTRO/ex4 directory.

One of the simplest (and most useful) of Unix commands is cat cat. This command has many
uses, one of which is to concatenate a list of files given as arguments and display their contents
on the screen. For example:

67

http://en.wikibooks.org/wiki/Guide_to_Unix/Commands/File_Viewing#cat

Introductory Labs Using the Linux desktop

$ cat file1 file2 file3

would display the contents of the three files file1, file2 and file3. The output from cat

goes to what is known as the standard output (in this case the screen).

If you type:

$ cat

nothing will happen because you haven’t given a file to cat. When run like this, it takes its
data from the standard input – which in this case is the keyboard – and copies it to the standard
output. Anything that you now type will be taken as input by cat, and will be output when
each line of the input is complete. In Unix, end of input is signalled by <ctrl>d. (Recall that
typing <ctrl>d in your login shell will log you out – you have told the shell to expect no
more input). So, after typing cat above, if you type:

The cat
sat
on the
mat

and then press <ctrl>d you will see the input replicated on the output (interleaved line by
line with the input). The first copy is the ‘echo’ of what you typed as you typed it, the second
copy is output from cat. This may not seem very useful, and you wouldn’t actually use it just
like that, but it illustrates the point that cat takes its input and copies it to its output. Using
this basic idea we can do various things to change where the input comes from and where the
output goes.

$ cat > fred1

will cause the standard output to be directed to the file fred1 in the working directory (the
input still comes from the keyboard and will need a <ctrl>d to terminate it. Try creating a file
fred1 using this technique, and then check its contents.

$ cat < fred1

will take the standard input from the file fred1 in the working directory and make it appear
on the screen. This has exactly the same effect as

$ cat fred1

You can, of course, use < and > together, as in

$ cat < fred1 > fred2

which will copy the contents of the first file to the second. Try this and check the results.

We can, of course, do this type of redirection with other commands. For example, if we want
to save the result of listing a directory’s contents into a file we just type something like:

$ ls -l > fred1

68

Introductory Labs Using the Linux desktop

(this overwrites the previous contents of fred1 without warning, so be careful of this kind of
use).

In the previous Intro lab session we met the idea of a pipe, using the | symbol to connect the
standard output of one command to be piped to the standard input of a second.

We can construct another (admittedly rather artificial) pipeline example using just cat:

$ cat < fred1 | cat > fred2

The first cat takes its input from the file fred1 and sends its output into the pipe. The second
cat takes its input from the pipe (i.e. the output from the first cat) and sends its output to the
file fred2. (How many other ways can you think of to do this?) This isn’t a very sensible thing
to do, but it does illustrate the principle of piping, and more realistic examples will appear in
the exercises.

Standard output sent to the screen may come so fast that it disappears off the top before you
have had a chance to read it. There is a simple way around this problem by piping the output
into the command lesswhich arranges to stop after each pageful (or screenful, or window-ful)
of output. For example,

$ ls -la | less

would be a wise precaution if the current working directory held more than a screenful of
entries. When less has shown you the first screenful, press the space bar to see the next
screenful, or return to see just the next line. Use q as usual to quit.

Now would be a good time to remove all those junk files like fred1 etc.

Before we leave the subject of pipes we meet two of the less obviously useful Unix commands,
fortune

fortune

and cowsay. We met fortune briefly in Breakbox 2.8, try running it a few times now.
(Hope you didn’t type the command more than once. If you did, think how that could have
been avoided.)

Now try running the command cowsay

cowsay

. Nothing happens, because the cow is waiting for you
to tell it what to say. Type anything you like and then <ctrl>d to denote the end of input.
The cow should then utter your words:

< Hello World >

-- -- -- -- -
\ ^__^
\ (oo)_______

(__)\)\/\
|| -- -w |
|| ||

Now try putting fortune and cowsay together to get the cow to ‘speak’ the fortunes. Utterly
useless but it illustrates the use of pipes.

2.12.6 Making your own commands

Pretty much anything that you can type at the command line can also be stored in a file to
create a simple program called a shell script, so if you find yourself frequently connecting

69

http://en.wikibooks.org/wiki/Guide_to_Unix/Commands
http://en.wikibooks.org/wiki/Guide_to_Unix/Commands
http://en.wikibooks.org/wiki/Guide_to_Unix/Commands
http://en.wikibooks.org/wiki/Guide_to_Unix/Commands

Introductory Labs Using the Linux desktop

Breakout 2.9: Scripting versus Programming

You may be wondering what the difference is between a ‘script’ and a ‘pro-
gram’, or between the idea of ‘scripting languages’ or ‘programming lan-
guages’. It’s quite difficult to pin down exact meanings for these, since their
use has shifted over time and different people use the terms to mean subtly

different things. Scripting languages and programming languages both allow people to
create sequences of instructions for a computer to execute. Generally speaking when peo-
ple refer to scripts or scripting languages they are referring to mechanisms for automating
tasks rather than for performing complex computations. So if you wrote something that
once a month deleted any files that ended with .bak from your filestore, you would prob-
ably use a scripting language, and most likely think of it as a script. If you were to write
the next 3D blockbuster console game to outsell Grand Theft Auto V, you’d probably use a
programming language and think of it as a program. At the extreme ends of the spectrum,
the distinction is quite clear; in the middle it gets a bit muddy.

together simple commands to perform a particular task, you might find it useful to create a
script for use in future, rather than retyping everything each time. If you recall back to Section
2.4.1 we made a simple command called mankyweather using an alias. Aliases are fine for
things that you can express in a single line of text, but clumsy for more complex combinations
of commands; a shell script instead allows you to use as many lines as you like.

Use an editor to create a shell script in the file ~/bin/wisecow. Make a directory in your home
directory called bin using the command:

$ mkdir ~/bin

and in that directory create a file called wisecow. You’re welcome to use whatever text ed-
itor you like for this, but you might find that for short edits like this you’re better off using
something like nano rather one of the more heavyweight graphical editors.

Put the following text into the file:

#!/bin/bash

fortune | cowsay

The first line tells the operating system to use the program /bin/bash when this script is run,
i.e. it will start bash with an argument telling it to get its commands from this file and execute
them pretty much as though they had been typed into bash in the usual way.

Now try to run your new program:

$ ~/bin/wisecow

Oops, that won’t have worked! Before the operating system will believe us that this really
is a thing that we can run, we need to give the file execute permission. Use ls to see what
permissions the file has at the moment. To make it executable we use chmod as follows.

$ chmod +x ~/bin/wisecow

70

Introductory Labs Using the Linux desktop

Now check its permissions again. If all is okay, you should be able to run this time with

$ ~/bin/wisecow

and your wise cow should have spoken.

Now here is the really cool bit: in an earlier lab you met the idea of $PATH – the list of all places
where the operating system will search when you type a command without specifying its full
pathname. See the value of this now:

$ echo $PATH

Notice one of the directories listed is your very own ~/bin directory: this is where you can
put your own commands.

So, now type just

$ wisecow

and bask in the wisdom of your newly created cow guru.

2.12.7 Doing several things at a time: background running

The command xclock

xclock

fires up a clock displaying the current time; try it now.

You will notice that there’s a problem with running clocks from a terminal window. If you
type:

$ xclock

a clock does indeed appear. However, you then can’t type any more commands in the terminal
window, because it is waiting for the clock program to finish, and of course the clock program
is designed to run forever (or at least until you logout). In this situation you can, of course quit
the clock, using <ctrl>c in the terminal window. However, if you want to keep the clock
running and still get on with other things in the same terminal window you can just add an
ampersand (&) on the end of a command, so in this case,

$ xclock &

Adding the ampersand ensures that the program is run in the background, that is, separately
from the terminal window. This way you can have several clocks at once and continue typing
other commands carrying on from where you were.

Try running an xclock in the background now.

Work out from the manual page for xclock how to use its various options, and experiment
with producing a range of clocks. (You should ignore the section of the manual page entitled
X DEFAULTS – for now.)

One situation where the use of background processes is particularly useful is when you fire up
an editor, such as gedit. You can start the editor and still continue to do other things in the
same terminal window. Try this now

$ gedit &

71

http://en.wikibooks.org/wiki/Guide_to_Unix/Commands
http://en.wikibooks.org/wiki/Guide_to_Unix/Commands

Introductory Labs Using the Linux desktop

You can also start gedit (and many other editors) with a filename argument to edit a particular
file; in fact this is probably the way you will normally use it.

Sometimes you might forget the & and want to put a process into the background while it
is already running. This is easy to do; first you suspend the process by typing <ctrl>z,
then type bg to put into the background. Try this now with a gedit window. You can bring
a background process back into the foreground by typing fg. If you have more than one
suspended or background job then you just add the background process count as an argument;
you can find which process has which count by using the shell command jobs jobs.

2.12.8 Printing text files: lpr

The command lpr lprcan be used to send files to a printer. In its simplest form, you simply run:

$ lpr file1 file2

to print the given files. The printing service we use is the University Pull printing service,
which allows you to collect your printing at any University pull printer. This is described in
more detail at

http://www.itservices.manchester.ac.uk/students/printing/

You could use lpr now to print out the fortunes file, but that file is quite big and we don’t
want to waste a lot of paper. So please don’t! However, it would be nice to practise using
lpr. So instead print out just the first 50 lines of it. Look at the man page for lpr and discover
what it does if no file names are given. Now look at the man page for the command head headand
figure out how to make it output the first 50 lines of the file fortunes. Experiment with this to
make the 50 lines appear on your screen. Now send the 50 lines to the printer – without using
a temporary file. Go and collect your print output from a nearby printer (there are printers in
SSO, G23, and other places).

All students have a printing account which is used to ‘pay’ for their printing. The Department
has pre-credited your account with enough credit for you to print all the material needed for
your courses (with some to spare) without having to pay for anything. For full details see
https://wiki.cs.manchester.ac.uk/index.php/StudentFAQ/IT.

2.12.9 Time for a checkup

Check your setup. Now it’s time to check that your CS account’s environ-
ment is set up properly. In the earlier introductory labs we got you to make
various changes to the configuration files that determine how your account
behaves (the so-called ‘dotfiles’).

From a terminal, run the command

/opt/teaching/bin/check-my-setup

If you skipped any of the steps in the intro labs, or didn’t quite get things right,
then this script will help you detect any configuration issues that might bite
you later, and will help you fix any problems it finds (if you’re curious about
the script works, use less to check out its contents).

72

http://en.wikibooks.org/wiki/Guide_to_Unix/Commands
http://en.wikibooks.org/wiki/Guide_to_Unix/Commands
http://www.itservices.manchester.ac.uk/students/printing/
http://en.wikibooks.org/wiki/Guide_to_Unix/Commands/File_Viewing#head
https://wiki.cs.manchester.ac.uk/index.php/StudentFAQ/IT

Introductory Labs Using the Linux desktop

If you don’t understand what the script is telling you to do, please do take this
opportunity to find a member of lab staff to explain things.

Once you’ve fixed any problems that the script has identified, please re-run
the script to check everything is now okay, and then repeat this process until
the script reports that everything is ‘good’.

2.12.10 Exercises

Here are a number of exercises to experiment with. Use man to find full details of the relevant
commands you need to use. When you have your answers, email them to you Personal Tutor.
Just send a single email with everything in. If you can’t complete all the exercises, no problem,
just send what you’ve done.

1. As you know, ls -l gives you extra information about files. Skim through the man page
for ls to see what it means. Check the ownership and permissions of your own files. For
more about ownership and permissions, look at the manual pages for the chown and
chmod commands.

Question: Why don’t you own ‘..’ in your home directory?

2. Look at the man entry for rm and find out what would happen if you did cd cdand then rm

-rf *
WARNING! DO NOT ACTUALLY TRY THIS! We once had a system administrator
who, after logging in as the superuser (that’s a special user called root that has the per-
mission to do anything), typed the above command by accident. What do you think
happened? (Hint: on many Unix systems, the superuser’s home directory is /).

Question: What would it do in your home directory? What would it do if the superuser
made this error?

3. Another useful command is grep, which displays all lines of a file containing a particular
string (in fact, the string can be a pattern with wild-cards and various other things in).
The form for a simple use of grep is

grep [PATTERN] [FILENAME(S)]

This will result in a display of all the lines in the files which contain the given pattern.

A useful file to use for experiments with grep is /usr/share/dict/words, which is a
spelling dictionary. Try to find all words in the dictionary which contain the string ‘red’.

Question: what was the command you used to do this?

4. Use a suitable pipeline to find out how many words in the dictionary contain the string
‘red’ but not the string ‘fred’. (Hint: The answer to the previous question gives all the
words containing ‘red’, look at the manual page for grep to find out how to exclude
those words containing ‘fred’. The wc wc(short for ‘word count’) program counts words
(amongst other things). Use pipes to put them all together.)

Question: what was the command you used to do this? How many words did you
find?

You have now finished the lab, but we encourage you to try the exercises contained in the file
/opt/info/courses/INTRO/extras. Don’t worry if you find them tricky – they are.

73

http://en.wikibooks.org/wiki/Guide_to_Unix/Commands/File_System_Utilities#cd
http://en.wikibooks.org/wiki/Guide_to_Unix/Commands

Introductory Labs Using the Linux desktop

2.13 That’s all for now

If you have reached this point before the end of the lab you may have gone too fast so please
go back and review what you have done. You will be using many of the ideas we’ve just met
in later labs, so it’s important to understand them. When you are sure you have completed the
work for this session, please tell the lab supervisor.

74

	Using the Linux desktop
	Logging in
	Setting up your environment
	Reading email in terminal mode
	Browsing the Web
	Pipes and Redirects

	X Windows and GNOME
	X Windows
	Window Managers
	Starting a graphical environment automatically
	Configuring Thunderbird
	Text Editors
	Shell environment variables
	Reinforcing your command line skills
	Creating a directory structure
	Copying, moving, and removing files
	Wild cards
	Quotas
	Putting commands together
	Making your own commands
	Doing several things at a time: background running
	Printing text files: lpr
	Time for a checkup
	Exercises

	That's all for now

