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Preface

A note to 2020–2019 students of COMP34120 from Jon
Shapiro

What follows is the 2013 version of a set of lecture notes Written by An-
drea Schalk. This was produced by Andrea for the first semester (or more
specifically weeks 2 – 5) of an earlier version of this course. It is a shortened
and slightly refocused version of a beautiful set of notes for a full-semester
course on the theory of games which Dr. Schalk used to teach. The course
COMP34120 was devised by Andrea, Xiao-Jun, and me, and these notes
were written by Andrea to support her part of the course.

Now Andrea has moved on to other teaching, and I have taken over her
part of the course. Andrea has very generously agreed to allow me to continue
to use her lecture notes, and as I think they are extremely good, and very
appropriate for this course, I intend to use them as a textbook.

As students you need to note a few things. First, Andrea writes this as
if she is teaching the course, which she no longer is. So, on page 2 where
she writes “I expect”, is not quite right. We are covering the material more
quickly and in less depth than she did in the previous course, but are covering
more material. I will try to make clear through Blackboard which parts of
the notes are relevant for each week. I will not necessarily follow the B, S, A
designation of exercises and their relations to exam question, but the exam
will not be harder than that. Basically, if you skip to the “What is a game”
section in the middle of page 2, you will start where I want you to start. You
may also skip page 4, because she is not going to update these notes. From
page 5 on is what we will use. There are bookmarks which relate to lectures
in earlier version of the course. Ignore them; they no longer pertain.

It is also worth noting these notes were produced in 2013. The field, and
Andrea’s knowledge of the field has developed. These might not be exactly
what she would write today.

Jon Shapiro
September 11, in the year of Covid, 2020
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We will not be going through every detail of the notes and it is every student’s responsi-
bility to ensure that they have read and understood the relevant material. You will not get
much out of these sessions if you haven’t done the reading.

There are a few exercises in the notes to help you apply the ideas to concrete examples.
Most of these should be straightforward after a thorough study of the notes. Solutions to the
exercises are included. Exam questions might take the form of simpler exercises, or might ask
you to outline how one might go about solving a more complicated one.

The exercises have a rating. This can be:

B Basic: I expect you to be able to do this in the exam.

S Simple: I expect you to describe how to solve an exercise like this in the exam.

A Advanced: These exercises are there for students who want to gain a more thorough
understanding, and who would like something to work through.

There are also items labelled ‘question’ which encourage you to pause before reading on
and to think about the issue raised there. Many of these questions are answered in the
following paragraph or two.

The material is relevant for the first project in which small groups of students are required
to write a program playing a game called kalah. The resulting programs will be run against
each other, and some of the project mark will be assigned based on performance in this direct
comparison. There will also be some questions in the exam covering the material in these
notes.

My main responsibility within this course unit is concerned with the delivery of the mate-
rial described in these notes. I will also provide some help for the first semester group project
in the sessions in Week 7-11. If you have questions about other aspects you should ask the
appropriate member of the lecturing team.

What is a game?

A technical definition of a game appears in the next chapter, here we just want to give an
intuition. Every time people (or, more generally, agents) interact with each other and jointly
influence an outcome we can think of it as a game. There are lots of examples and everybody
will have encountered at least some of these:

• Somebody has an old mp3-player that he know longer wants. He’s offering it to his
friend and will give it to the person who offers him the most in return. How should his
friends decide how much to bid? What rules should he set so that he gets the largest
amount?

• In a shared student flat the kitchen and the bathroom need to be cleaned regularly to
stay in a decent condition—else the landlord is going to make trouble (and most people
don’t enjoy living in a filthy place). Does game theory tell us something about what
the likely behaviour of the inhabitants is going to be, and does it help explaining it?

• On a network there is a limited capacity for transporting data. How should the indi-
vidual machines on it be configured to ensure that

– the capacity is shared fairly and

– the existing capacity is fully exploited whenever there is sufficient demand?

Bear in mind that a machine sending information will have no information about what
the other machines on the network are doing.

• We can think of the buying and the selling of shares on the stock market as a game (lots
of entities interact, and the outcome is defined by money and shares changing hands).
If we could predict how the market is going to behave in the future we could make a lot
of money. . .
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There are, of course, also the better known (and expected) examples of playing a board
or card game.

What all these ‘games’ have in common is that they can be defined more formally in such
a way that they have the following properties:

• A number of agents interact with each other. These are known as the players.

• At the end of their interactions there is an outcome that can be described numerically—
each player receives a pay-off which may be negative.

• There are clearly defined rules as to what decisions each agent can make at which point
in time and once all such decisions have been made the outcome is uniquely determined.

These are fairly broad requirements, which are met by many situations in the real world.
That is the reason games have been so successful at modelling a great variety of issues,
and they are used in areas such as computer science, sociology, economics, biology, and
mathematics.

In some of these subjects it is quite difficult to come up with a mathematical model
that allows a worthwhile analysis of some situation, and in many cases the theory of games
supplies by far the most productive one. Rather than trying to describe something through
a set of equations all that is required here is the codification of the rules, and putting a
number to the potential outcomes that somehow measures its ‘benefit’ (or detriment) to the
participants. Game theory allows for an analysis of the resulting model. In some cases, where
many similar transactions occur, it can be quite easy to describe the rules for the interaction
of two individuals, and the complexity arises from the fact that many such interactions occur
over a period of time. We see in the chapters on modelling that this can give rise to systems
which are very expressive, but which are still only partly understood.

Games have also been successfully studied as models of conflict, for example in biology
(animals or plants competing for resources or mating partners) as well as in sociology (people
competing for resources, or those with conflicting aims). In particular in the early days of
the theory of games a lot of work was funded by the military.

Two basic assumptions are being made here which are not completely unproblematic:

• It is assumed that the numeric value associated with a particular outcome (that is, the
pay-off for each player) adequately reflects the worth of that outcome to all the players.

• Each player is concerned with maximizing his own outcome (this is sometimes known
as ‘rational behaviour’) without regard of the outcome for the other players.

We do not spend much time in questioning these assumptions, but you should be aware
of them. Game theory cannot say anything about situations where these don’t apply. In the
real world people do not always behave rationally.

To give a practical example, assume you are given a coin and, when observing it being
thrown, you notice that it shows heads about 75% of the time, and tails the remaining 25%.
When asked to bet on such a coin, a player’s chances are maximized by betting on heads
every single time. It turns out, however, that people typically bet on heads 75% of the time
only!

One has to make some kind of assumption on how people will behave in a given situation
in order to model it. In the absence of the above rationality assumption it might be possible
instead to describe ‘typical’ behaviour and use that (this is often done in economy) but we
do not pursue that idea here.

We make one further assumption for the sake of this course unit:

• Players are not allowed to pool their pay-off and cooperate in affecting the outcome.
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Game theory can model this kind of situation, but the resulting mathematics is consider-
ably more complex and we deem it beyond the scope of this course. In technical parlance we
only look at non-cooperative games here.

What has to be stressed is that the only available language to analyse games is that of
mathematics. Consequently there is a lot of mathematical notation in the notes and there are
various theorems, some of them with proofs. While I do not expect you to become so proficient
in this language that you can easily express your thoughts in it it is vital that you understand
the concepts and results given here. To help with this informal descriptions accompany each
mathematical definition, and the various results are also explained informally, and you will
have to be able to argue at this level. You should be aware that even informal statements are
fairly precise in their meaning, and that you have pay great attention to what you are saying
to ensure that you get it right. There are some subtleties involved and if you don’t appreciate
these you may lose marks in an exam. This level of understanding cannot be gained in a
short period of time and therefore it is vital that you engage with the material while it is
being taught.

In this part of the course we aim to give answers to the following questions.

• What is a game?

• How can we describe a game plan for a player?

• What does it mean to play a game well?

• How do we find good game plans?

• What are some of the situations that can be modelled using games?

Help making the notes better

I would appreciate the readers’ help in order to eliminate any remaining errors and to
improve the notes. If you spot something that seems wrong, or doubtful, or if you can
think of a better way of explaining something then please let me know by sending email to
A.Schalk@cs.man.ac.uk. I will keep a list of known errors (and their corrections) available
on the above webpage. Please note that while these notes are based on those for the old
course unit COMP30192 they have been substantially rewritten so I fear there are a number
of typos, and possibly worse errors.

I would like to thank David MacIntosh, Isaac Wilcox, Robert Isenberg, Roy Schestowitz,
Andrew Burgess, Xue Qing Huang, Cassie Wong, Florian Stürmer, Mark Daniel, Steve
Hughes, Kevin Patel, Mousa Shaikh-Soltan, and Ian Worthington for helping me improve
the course material.

Literature

I don’t know of any text book that presents all the material contained in these notes. Within
the text I give references regarding the sources for each chapter to allow you to explore the
area further by seeking those out.
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Chapter 1

Games and strategies

1.1 So what’s a game?

In every-day language, ‘game’ is quite a common word which seems to apply to a variety of
activities (a game of chess, badminton, solitaire, poker, quake), and if we consider the act of
‘playing’ as something that applies to a game, then we get an even more varied range (playing
the guitar, the lottery, the stock market). In this course unit we only consider some of these
games.

The game tree

In the introduction to these notes three requirements are given, which we repeat here.

• A number of agents interact with each other. These are known as the players.

• At the end of their interactions there is an outcome that can be described numerically—
each player receives a pay-off which may be negative. We assume that the pay-offs are
given as real numbers (in many cases these will be natural or at least rational numbers).

• There are clearly defined rules as to what actions each agent can take at which point in
time and once all such decisions have been made the outcome is uniquely determined.

While this may seem like a good specification it is not precise enough for our purposes
here. To study games we have to give a precise definition of what we are talking about. How
can we do that in a way that encapsulates the above requirements? The key to the general
idea is given in the third requirement: We know at any time which player can make a decision,
and what their options are at this stage. We can therefore think of these decision points as
governing the game. Figure 1.1 gives a graphical presentation of this idea.

Example 1.1. Noughts and crosses. Part of a game tree for noughts and crosses (also
known as tic-tac-toe) is given in Figure 1.1.

A bit more thought shows that we may think of a game satisfying the three requirements
above as a tree: The nodes of the tree correspond to the decision points in the game, and the
connections between these nodes indicate that there is a choice that takes the players to the
next decision point.

The root of the tree is the starting point of the game, when nothing has happened yet.
The connections represent what we consider the moves of the game, these are understood

to describe actions taken by the player. In the tree on page 7 the actions are given implicitly
by looking at the images representing the nodes, and often this is sufficient. These connections
are the edges of the game tree.

Trees are not allowed to contain circles, and so we can always draw a game tree with the
root on top, and then every node naturally can be drawn on a level corresponding to the
number of moves it takes to get there. The nodes that have no moves out of them (we call
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Figure 1.1: Part of a game tree for noughts and crosses

these the leaves of the tree) correspond to the various outcomes of the game. Strictly speaking
they are not decision points of the game since no further decisions are being made but this
poses no problem. These nodes are also known as the final nodes in the tree.

To fully describe a game we have to specify who the players are, for each decision point
who owns the decision it represents (the player ‘whose turn it is’), and for each leaf we have
to give the outcome it represents. In Figure 1.1 we have named the players as X and O, for
each decision point we have given the owner to the right and for each leaf we have specified
who wins, or if there is a draw.

However, to satisfy the second requirement above we need to turn this into a number for
each player, their pay-off. It is customary, but not the only possible choice, in a game like
noughts and crosses to assign 1 to the winner, −1 to the loser, and 0 to each in the case of
a draw. Usually the pay-off is written as a tuple where the first component gives the pay-off
for Player 1 and the second component that for Player 2, and so on.

Often the players are simply assigned numbers, and in all our formal decisions that is how
we refer to them. If there are only two players, 1 and 2, we use the convention that ‘he’ refers
to Player 1 while ‘she’ always means Player 2.

Note that every time the game is played the players collectively follow one path in the
game tree that leads from the root to a leaf. At each decision point the player whose turn it
is chooses one of the available options until no further options are available. We call such a
path a play of the game. Also note that every node uniquely determines the path that leads
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to it from the root. In other words, every node encodes the complete history of the game so
far. This has advantages and disadvantages, and we comment on these later in this chapter.
Further note that every node defines a subtree of the original tree, namely the one whose root
is that node. This gives rise to the notion of a subgame of the original game.

Here is another simple example.

Example 1.2. Chomp. Consider the following game. Two players have a bar of chocolate
with m× n squares. The square in the top left corner is known to be poisonous. The players
play in turn, where the rules are as follows: A player chooses one of the (remaining) squares
of chocolate. He then eats this together with all the pieces which are below and/or to the
right of the chosen one. In other words, he removes the entire rectangle of chocolate whose
top left corner is given by the piece he chose. (Obviously) the player who has to eat the
poisonous piece loses.

Figure 1.2 shows a game tree for (2 × 2)-chomp.

2 to move

1 to move

1 to move

2 to move

(−1,1)

(1,−1)

(−1,1)

(1,−1)(1,−1)

(−1,1)

(1,−1) (1,−1)

(−1,1)(−1,1)

Figure 1.2: A game tree for (2 × 2)-chomp

This is a good time to practise drawing your own game trees.

B Exercise 1. (a) Nim. This is a game between two players who have a (finite) number of
piles of matches in front of them. A valid move consists of choosing a pile and removing as
many matches from that as the player chooses as long as it is at least one. The player who
has to take the last match loses. (There is also a version where the player who takes the last
match wins.) Draw a game tree for nim with two piles of two matches each. This is known
as (2, 2)-nim. (If we had one pile of one match, two piles of two matches and one pile of three
matches, it would be (1, 2, 2, 3)-nim.)

(b) Draw a game tree for 2 × 3-chomp.

Question 1. (a) Could you (in principle, don’t mind the size) draw a game tree for Backgam-
mon, or Snakes-and-Ladders? If not, why not?

(b) Could you draw a game tree for paper-stone-scissors? If not, why not?

(c) Consider the following simple game between two players: Player 1 has a coin which he
hides under his hand, having first decided whether it should show head or tail. Player 2
guesses which of these has been chosen. If she guesses correctly, Player 1 pays her 1 quid,
otherwise she has to pay the same amount to him. Could you draw a game tree for this game?
If not why not?
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There are some features a game might have which we cannot express in the game tree as
we have thought of it so far. Hence the notion has to be expanded to cover such games.

• Chance. There might be situations when moves depend on chance, for example the
throwing of a die, or the drawing of a card. In that case, the control over which move
will be made does not entirely rest with the player whose turn it is at the time.

• Simultaneous moves. We take care of those through the same mechanism that we
use to solve the following problem.

• Imperfect information. The players may not know where exactly in the game tree
they are (although they have to be able to tell which moves are valid at any given time!).
This often occurs in card games (which also typically contain elements of chance), where
one player does not know what cards the other players hold, or when the game allows
for ‘hidden’ moves whose consequences are not immediately clear.

Handling chance

So how do we go about adding chance elements to our game? The accepted method for doing
so is to consider somebody called Nature who controls all the moves that involve an element
of chance. (But Nature is not assigned a pay-off at the end, and when it comes to looking at
players maximizing their pay-offs we exclude Nature.) In the game tree, all we do is to add
nodes

• where it is nobody’s turn and

• where the branches from that node are labelled with the probability of the corresponding
move occurring.

This does not just allow for the incorporation of chance devices, such as the throwing of
coins and the rolling of dice, but also for situations with an otherwise uncertain outcome. In
battle simulations, for example, it is often assumed that in certain situations (for example,
defender versus aggressor), we have some idea of what is going to happen based on statistics
(for example, in seven out of ten cases, defender wins). This is a somewhat crude way
of modelling such things since it does not take into account the particular circumstances
of a specific encounter (for example the personality and experience of those involved, the
influence of geographical features, the quality of the defender’s position (bunkers, suitable
terrain, supplies, or the like)), but it still allows us to make a reasonable prediction regarding
the outcome. A somewhat crude model is often better than none at all.

Example 1.3. Risk. In the board game Risk players have ‘armies’ which can defend or
conquer territory on a map (which forms the board). Assume a defender has one army left
in some country. An attacker can choose (by placing his armies) how many he or she might
want to attack with. We limit the choices here to attacking with one or two armies. Both
players then roll as many dice as they have armies in the bout (here, one or two). In the case
where two dice are rolled against one, only the higher of the results of the throw of the two
dice counts. If the defender’s throw is at least as high as the attacker’s then defender wins.
In other words, for attacker to win his highest throw has to be higher than defender’s. To
keep the size of the game tree reasonable, we assume that instead of using ordinary dice we
use ones which produce the numbers 1, 2 and 3 only, with equal probability.

The outcome of such a bout is shown in Figure 1.3. To keep the clutter down we only put
the winner for each outcome. We say that the defender D wins if he successfully defends his
territory, and that the attacker A wins if he invades the territory. The winner is marked for
each final node of Figure 1.3.

If you can’t see where the probabilities in Figure 1.3 come from, or if you feel a bit rusty
regarding probabilities, then do the following exercise.
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Figure 1.3: An excerpt from a game of Risk

B Exercise 2. (a) Draw a game tree where a player throws two dice one after the other.
Assume that these dice show 1, 2, or 3 with equal probability. Use it to calculate the prob-
ability for each possible outcome and use them to explain the subtree of Figure 1.3 where A
rolls two dice. You may want to read on a bit if you are unsure how to deal with probabilities.

(b) Draw a tree for the game where two players get one card each out of a deck of three
(consisting, say, of J , Q and K). Count the number of different deals, and then the number
where Player 1 has the higher card. If Player 2 wins in the cases where she has the Q, or
where she has the K and Player 1 has the J , what is the probability that she wins the game?

So how much ‘better’ is it for the attacker to use two armies? For this we want to calculate
the probability that A wins in either case. How do we do that?

From Figure 1.3 we can see that if he attacks with one army, there are 3 final nodes (out
of 9) (corresponding to one play each) where A wins. We have to add up those probabilities.

To calculate the probabilities for a final node, we have to multiply all probabilities men-
tioned along the path from the root that leads to it.

So the probability that D throws 1 while A throws 2 is 1/3 × 1/3 = 1/9. Similarly for
the other two nodes where A wins (namely where A throws 3 while D throws 1 or 2), so the
probability that A wins if he attacks with one army is

1/9 + 1/9 + 1/9 = 3/9 = 1/3 ≈ 0.33.

Secondly we consider the case where A attacks with two armies. Now we have eight cases
(out of 18) where A wins. The probabilities we have to add up are (from left to right) as
follows.

1/27 + 2/27 + 1/27 + 2/27 + 2/27 + 1/27 + 2/27 + 2/27 = 13/27 ≈ 0.48.

The principles regarding calculating probabilities for complex outcomes are important, so
we repeat them in more general terms. To calculate the probability of a particular result do
the following:

• Determine all the leaves in the game tree that are part of the desired result.

• For each of these leaves calculate its probability by multiplying all the probabilities
along the unique path that connects it with the root.

• Add up all the probabilities from the previous step.
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Handling imperfect information

Card games in particular often involve chance as well as imperfect information, because no
player knows the cards the other players hold. This information has to be built into the game
tree.

Example 1.4. We go back to the game described in Question 1 (c). Player 1 makes a move
that is hidden. The game tree so far looks like this.

H T

However, Player 2 does not know which of the two nodes on the bottom level they are
in. She has to decide which move to make despite of this. This is important information
regarding the rules of the game and we have to include it in the game tree. We do this by
including the nodes she may be confused about in the same ‘bubble’. This indicates that
Player 2 has to choose between the actions H and T without knowing which of those two
nodes she is in.

H T

The full game tree then looks as follows.

H T

H T H T

1−1 1 −1

We refer to nodes of the tree in the same bubble as belonging to the same information set.
The player whose turn it is at such a point has to make a decision regarding which action to
take without knowing which of the nodes in that set the game is in at present. To draw a
game tree all information sets have to be given. If both players lack knowledge about some of
the nodes the tree can become quite complicated and then drawing all the required bubbles
can be very messy. In such cases we instead connect all the nodes in the same information set
with a dotted line instead. Note that the information set tells us about the knowledge of the
player whose turn it is. Some people find it easier to draw information sets for all the players
at all levels of the game tree. In that case it is best to use different colours to distinguish
between the players.

Example 1.5. Simplified poker. There are two players, each of whom has to pay one
pound to enter a game (the ante). They then are dealt a hand of one card each from a deck
containing three cards, labelled J , Q and K. The players then have the choice between either
betting one pound or passing. The game ends when

• either a player passes after the other has bet, in which case the better takes the money
on the table (the pot),
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• or there are two successive passes or bets, in which case the player with the higher card
(K beats Q beats J) wins the pot.

The game tree for this game is given on page 13.

B Exercise 3. Alice and Bob play a different form of simplified poker. There are three cards,
J , Q and K, which are ranked as in the above example. Each player puts an ante of one
pound into the pot, and Alice is then dealt a card face down. She looks at it and announces
‘high’ or ‘low’. To go ‘high’ costs her 2 pounds paid into the pot, to go ‘low’ just 1. Next
Bob is dealt one of the remaining cards face down. He looks at it and then has the option to
‘fold’ or ‘see’. If he folds the pot goes to Alice. If he wants to see he first has to match Alice’s
bet. If Alice bet ‘high’ the pot goes to the holder of the higher, if she bet ‘low’ it goes to the
holder of the lower card. Draw the game tree for this game, including the information sets.

The concept of some information being ‘hidden’ can also be used to cope with games
where two players move simultaneously.

Example 1.6. Paper-stone-scissors. This is a two player game. At a command, both
players hold out their right hand in one of three ways, indicating whether they have chosen
paper, stone, or scissors. Paper beats stone which beats scissors which beats paper. To draw
a game tree for this game we let Player 1 move first, but demand that Player 2 be unable to
tell which choice Player 1 has made. Figure 1.4 gives the corresponding game tree, where P
is for choice ‘paper’, R is for choice ‘stone’ (think ‘rock’) and S is for choice ‘scissors’. The
result is marked as 1 if Player 1 wins, 2 if Player 2 is successful and D for a draw.

P R S

P R S

P PR RS S

Player 1

Player 2

Winner(1,−1)(−1,1)(−1,1)(1,−1)(0,0) (−1,1)(1,−1)(0,0) (0,0)

Figure 1.4: Paper-stone-scissors

Note that for nodes to be members of the same information set it must be the case that the
actions that can be taken from each of those nodes are precisely the same. This is necessary
so that the player whose turn it is at that point cannot find out whether or not a node really
belongs to the information set by trying to play a move which is possible only for some of the
nodes in the set.
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A game formally

We are finally ready to formally define a game.

Definition 1. A game is given by

• a finite set of players,

• a tree,

• for each node of the tree, a player who owns that node (the player whose turn it is at
that node—this might be the extra player Nature),

• for each edge of the tree an action that labels it (actions taken by Nature must include
the probability with which they occur),

• for each player the corresponding information sets; these are sets of decision nodes for
that player such that for every two node in some information set for Player i it is the
case that

– the actions taken by Player i to reach the nodes are identical and

– the actions labelling the edges out of the nodes are identical.

• for each leaf node and each player a pay-off.

Games defined like this are often called games in extensive form in the literature. That
implies that there is another form of describing games. The normal form of a game is defined
later in this chapter. Much of the original development of the theory of games has been
restricted to games in normal form, but from the point of view of implementing games (and
from the point of view of learning in games) the extensive form is by far the more important
one.

There are a few groups of games that are important enough to have their own names, and
we introduce those here.

Definition 2. (a) A game is a 2-player game if there are two players (not counting Na-
ture).

(b) A game is of perfect information if all information sets in the game tree have size
one—in other words, all players know at all times which node they are in. Games that do not
satisfy this condition are of imperfect information.

(c) A game is zero-sum if at every leaf of the game tree the sum of the pay-off for all the
players is 0.

(d) A game is without chance if no node in the game tree is controlled by Nature, otherwise
it is a game with chance.

Below we list all the properties from above that the given game has.

Example 1.7. (a) Poker is a zero-sum1 game of imperfect information with chance.

(b) Chess, go, draughts, reversi (also known as othello) are 2-person zero-sum games of perfect
information without chance.

(c) Backgammon is a 2-person zero-sum game of perfect information with chance.

(d) Rummy (with a lot of other card games) is a game of imperfect information with chance.

(e) Risk is a game of perfect information with chance, as is snakes-and-ladders.

1Unless the players have to pay to join, or a casino takes a cut.
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(f) Tossing a coin can be described as a two-person zero-sum game of perfect information
with chance.

(g) Paper-stone-scissors is a 2-person zero-sum game without chance.

Question 2. Which other games do you know? Can you categorize them?

When talking about 2-person zero-sum games it is customary to only give pay-offs for
Player 1 since the ones for Player 2 can be derived from those. We do so in our game trees
from now on.

It turns out that game theoretic methods are most useful for 2-person zero-sum games,
and those are also the games for which computing good game plans is easiest. We see how
and why in subsequent chapters.

Consequences of this definition

It is worth pointing out that a game tree distinguishes between positions that might be
considered the same: There are several ways of getting to the board position pictured in the
third line of Figure 1.1. Player X might start with a move into the centre, or a corner, and
similarly for Player O. Hence this position comes up several times in the game tree. This may
seem inefficient since it seems to blow up the game tree unnecessarily, but it is the accepted
way of analysing a game.

If we wanted to identify those nodes that correspond to ‘the same position’, say for a
board game, we would get a ‘game graph’ rather than a game tree. This would make it
more difficult to keep track of other things. We might, for example want to represent a chess
position by the current position of all the pieces on the board. Then two positions which
‘look’ the same to an observer would be the same. However, even in chess, that information
is not sufficient. For example, we would still have to keep track of whose turn it is, and we
would have to know which of the two sides is still allowed to castle. Hence at least in chess
some information (beyond a picture of the board) is required to determine the valid moves in
a given position.

More importantly, by using this game graph we would make the implicit assumption that
any player would always play in the same way from any of the nodes corresponding to ‘the
same’ position. This is a restrictive assumption since the play that got us to that position
might give us some idea of how our opponents operate, and may lead us to wanting to make
different choices.

With the game tree, every node of the tree comes with the entire history of moves that led
to it. As a consequence, when following moves from the start node (root), possibilities may
divide but they can never reunite. In that sense, the game tree makes the maximal number
of distinctions between positions. This allows us to consider a larger number of strategies for
each player. Tree traversal is easily implemented, which helps.

However, all this means that our notion of strategy assumes that a player can remember
the entire play so far, and one might argue that this is not always warranted. We see in
subsequent chapters how one can cut down the number of strategies, in particular in games
which are repeated a number of time.

There is another issue with looking at games in this way: How do we find a pay-off value
for games that do not naturally come with numbers describing the outcomes? For example
in the situation regarding the kitchen in a shared student flat, how do we assign numbers
to the effect of having to live with a dirty one? How does that compare with the value of
not having to do any cleaning? This is a very complex subject, but for the purposes of this
course we assume that the choice has been made already. If one wants to use game theory for
example to manage risk it is extremely important, however, that one gets these values right
(for example in a ‘game’ where a player risks his life the pay-off where they lose it must be
an enormously high negative number when compared to the other pay-offs, or the analysis
will not give a result that matches the true evaluation of one’s decisions).
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But even if there are numbers readily at hand, they may not describe the value of some-
thing to the individual: Buying a lottery ticket is something that nobody should do given
that the expected pay-off is negative. Yet people do it—presumably because the thought that
they have a chance of winning is worth more to them than the risk of losing their stake.

1.2 Strategies

If we want to talk about what it takes to ‘play a game well’ we need a formal notion of a game
plan. We can then compare game plans to each other and come up with criteria for when one
is more desirable than another, and more generally which game plan one might want to go
for.

Note that a player’s actions in a game are uniquely determined if for each node of the
game tree they have made a decision about which action to take if play reaches that node.

Question 3. What can you say about the number of game plans for a player if you know
how many decision points he has?

Definition 3. A fully specified strategy for Player i in a game is given by choosing

for each of i’s nodes an action allowed by the game tree such that

for all nodes in the same information set the same action is chosen.

Note that when people talk about strategies in every-day life they usually have something
much vaguer in mind—maybe just a fairly general plan. Whenever we talk about a strategy
in this course unit we have a fully specified game plan in mind.

Figure 1.5 gives an example for such a fully specified strategy in (2 × 2)-chomp. The
dashed lines indicate the full game tree, while the ones drawn without interruption show the
choice specified by this strategy for each of Player 1’s nodes.

2 to move

1 to move

1 to move

2 to move

 −1

1 1

 −1 −1

1

−1

1

−1

1

Figure 1.5: A fully specified strategy for (2 × 2)-chomp

Question 4. How many fully specified strategies for Player 1 are there in (2 × 2)-chomp?
How about Player 2?

We get the number of fully specified strategies for a player by doing the following:

• for each decision point of the player, count the number of choices and then

• multiply all the numbers gained in the previous step.

B Exercise 4. (a) Describe all fully specified strategies for both players in (2 × 2)-chomp.

(b) Do the same for (2, 2)-nim.
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Question 5. Can you tell how many possible outcomes there are if Player 1 follows this
strategy?

If we look more closely at fully specified strategies we realize that they actually over-specify
a player’s action. Consider the following example and compare it with Figure 1.5

2 to move

1 to move

1 to move

2 to move

 −1

1 1

 −1 −1

1

−1

1

−1

1

Figure 1.6: Another fully specified strategy for (2 × 2)-chomp

When playing, in either one of these strategies Player 1’s first choice takes the game down
the second branch. Hence any choices that are specified when following the fourth branch
from the root are never carried out.

Put differently, Player 1 behaves in precisely the same way, no matter which of these two
game plans he follows. By describing all the fully specified strategies for a player we are
describing more game plans than anybody can distinguish between! This is the reason why
we define another notion of game plan below. However, we see in subsequent sections why
the notion of a fully-specified strategy is still useful. While it does create more game plans
than one might want it is also a less complicated one than the one we arrive at below.

Figure 1.7 gives all the game plans for Player 1 in (2× 2)-chomp which do not overspecify
his choices. The game tree is now given in a stylized form only, but it should be clear what
is described. The solid lines give the decisions of Player 1 in the obvious way. We have also
drawn in a solid line those moves for Player 2 that might still be possible if Player 1 plays in
accordance with the given game plan.

Note that there are seven strategies for Player 1 in this game while there are sixteen fully
specified ones.

Closer inspection of the example is that in this way we are describing a game plan that is
naturally a subtree of the game tree with certain properties: Whenever a position is reachable
based on the choices made ‘so far’

• if it is the chosen player’s turn, precisely one of the available moves is chosen;

• if it is not the chosen player’s turn, all available moves are chosen.

If we follow these rules we can generate a strategy, making sure that we only make a
decision when we have to (that is, we do not worry about unreachable positions). We can
now define formally what a strategy is. Note that we demand that a choice be made for every
position where it is the chosen player’s turn; we do not allow bringing the game to a halt by
refusing to continue. If we want to give the player the option of resigning we should make
that an explicit move in the game tree.

The following is a recursive definition.

Definition 4. A (pure) strategy for Player i is given by a subtree of the game tree with
the following properties:

• The root of the game tree belongs to the strategy;
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Figure 1.7: All the strategies in (2 × 2)-chomp for Player 1

• whenever it is Player i’s turn at a node that belongs to the subtree,

– exactly one of the available moves belongs to the subtree and

– for all nodes in the same information set for Player i the same action is chosen;

• whenever it is not Player i’s turn at a node that belongs to the subtree, all of the available
moves belong to the subtree.

Note that as a consequence of using trees rather than graphs to give the rules of the game,
we are allowing more strategies: We are allowed to take into account all the moves made so
far, not merely the position reached on the board, say. This more generous notion can be
justified by pointing out that the history that led to the current position might have given us
an insight into the other players’ ability in playing the game in question.

B Exercise 5. (a) How many strategies are there for Player 2 in 2 × 2-chomp?

(b) How many strategies for simplified poker (see Exercise 3) are there for both players?

So what happens if we have a game which includes elements of chance? Actually, the
definition we have just given still works. We merely have to treat Nature as just another
player.

Let’s have a closer look at a game of incomplete information, Example 1.6, paper-stone-
scissors. What the definition says is that there are only three strategies for Player 2—he (or
she) is not allowed to try to take into account something he does not know, namely the first
move made by Player 1. All valid strategies for Player 2 are given in Figure 1.8.

B Exercise 6. (a) Give all the strategies for (2, 2)-nim (for both players). For this it is
useful if your game tree takes symmetry into account to make it smaller!

(b) Give three different strategies for simplified poker (confer Exercise 3).

Note that given a fully specified strategy we can produce a strategy for the same player,
say i, that shows precisely the same behaviour by doing the following: Follow the recursive
definition. Whenever we reach a node where it is player i’s turn, follow the given game plan.
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0 1 0 1 01−1 −1 −1

0 1 0 1 01−1 −1 −1

0 1 0 1 01−1 −1 −1

P R S

P P PR S R RS S

P R S

P P PR S R RS S

P R S

P P PR S R RS S

Figure 1.8: All the strategies for Player 2 in paper-stone-scissors

What this does is to remove the decision made for all nodes that cannot be reached in any
play in which Player i follows the given fully specified strategy. Hence there is a surjective
function from the set of all fully specified strategies for Player i to that of all strategies for
the same player.

Generating all strategies

Generating all the strategies for some player, say i, can be performed recursively as follows.
When searching for the strategies for Player i in a game tree t, we assume that we already
know the strategies of the sub-games t1, . . . , tn, which follow after the first move has been
played (see Figure 1.9). At the same time we count the number of strategies Ni(t) for
Player i. However, this only works for games of perfection information! (It has to be refined
and becomes rather more complex for games of imperfect information, but the same idea still
works.) Note that counting strategies is rather more difficult than counting fully specified
ones.

t1 t2 tn

m1

m2

mn

t

Figure 1.9: Counting strategies and immediate sub-games

• A game with a game tree of height zero has one strategy for each player (‘do nothing’).
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• To find all the strategies for Player i when the first move is Player i’s: Player i has to
choose one of the available first moves, m1, m2, . . .mn. Once that move, say mj , has
been played the game proceeds as per the game tree tj . Hence every first move mj ,
combined with some possible strategy for the corresponding sub-game tj , gives a valid
strategy for the game t. Therefore in this situation,

Ni(t) = Ni(t1) + Ni(t2) + · · · + Ni(tn).

• To find all the strategies for Player i when the first move is not Player i’s, Player i needs
a reply for all the possible first moves in the game (which are somebody else’s choice).
So a strategy for the game t for Player i consists of picking a strategy for this player in
each of the games t1, t2, . . . , tn. All the combinations arising in this way are counted
by

Ni(t) = Ni(t1) × Ni(t2) × · · · × Ni(tn).

Think about how the above would have to be changed for games of imperfect information.

1.3 The normal form of a game

One way of thinking about playing a game is the following: Let each player choose one of
their available strategies at the start. Let each of them play according to that strategy. Now
playing becomes a purely mechanical act: All a player has to do is to look up what to do
whenever it is his turn. Arguably, that makes playing a game a fairly boring activity, but we
see below why this sometimes is a useful point of view. Indeed, it leads to another way of
describing a game.

A simple example is Paper-Scissors-Stone. Each player has three strategies, which may
be conveniently labelled by P , R and S

If we list the strategies for Player 1 in a column, and those for Player 2 in a row we can
fill in the result of playing a strategy for the one against a strategy for the other in the form
of a table.

The players get the following pay-offs:

Player 1

2
P R S

P 0 1 −1
1 R −1 0 1

S 1 −1 0

Player 2

2
P R S

P 0 −1 1
1 R 1 0 −1

S −1 1 0

In cases where there are only two players the pay-offs are often given in a combined table
whose entries are pairs with the first component giving the pay-off for Player 1 and the second
that for Player 2. In the above example that would look as follows.

2
P R S

P (0, 0) (1,−1) (−1, 1)
1 R (−1, 1) (0, 0) (1,−1)

S (1,−1) (−1, 1) (0, 0)

When we don’t care about the name of the strategies we can give that table without
labelling the rows and columns, and that is the standard presentation:

(0, 0) (1,−1) (−1, 1)
(−1, 1) (0, 0) (1,−1)
(1,−1) (−1, 1) (0, 0)
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Determining the outcome when playing strategies against each other is done as follows.
If no elements of chance are involved then one simply follow the unique play (that is, path
through the game tree) that the strategies under consideration (one for each player) deter-
mine collectively until a final position has been reached. Graphically one can think of it as
overlaying all the subtrees defined by the various strategies—there is precisely one path where
they all overlap. At that position the pay-off for each player can be read off and put into a
table as above.

B Exercise 7. (a) Give the normal form for (2, 2)-nim.

(b) Do the same for the game from Question 1 (c) whose game tree is constructed in Exam-
ple 1.4.

We can also calculate the normal form of a game by using the fully specified strategies
by both players (of which there are typically more). The resulting table has duplicate rows
and/or columns: Every fully specified strategy generates the same row/column as the strategy
it corresponds to.

B Exercise 8. Calculate the normal forms based on fully specified strategies for both games
from the previous exercise (cf. Exercise 4).

Hence if our purpose is to calculate the normal form of a game it is sufficient to generate
the strategies; doing this with the fully specified ones makes the pay-off tables larger but it
does not add any information.

If elements of chance are involved then the subtrees corresponding to the various strategies
may have more than one path in common. What one has to do then is the following. To
calculate the expected pay-off for Player i in that situation:

• For each final node that is reachable in this way

– calculate the probability of reaching that node by multiplying all the probabilities
that appear along the path to that node and

– multiply it with the pay-off for Player i at that node.

– Now add up all the numbers calculated in the previous step.

Example 1.8. Consider the following game between two players. Player 1 rolls a a three-
faced die (compare Example 1.3). If he throws 1 he pays two units to Player 2. If he throws
2 or 3, Player 2 has a choice. She can either choose to pay one unit to Player 1 (she stops the
game) or she can throw the die. If she repeats Player 1’s throw, he has to pay her two units.
Otherwise she pays him one unit. The game tree is given in Figure 1.10, with the pay-off
being given for Player 1.

Player 1 has only one strategy (he never gets a choice) whereas Player 2 has four strategies
(she can choose to throw the die or not, and is allowed to make that dependent on Player 1’s
throw). We can encode her strategies by saying what she does if Player 1 throws 2, and what
she does if Player 1 throws 3, stop (S) or throw the die (T ). So S|T means that she stops
if he throws 2, but throws if he throws 3. The pay-off table for Player 1 has the following
shape:

2
S|S S|T T |S T |T

1

What are the expected pay-offs for the outcome of these strategies? We first consider the
case S|S. We calculate the expected pay-off as follows: For each of the possible outcomes of
playing this strategy (combined with Player 1’s only strategy), take the probability that it
occurs and multiply that with the pay-off, then add all these up. Hence we get

(1/3 ×−2) + (1/3 × 1) + (1/3 × 1) = 0.
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1 2 3

1 throws die

2 to move

1 2 3 1 2 3

−2

−2 −21 1 1 1
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1
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1
3

1
3

1
3

1
3

1
3

1
3 1

3

Figure 1.10: A game of dice

Now for the more interesting case of S|T :

(1/3 ×−2) + (1/3 × 1) + (1/9 × 1) + (1/9 × 1) + (1/9 ×−2) = −3/9 = −1/3.

The case of T |S is symmetric and therefore yields the same pay-off. Finally for the case
T |T .

(1/3×−2) + (1/9× 1) + (1/9× 1) + (1/9×−2) + (1/9× 1) + (1/9× 1) + (1/9×−2) = −2/3.

The complete pay-off table for Player 1 looks like this:

2
S|S S|T T |S T |T

1 0 −1/3 −1/3 −2/3

Question 6. Which player would you rather be in this game?

B Exercise 9. (a) Take the game tree where one player throws two dice in succession (see
Exercise 2). Assume that the recorded outcome this time is the sum of the two thrown dice.
For all numbers from 2 to 6, calculate how likely they are to occur. Then calculate the
expected value of the sum.

(b) Take the game from Example 1.8, but change the pay-off if Player 2 decides to throw a
die. If Player 1 and Player 2’s throws add up to an odd number then Player 1 pays Player 2
one unit, otherwise she pays him one unit. Produce the matrix version of this game.

So once each player has chosen a strategy, we can read off the result from these tables, or
matrices, without bothering with going through the motion of playing the actual game. We
have therefore given an alternative description of the original game—one which makes playing
it rather boring. From the game-theoretic point of view, however it is totally irrelevant how
exactly the result is reached, just what it is. If a game is given via its strategies and a pay-off
table for each player we say that the game is in normal form. In the literature this is also
sometimes referred to as the matrix form of the strategic form of the game. In the next
section we discuss which form of a game is more suitable for which circumstances.

In the important case of a 2-person zero-sum game it is sufficient to give the pay-off table
for Player 1 only: We can read off that for Player 2 by negating every entry in that table.
(Compare the two tables for paper-stone-scissors.) Hence 2-person zero-sum games in normal
form are described by one pay-off table, just as it is customary to only give the pay-off for
Player 1 in the corresponding game tree.
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If there are several players then referring to the pay-off tables can be tedious. If we have
l players we assume that for each player, say i, there is a pay-off function pi such that

pi(s1, s2, . . . , sl)

gives the pay-off for Player i if

• Player 1 plays strategy s1,

• Player 2 plays strategy s2,

. . .

• Player l plays strategy sl.

Formally speaking the normal form of a game is given by the following ingredients.

Definition 5. A game in normal form is given by the following:

• A (finite) list of players, 1, . . . , l;

• for each player a list of valid strategies for the player, numbered 1, . . . , ni for Player i;

• for each player i a pay-off function pi which maps the space of consisting of all combi-
nation of strategies the players may play

∏

1≤j≤l

{1, . . . , nj}

to the real numbers. In other words

pj :
∏

1≤j≤l

{1, . . . , nj} - R.

If there are only two players we typically write the pay-off function in the form of a table
as in the example of paper-stone-scissors above. If the game is 2-person zero-sum we usually
only give a table for Player 1.

This formal definition looks scarier than it is. Here is a concrete example with three
players.

Example 1.9. Consider the following three person game. Each player pays an ante of one.
On a signal, all the players hold up one or two fingers. If the number of fingers held up is
divisible by 3, Player 3 gets the pot. If the remainder when dividing is 1, Player 1 gets it,
otherwise Player 2 is the lucky one.

Question 7. Do you think that this game is likely to be ‘fair’, in the sense of giving all the
players an even chance to win? Which player would you prefer to be?

Each player has two strategies: Holding up one finger or holding up two fingers. We
number them as 1 and 2 (in that order). Hence the space of all strategies is

∏

1≤j≤3

{1, 2} = {1, 2} × {1, 2} × {1, 2}

= {(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2)}.

It has 2× 2× 2 = 8 elements. The three pay-off functions are given as follows (this takes into
account that the players have all paid the ante, that is they either lose one unit or they get
3, one of which they put in themselves, making for a win of 2):
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p1 p2 p3

(1, 1, 1) −1 −1 2
(1, 1, 2) 2 −1 −1
(1, 2, 1) 2 −1 −1
(1, 2, 2) −1 2 −1
(2, 1, 1) 2 −1 −1
(2, 1, 2) −1 2 −1
(2, 2, 1) −1 2 −1
(2, 2, 2) −1 −1 2

Assume that Player 1 chooses to show 1 finger, that is his strategy 1, Player 2 and Player 3
show 2 fingers, that is their strategy 2. Then the pay-off for Player 2 is p2(1, 2, 2) = 2. You
will notice that there are three cases in which Player 1 wins, and also three cases in which
Player 2 wins, but only two in which Player 3 is fortunate. Hence Player 3 seems to be at a
disadvantage.

B Exercise 10. (a) Consider the following game for three players. Each player places a bet
on the outcome (1 or 2) of a throw of a die without knowing what the others are betting.
Then the die is thrown. If the number showing is odd we record the result as 1, otherwise
as 2. A player gets a pay-off of ten points if he is the only one to bet on the correct result, if
two of them do so they each get four points, and if all three are successful they get two points
each. Describe the normal form of this game.

(b) Consider the following game for three players. Player 1 announces whether he chooses
left (L) or right (R), then Player 2 does the same, and lastly Player 3. The pay-off for each
player is calculated as follows: If all players make the same choice, they each get 1 point if
that choice is L, and they each lose 1 point if that choice is R. If two choose R while one
chooses L then the two players choosing R obtain 2 points each while the sole supporter of L
loses 2 points, and if two choose L while only one chooses R then the person choosing R gets
3 points while the other two get nothing, but don’t have to pay anything either. How many
strategies are there for each player in the game?

1.4 Extensive or normal form?

Every game (of the kind we consider) can be given in either extensive or normal form, at least
in principle. So which form should one study?

The answer is ‘it depends’, as is so often the case with interesting questions. Much of the
mathematical work on games has been for games in normal form—for a mathematician the
idea that the two are equivalent is sufficient reason to concentrate on the one more amenable
to the available methods. However, there has recently been much interest in computational
properties of games, and for various reasons that has led to extensive forms of games being
studied in more detail.

Keeping it small

It is always worth trying to keep the description of a game as small as possible—that makes it
easier to analyse. With careful consideration it is sometimes possible to leave out possibilities
that are equivalent to others.

At first sight, the game tree in Example 1.1 has fewer opening moves than it should have.
There are nine opening moves: X might move into the middle square, or he might move into
one of the four corners, or into one of the four remaining fields. But for the purposes of the
game it does not make any difference which corner is chosen, so we replace those four moves
by just one, and similar for the remaining four moves. The reason for this is that the game
board has a lot of symmetries (taking its mirror image or rotating it by 90 degrees gives us
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another game board, and every play on a board, say, rotated by 90 degrees corresponds to
one on the original board).

This allows to cut down on the number of options we have to consider. For the full game
tree, there is an obvious mapping of plays into our reduced game tree. A similar situation
arises for (2, 2)-nim: We begin with two piles of two matches each, and it does not matter
whether the first player takes matches from the first pile or the second pile. We can cut the
size of the game tree in half if we only consider one situation. Obviously it is vital when
drawing a reduced game tree to ensure that all options are captured in some way, but it does
pay off to keep things small.

If a game is in normal form then there is no point in keeping duplicate rows or columns,
so we usually remove those.

Normal form

The advantage of using the normal form is that the decisions have been stratified: Each player
has to pick a strategy, and that’s all the choice he has to make. The complexity of the game
tree has been subsumed in the number of available strategies. The pay-offs are very easy to
compute once the strategies have been chosen—they just have to be looked up in a table.
Working out which strategies to choose under which circumstances is a problem that has been
long studied, and it is this form for which we currently have the most information.

However, there are a number of disadvantages that come with choosing this approach:

• Size. Computing the normal form of a game is not always feasible.

• Modelling. If it is our aim to model behaviour (and learning of behaviour) does it really
make sense to start with the normal form? This is not how people play games, nor how
they learn about them.

So far we have not worried about size at all, so we begin with some basic considerations.

Question 8. How does the number of positions grow with the height of the game tree?

If some game tree has at least two choices at each decision point2 then the number of
positions of a tree of height m is at least 2m+1 − 1. In other words the number of positions is
exponential in the height of the game tree. To put it differently, with the height the overall
size of a tree grows very quickly.

As a result even constructing the full game tree is not feasible for all games. In fact,
games played by people often have fairly compact rules (see for example chess, draughts, go),
whereas the full game tree requires much space to be represented.

For the game of chess, for example, there are 20 opening moves for White (the eight
pawns may each move one or two fields, and the knights have two possible moves each), and
as many for Black’s first move. Hence on the second level of the game tree we already have
20× 20 = 400 positions (note how the possibilities are multiplied by each other). This is why
most game rules are specified in a way so as to allow the players to derive the valid moves in
any given position. In this sense the game tree is a theoretic device which allows us to reason
about a game, but which may not be of much use when playing the game.

Question 9. How many plays are there for noughts and crosses? If you can’t give the precise
number, can you give an upper bound?

But even for a game where we could hold the whole game tree in memory calculating all
the strategies may still be a problem.

Question 10. How does the number of strategies (added up over all players) grow with the
size of the game tree?

2It would be sufficient for that to be the case at most decision points.
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Estimating the number of strategies is more difficult than doing so for the positions in
a game tree, because their number depends on how many decision points there are for each
player. In the extreme case where all the decisions are made by the same player then the
number of strategies in a game tree of height m is the same as the number of final positions,
that is 2m. But this is not very realistic, and if the decision points are distributed evenly then
the number grows much more quickly.

As an example here is a table counting the number of positions where we assume that

• the game tree is a complete binary tree, that is, at every decision point there are precisely
two choices and

• there are two players who move strictly alternating, starting with Player 1.

height no pos. strats for P1 strats for P2 all strats

0 1 1 1 2
1 3 2 1 3
2 7 2 4 6
3 15 8 4 12
4 31 8 64 72
5 63 128 64 192
6 127 128 16384 16512
7 255 32768 16384 49152
8 511 32768 1073741824 1073774592

S Exercise 11. (a) Take a complete binary tree of height 3. How many decision points
does it have? Try different ways of assigning those to two players and count the number of
strategies for each.

(b) In the table above, how can one calculate the number of strategies for each player from
the previous entries?

Because of the exponential growth, generating all strategies is expensive. With a large
game tree there are also problems with storing strategies efficiently—they would take up a
good deal of space if stored as subtrees of the game tree. In the chapter on game-playing
programs we study the issue of finding ‘good’ strategies without having to list all all of them.

We see from these considerations that calculating the normal form of a game is not feasible
for many interesting games. Those certainly have to be studied in another way. Usually the
extensive form plays a role in that.

Extensive form

In order to study a game in extensive form we do not have to have the entire game tree in
memory: It is sufficient if we can create it as we need it. Hence we can mimic the natural
procedure of giving the rules of a game by specifying what moves are legal in any position,
and then dynamically create more of the game tree as we require it.

In addition, for some games this form is much more compact than any other: If we repeat
a simple game over and over (examples of this are often studied when using games to model
behaviour) then describing the game is very easy; we describe the simple game and a way of
determining how often it is repeated. The number of strategies for each player for the full
game can easily be enormous!

As well as making it feasible to cope with large games computationally using the extensive
forms also has the advantage that it is closer to actually playing a game, which is useful when
it comes to modelling behaviours.

The main disadvantage of using this form is that reasoning about it can be very cumber-
some. Its complex structure makes that inevitable. Sometimes it is possible to get proofs
by a simple induction on the height of the game tree, and an example of this appears in the
next section. We encounter the minimax and the alpha-beta pruning algorithm for trees in
Chapter 3, but beyond that most tasks are quite difficult.
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Which form?

Which form of a game one should use depends on the size and nature of the game, and on
what one wishes to do. In these notes we develop the two theories side by side as far as
possible, concentrating on only one of them where that is inevitable.

Infinity

Many mathematical results we study here only hold for finite games, that is games with a
finite number of players where the game tree consists of a finite number of positions.

There are very few cases where an infinite number of players is ever considered; this usually
occurs in evolutionary games for strictly theoretical purposes—clearly any implementation has
to be satisfied with only finitely many of them.

Game trees can be infinite in two different ways:

• There is at least one play that can be continued at any stage.

• There is at least one decision point where a player has an infinite number of choices.

Most games are designed to prevent the first case: The rule for chess which states that
a player can claim a draw if a position is repeated three times is to ensure that the game
does not continue forever, as are the rules that the game finishes in a draw if neither side
can possibly force a checkmate. Games that may continue forever are rarely studied. The
only exception I am aware of are of a theoretical nature when looking at games that may be
repeated either an infinite or an indefinite number of times. These are sometimes used as
theoretical devices when studying games that model behaviour. All the results in Chapter 2
assume that the game tree has finite height, that is there is no path of infinite length in the
game tree.

Game theory has something to say about games where players may have an infinite number
of choices in some decision points. However the mathematical analysis of these situations often
requires differential equations, and most computer science students are not familiar with these.
Hence we do not have much to say about this situation in these notes. You will encounter
Stackelberg games in the second semester—they are games with infinitely many choices for
the players which are simple enough to be analysed.

1.5 Simple two person games

We can state and prove a first result.

Definition 6. In a 2-person zero-sum game a strategy for a player

• is winning if, when following that strategy, the player always gets a pay-off greater
than 0 (no matter what the other player does);

• ensures a draw if, when following that strategy, the player always receives a pay-off
greater than or equal to 0 (no matter what the other player does).

Because in a 2-person zero-sum game the pay-offs for both players have to add up to 0
in all situations the above definition agrees with our usual notion of ‘winning’, and it makes
sense to declare such a game a draw if both players receive a pay-off of 0.

Theorem 1.10. Consider a 2-person zero-sum game with of perfect information and without
chance such that every play ends after a finite number of moves. Then one of the following
is the case:

(i) Player 1 has a winning strategy;

(ii) Player 2 has a winning strategy;

(iii) Player 1 and 2 both have strategies which ensure a draw.
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Proof. The proof proceeds by induction over the height of the game tree. The base case is
given by a game of height 0, that is a game without moves. Clearly in this situation we merely
have to read off the pay-off to see which of the three situation it falls under.

Assume that the statement is true for all games of height at most n. Consider a game of
height n + 1. This game can be considered as being constructed as follows: From the root,
there are a number of moves (say k many) leading to game trees of height at most n.

t1 t2

m1

m2

t

tk

mk

l1 l2 lk

Figure 1.11: First moves and sub-games

By the induction hypothesis we can label the roots of these game trees with a number
(say lj for tree tj) as follows:

• it bears label lj = 1 if Player 1 wins the game rooted there;

• it bears label lj = −1 if Player 2 wins the game rooted there;

• it bears label lj = 0 if the game rooted there is such that either side can enforce (at
least) a draw.

Now if the first move of the game is made by Player 1, then there are the following cases to
be considered:

• There is a child of the root labelled with 1, that is there is j in {1, 2, . . . , k} such that
lj = 1. Then Player 1 can choose mj as his opening move, and combine it with the
winning strategy for the game rooted at that child. This results in a winning strategy
for the whole game and case (i) is met.

• None of the children of the root is labelled with 1, (that is lj 6= 1 for all 1 ≤ j ≤ k) but
there is at least one j with lj = 0. Then by choosing mj as his first move, Player 1 can
ensure that game tj is now played out where he can enforce a draw since lj = 0. Hence
Player 1 can enforce a draw in the overall game. To ensure that case (iii) is met we
have to show that Player 2 also can enforce at least a draw. But all the games rooted
at a child of the root of the overall game have label 0 or −1, so Player 2 can enforce at
least a draw in all of them. Hence she can enforce at least a draw in the overall game.

• None of the children of the root is labelled with 1 or 0. That means that for all 1 ≤ j ≤ k,
lj = −1 and Player 2 can enforce a win for all tj . That means she has a winning strategy
for the overall game, no matter which first move Player 1 chooses. Hence case (ii) is
met.

The case where the first move of this game is made by Player 2 is symmetric to the one just
discussed.
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A slightly more general statement (involving chance) was first made by Zermelo and later
proved by John von Neumann. We give more general results below which subsume this one.
Note that in order to actually find a winning strategy the entire game tree has to be searched
if one is to follow the method given in the proof. We see in Chapter 3 how the idea underlying
this proof can be turned into an algorithm that finds these strategies in a game of perfect
information, and finds other useful strategies in the case of imperfect information.

Note that this result means that games like chess or go are intrinsically boring in that one
of those three statements has to be true for each of them. The games are so large, however,
that we currently are nowhere near deciding which of the three cases applies (though for
chess it is usually assumed that case (i) or (ii) holds), and so we still find it worthwhile to
play them. Contrast this with the game of noughts and crosses, where the third case applies.
Children typically discover this after a having played that game a few times and discard it as
a pastime thereafter.

B Exercise 12. (a) Take the game (2 × 2)-chomp from Example 1.2. Does either player
have a winning strategy, and if yes, who, or can they both force a draw?

(b) Answer the same question for the game of (2, 2)-nim from Exercises 1 (a) 6 (a).

Summary of Chapter 1

• Games can be represented in their extensional formusing a game tree. Typically, a
position in such a tree contains more information than just what would be shown on
the board.

• Elements of chance are then modelled by having a player called Nature, with probabil-
ities labelling such moves. Imperfect information is modelled by including in the game
tree information about any nodes which cannot be distinguished by the player about to
move.

• The pay-off function for a player assigns a value to each of the possible outcomes possible
in the game.

• A strategy for a player is a complete game plan for that player. It can either be fully
specified or be made not to contain redundant information. It provides a choice of move
for every situation in which the player might find himself.

• Any game can be transferred into its normal form, which means it is described as a
simultaneous one-move game: Each player picks one of his available strategies, and
there is a pay-off function for each player for each combination of choices. Computing
the normal form is not feasible for games above a certain size.

• Whether one should use the extensional or normal form of a game depends on the
situation.

• In 2-player zero-sum games of perfect information without chance either one of the
players can force a win, or they can both force a draw.

Sources for this section. Many textbooks start with the normal form of a game and
hardly mention the extensive one. Even those that do take the transformation between the
two for granted. While I have used various sources to help with the examples I do not know
of an account which covers the same ground.
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Chapter 2

Equilibria

In this chapter we seek to answer the question of what it means to play a game well. However,
the most studied solution has some drawbacks which we also cover.

The answer to our question comes in the form of a suggestion which strategies to play,
and what to expect from doing so. It is important to note that while we refer to strategies
here there is no underlying assumption that the game is in normal form. For much of what
we do there is no need to calculate all strategies, and so the observations we make regarding
particular strategies hold generally. However, finding strategies that have been identified as
desirable is another issue. We look at that issue both, in this chapter and also the following
ones.

2.1 Best response

Assume we are playing a game, and we know which strategy each of the other players is going
to employ. Assume we are Player 1 and that there are also Players 2 to l. If we know that
Player 2 plays a specific strategy, say s2, Player 3 plays s3 and so on, with sl being employed
by Player l we can ask the following question:

Which of our strategies gives us the highest pay-off in that situation? In other words,
which strategy s∗1 has the property that

for all strategies s1 p1(s
∗
1, s2, . . . , sl) ≥ p1(s1, s2, . . . , sl)?

Note that there might be more than one strategy with that property. We call such a
strategy the best response for Player 1 to (,̇s2, s3, . . . , sl). If we know what the other
players are going to do then any of our best response strategies in that situation will give
us the maximal pay-off we can hope for. So when trying to maximize our pay-off (which
every player is trying to do) we are looking for best response strategies. Of course, these
considerations apply to all the players in a game, not just Player 1—for each player i, given
a choice of strategy for all the other players we can look for strategies maximizing pi.

It is possible to calculate the best response to a given choice of strategies for the other
players (and some learning algorithms are concerned with learning such best responses).
However, this assumes that one knows in advance what the other players are going to do!

One might hope to find a best response strategy that works for every situation, that is
for example a strategy s∗1 for Player 1 with the property that

• for all strategies s2, . . . , sl for Players 2,. . . , l respectively and

• for all strategies s1 for Player 1 it is the case that

p1(s
∗
1, s2, . . . , sl) ≥ p1(s1, s2, . . . , sl).

Note that since we are now quantifying over all s2, . . . , sl this is a much stronger require-
ment than before. Unfortunately most games do not have strategies that are best responses
to all strategy choices for the other players at the same time.

30



Proposition 2.1. If a player has a winning strategy in a 2-person zero-sum game with pay-
offs in {−1, 0, 1} then it is a best response to all the the other player’s strategies.

A Exercise 13. Prove this proposition.

It is worth remembering that the pay-off functions the players are trying to maximize
in games of chance only cover the expected pay-off—if there is chance involved then these
pay-offs are not guaranteed, they are merely the ‘expected’ ones. In other words they are the
average of what can be expected when playing the game a large number of times.

Question 11. Assume we are playing a game where we throw a coin, and one of us bets
on heads while the other bets on tails. If you win, you have to pay me a million pounds,
otherwise I pay you a million pounds. What is the expected pay-off in this game? Would you
be willing to play a round?

This shows once again that pay-off functions have to be carefully chosen. If we merely
use the monetary payment involved in the game in Question 11 and then just look at the
expected pay-off it seems a harmless game to play—on average neither of us will lose (or
win) anything. In practice, this doesn’t cover all the considerations each of us would take
into account before playing this game. One solution to this might be not to merely use the
monetary payment as a pay-off, but rather make it clear that neither of us could afford to
pay out that sort of money. If, for example, we set the pay-off for losing a million pound to
−100, 000, 000, 000, 000, or the like, and kept 1,000,000 for the win of the million, then the
‘expected result’ would better reflect our real opinion.

The theory of equilibria is the study of choices of strategies (s1, s2, . . . , sl) with the prop-
erty that each si is the best response to the remaining strategies.

2.2 Equilibria

The idea is simple: If each player is seeking to play his best response to the choice of strategy
by the other players then we must be particularly interested in situations where every player
has found a strategy that is the best response to the others present. We can think of the
players as having found a point of balance: If any one of the players unilaterally decides
to change his strategy then he’s risking moving away from a best response to all the other
strategies, but that means his pay-off can never get better, it can only get worse. Hence each
player has an incentive to stay with such an equilibrium point.

Definition 7. For a game with l players we say that (s∗1, s
∗
2, . . . , s

∗
l ) is a (Nash) equilibrium

point for the game if

• each s∗i is a strategy for Player i and

• each strategy s∗i is the best response to (s∗1, s
∗
2, . . . , s

∗
i−1, ·, s∗i+1, . . . , s

∗
l ), that is for all

strategies si for Player i

pi(s
∗
1, . . . , s

∗
i−1, s

∗
i , s

∗
i+1, . . . , s

∗
l ) ≥ pi(s

∗
1, . . . , s

∗
i−1, si, s

∗
i+1, . . . , s

∗
l ).

We say that the s∗i are simultaneous best responses to each other.

Note that even if all but one player announce their choice to play their part in an equi-
librium point then the remaining player is best off also playing his—it is, after all, a best
response to the collective choice of the others. This is a particular property of equilibria.

These equilibria are often referred to as Nash equilibria in the literature, after John Nash.
He is a mathematician who won the Nobel prize (for economy) for his work in game theory in
1994, 45 years after his ground-breaking paper on the subject first appeared. Nash suffered
from schizophrenia for decades, but recovered in the 1990s. If you want to find out more about
him, http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Nash.html gives
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a brief history. You are also encouraged to read the acclaimed biography A Beautiful Mind ,
by Sylvia Nasar (Simon & Schuster, 1998—there’s also a paperback edition by Faber and
Faber, 1999). Or, if you can’t stomach a long book you can always watch the award-winning
film of the same title.

There are other notions of equilibria but most of them are rather more complicated and
we do not study them here.

Question 12. What can you say about the equilibria for a 2-person zero-sum game of perfect
information without chance? Hint: Consider whether Theorem 1.10 helps here.

Proposition 2.2. For every 2-person zero-sum game of complete information without chance
and with pay-offs in {−1, 0, 1} exactly one of the following holds:

• There is an equilibrium point that contains a winning strategy for Player 1 or

• there is an equilibrium point that contains a winning strategy for Player 2 or

• there is an equilibrium point that consists of two strategies ensuring draws.

To illustrate the idea of an equilibrium we have a look at a particular example.

Example 2.3. Camping holiday. Let us assume there is a couple heading for a camping
holiday in the American Rockies. They both love being out of doors, there is just one conflict
that keeps cropping up. Amelia1 appreciates being high up at night so as to enjoy cool air
which means she will sleep a lot better. Scottie1 on the other hand has a problem with the
thin air and would prefer sleeping at a lower altitude, even if that means it’s warm and muggy.
In order to come to a decision they’ve decided upon the following: The area has four fire roads
running from east to west and the same number from north to south. They have decided
that they will camp near a crossing, with Scottie choosing a north-south road while Amelia
decides on an east-west one, independently from each other. The height (in thousands of feet)
of these crossings (with the roads numbered from east to west and north to south) is given
by the following table.

Scottie
1 2 3 4

1 7 2 5 1
Amelia 2 2 2 3 4

3 5 3 4 4
4 3 2 1 6

Are there any equilibria in this game?
Let’s consider the situation from Amelia’s point of view. If she chooses Road 1 (with a

potential nice and airy 7000 feet) then Scottie’s best response Road 4 pushes her down as far
as 1000 feet. If she decides on her Road 2 then Scottie can decide between his Roads 1 and 2,
and they’ll still be sleeping in a hot and humid 2000 feet. In other words to calculate Scottie’s
best response to each of her choices, she finds the minimum of each row. Note that Scott’s
best responses are the same as her ‘worst case’. We can summarize these considerations in
this table.

Road No min. height

1 1
2 2
3 3
4 1

Her best response to Scottie’s best responses is Road 3. If she chooses that then they will
sleep at a guaranteed 3000 feet, no matter what Scottie does. In all other cases he can push

1Yes, there are some very obscure references hidden in those names (one for each). A chocolate bar to
anybody who can figure those out! Hint: Look back a few decades.
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her further down. So she chooses the maximum of the entries in the new table by choosing
her Road 3.

Let’s now look at the situation from Scottie’s point of view. If he chooses Road 1 then
Amelia’s best response is her Road 1, leaving him at a scary 7000 feet, the mere thought of
which makes him feel somewhat nauseous. If he chooses Road 2, on the other hand, then at
Amelia’s best response can push him up to 3000 feet. In order to calculate her best response
to each of his choices he looks for the maximal entry in each column. This is also the worst
that can happen to him in each case. The result is summarized in the following table.

Road No max. height

1 7
2 3
3 5
4 6

His best response to her best responses is to choose the strategy which gives him the least of
these numbers, guaranteeing that he will not have to sleep above 3000 feet. Hence he goes
for his Road 2.

The situation is pictured in Figure 2.1. Here the dashed lines are the roads which lead
from north to south and the solid lines are those running from east to west.2
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Figure 2.1: A landscape

The flag indicates where they will eventually camp.

Question 13. What happens if Amelia changes her mind while Scottie sticks with his choice?
What if it is the other way round, that is, Amelia keeps her choice while Scottie changes his?

We can now check that their choices—Road 3 for Amelia, Road 2 for Scottie—is indeed
an equilibrium point leading to a ‘pay-off’ of 3000ft. In fact, the proof is included in the
discussion above, but here we make it more explicit.

It is worth pointing out that from Amelia’s point of view

2Note that this ‘landscape’ shows the terrain in terms of the roads only.
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• if she changes her mind, but Scottie doesn’t, then the situation will worsen as far as
she’s concerned, that is they will camp at a lower site.

From Scottie’s point of view, on the other hand, it is the case that

• if he changes his mind while Amelia doesn’t then the situation will worsen as far as he’s
concerned, that is they will stay even higher up.

In other words if we cut along Scottie’s choice of roads (which corresponds to Amelia
changing her mind while Scottie sticks to his choice) then the point they choose lies on the
top of a hill (see Figure 2.2)—if she changes her mind, they will end up lower down. If, on
the other hand, we cut along her choice (which corresponds to Scottie changing his mind)
then their site lies in a valley (see Figure 2.3). Such points are known as saddle points.
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4000ft

Road 2Scottie

Figure 2.2: Road 2 (north-south), Scottie’s choice
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6000ft

4000ftRoad 3Amelia

Figure 2.3: Road 3 (east-west), Amelia’s choice

However, more is true about these points: In fact, there is no point on Road 3 which is
below the chosen one, nor is there a point above it on Road 2. This is a stronger condition
since Road 3, for example, might dip into a valley, then go up, and then go very far down
again—leaving a saddle point as before, but violating this new observation.

Hence the choices (3, 2) are best responses to each other and this is indeed an equilibrium
point of the game (if we assume that Scottie’s pay-off is, say, the negative of Amanda’s, which
is given in terms of the height).

As we see below, however, the way in which Amelia and Scottie arrived at their equilibrium
point choice does not work for all games in normal form, even if those are 2-person zero-sum
games.
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B Exercise 14. Find the equilibria for the following games. Do so by checking for pairs of
strategies which are best responses to each other.

(a)
(−10, 5) (2,−2)
(1,−1) (−1, 1)

(b)
(1, 2) (0, 0)
(0, 0) (2, 1)

The principle underlying the notion of an equilibrium point is that it is a ‘point of balance’
for all players of the game because if only one of them moves away from it they risk a worse
pay-off than they are currently getting—after all, they are all playing the best response to
everybody else’s collective choice. In the next section we study the question whether this
is always a sensible assumption to make. The reason this notion works so well in 2-person
zero-sum games (evidence for that is yet to come) is that what is good for one player is
automatically bad for the other, and vice versa.

If we consider fully-specified strategies we can consider a stronger notion of equilibrium
point.

Definition 8. Let a sub-game of a given game be obtained by choosing any position in the
game tree and considering it as the root of a game tree, namely the one given by the part of
the original tree which is below it.

A sub-game equilibrium point in a game is given by a tuple of fully-specified strategies,
one for each player, such that this tuple gives an equilibrium point for each sub-game of the
game, even for sub-games that wouldn’t be reached when playing these strategies.

Question 14. Why doesn’t it make sense to think of a sub-game equilibrium point as given
by a tuple of strategies?

Clearly every sub-game equilibrium point is an equilibrium of the original game. The
converse is false. We can think of a sub-game equilibrium point as a particularly ‘perfect’
equilibrium: No matter where in the game we might start off the strategies involved they will
give us the equilibrium play from that point.

This notion becomes particularly important when studying games that are played repeat-
edly over lots of rounds. We do not look at it closer here but this seems a sensible point for
introducing it.

2.3 Equilibria in non zero-sum games

We look at non-zero sum games to get an idea of what equilibria can arise, and what properties
they might have.

Consider the pay-off table given by

(−20,−20) (15,−15)
(−15, 15) (10, 10)

It has two equilibrium points at (1, 2) and (2, 1), each of them being preferred by one of
the players. Clearly, once they have settled on one of these, each player risks the utterly
undesirable outcome of (−20,−20) when unilaterally moving away from the equilibrium point.
But how should they decide to settle on a particular equilibrium point? Remember that they
are not allowed to cooperate, for example by agreeing to switch between the two on a regular
basis.

The option (2, 2) is certainly a compromise of some sort, but how can the players get
there if they are not allowed to communicate with each other? And wouldn’t it be tempting
for either of them to switch strategies to increase the pay-off from 10 to 15? That’s why the
solution (2, 2) which leads to a pay-off of 10 for each player cannot be considered stable. But
certainly there is a question whether we can consider either equilibrium point a ‘solution’ for
this game.
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Example 2.4. The prisoner’s dilemma. Two dark figures, Fred and Joe, have been caught
by the police and are now being questioned—in separate rooms. The police have the problem
that they do not have firm evidence that the two have committed a major crime—if they both
keep mum then the best the police can expect is that they each get two years. The police
are therefore interested in bluffing them into making a confession, offering that if one of them
turns crown witness he will get off scot-free while the other will face 10 years in prison. (It
is not stressed that if they both confess they will each face 8 years, two years having been
deducted due to the confession.)

Maybe somewhat surprisingly, the players in this game are the two prisoners. Each of them
faces a choice: to confess or to stay quiet. It seems tempting at first not to say anything—
after all, if Joe only does the same then Fred will get away with just two years. On the other
hand, two years in gaol is a long time. If he talks he might walk away a free man. And, of
course, can he really trust Joe to keep quiet? If Joe shops him he’s looking at ten years while
Joe is out. Surely it’s better to at least have the confirmation that Joe is suffering as well for
his treachery.

Here is the pay-off table (in years spent in prison, with a negative number to make it
clear that 10 years in prison are worse than 2, and so to fit our interpretation of the pay-off
functions) for the situation. The number on the left of each pair shows the pay-off for Fred,
the number on the right that for Joe.

Joe
talk don’t talk

talk (−8,−8) (0,−10)
Fred

don’t talk (−10, 0) (−2,−2)

This game has an equilibrium point at (talk, talk), since for both, Joe and Fred, the situation
will get worse if they shift away from that strategy. This is the only choice of strategies that
are best responses to each other.

Hence from the game theory point of view, the ‘solution’ to this game is for each of them
to talk and spend 8 years in prison. Clearly, this is not a particularly good outcome. If one
takes their collective situation into account, it is very clear that what they should both do is
to remain silent (much to the regret of the police!).

Question 15. What would you do in a situation like Joe and Fred? You don’t have to picture
yourself as a prisoner to come into a similar dilemma. For example, assume somebody is
offering goods for sale on the Internet and you’re interested in buying. Neither of you wants
to pay/send the goods first, so you decide you’ll both send your contribution to the other
party at the same time. Isn’t it tempting to let the other guy send you the goods without
paying? Would you change your mind if you wanted to do business with this person again
(which amounts to playing the game again)?

There are, in fact, a large number of ‘prisoners’ dilemma type’ situations. We may study
these when we look at using games to model a number of situations.

Here is another example. Douglas R. Hofstadter once sent a postcard with the following
text to twenty of his friends:3

‘. . . Each of you is to give me a single letter: ‘C’ or ‘D’ standing for ‘cooperate’ or ‘defect’.
This will be used as your move in a Prisoner’s Dilemma with each of the nineteen other
players. The pay-off table I am using for the Prisoners’ Dilemma is given in the diagram.

Player B
C D

Player A C (3, 3) (0, 5)
D (5, 0) (1, 1)

3He summarized this in his column in the Scientific American, June 1983. These columns, with a few extra
articles, can be found in his book Metamagical Themas.
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Thus if everyone sends in ‘C’, everyone will get $57, while if everyone sends in ‘D’, everyone
will get $19. You can’t lose! And, of course, anyone who sends in a ‘D’ will get at least as
much as everyone else will. If, for example, 11 people send in ‘C’ and 9 send in ‘D’, then the
11 C-ers will get $3 apiece for each of the other C-ers, (making $30), and zero for the D-ers.
So C-ers will get $30 each. The D-ers, by contrast, will pick up $5 apiece for each of the
C-ers, making $55, and $1 each for the other D-ers, making $8, for a grand total of $63.

. . . You are not aiming at maximizing the total number of dollars Scientific American
shells out, only maximizing the number that come to you!

. . . I want all answers by telephone (call collect, please) the day you receive this letter.
It is to be understood (it almost goes without saying, but not quite) that you are not to

try to get in touch with and consult with others who you guess have been asked to participate.
In fact, please consult with no one at all. The purpose is to see what people will do on their
own, in isolation. . . . ’

Question 16. What would you do if you received such a letter? And why? How many people
do you think chose ‘C’, how many ‘D’?

Hofstadter had hoped for twenty ‘C’s.

Question 17. Can you think of a way in which a clever person could have convinced himself
that everybody should go for ‘C’?

In fact, he got 14 ‘D’s and 6 ‘C’s, so the ‘defectors’ each received $43 while the ‘cooperators’
had to make do with $15 each.

Question 18. What would game theory have to tell these people? What would have hap-
pened if they had all applied this theory? On the other hand, how do you think this sort of
game would develop if it were played repeatedly, say once a week over a year?

B Exercise 15. Discuss the relative merits of the ‘solutions’ given by the equilibria for the
following non-cooperative games. What if the pay-off is in pound sterling, and you are the
player having to make a decision?

(a)
(4,−300) (10, 6)

(8, 8) (5, 4)
(b)

(4,−300) (10, 6)
(12, 8) (5, 4)

If you think that the above examples are artificial in nature, maybe the following two will
be more to your taste. If nothing else they are taken from the area of computing.

Example 2.5. TCP/IP Congestion Control Protocol. All TCP implementations are
required to support the algorithm known as slow-start. It works as follows:

• Start with a batch size of one packet;

• keep doubling the number of packets in a batch until a predefined threshold size is
reached;

• from then on increase the batch size by one with each transmission;

• when congestion occurs (which is detected by a time-out occurring when waiting for
an acknowledgement), reset the threshold value to half the current batch size and start
over (with a batch size of one packet).

The idea of the algorithm is to adapt the batch size to what is currently supportable within
the network, and it is fair since everybody follows the same rules, thus trying to split resources
evenly between all users.

For an individual, however, it is tempting to employ a ‘greedier’ algorithm than the above
slow start: For example jump straight back to the new threshold value (rather than starting
with a batch size of 1). (It doesn’t make sense to go for a bigger size since in all likelihood,
that will just result in more time-outs.) But if everybody does that, the network will become
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very congested. This is a multi-player prisoners’ dilemma-type situation: The community is
best off if everybody exercises restraint. But a small number of people could get away with
getting a better return than the average (and, indeed, the slow-start algorithm strategy does
not lead to an equilibrium even when everybody employs it). Of course, this only works if
only a very few people try to cheat.

Example 2.6. ALOHA Network Algorithm. An early, elegant (and very successful)
algorithm for allocating a multiple-access channel (initially designed for ground-based radio
broadcasting) works as follows:

• Send a data packet as soon as it becomes available for sending;

• if a collision occurs (because somebody else accessed the channel at the same time),
wait a random amount of time and try again.

Using a random delay means that packets are unlikely to collide repeatedly. Again, the
algorithm is fair because everybody uses the same algorithm, and thus on average has the
same amount of waiting time.

Once more it is very tempting for the individual to try to get away with retransmitting a
packet immediately—and if there’s just one such individual, he’s likely to get away with it.
Again this is a multi-player prisoners’ dilemma-type situation.

Question 19. What happens if two players try to get away with immediate retransmissions?

While both the situations given in Examples 2.6 and 2.5 are games which are carried out
repeatedly, it is impossible for the other players to tell whether any of the others is cheating.
Hence any incentive to behave oneself that might exist due to social pressure is lost. There
has been a lot of recent interest in using games to come up with algorithms that help with
the fair use of resources such as a channel or bandwidth, while maximising throughput. An
important issue here is that a great number of agents are trying to get their messages across
the network, and coming up with ways for each of them to behave to achieve the two targets
is not easy. There has been particular attention given to the learnability of such solutions
(one might decide not to go for an optimal solution but one that is only slightly worse, but
more easily achievable). However, much of the material is too advanced for this course unit.
Some examples can be found in Algorithmic Game Theory.

As we can see from this section considering equilibria as ‘solutions’ to non-zero sum games
is somewhat problematic. While there are sometimes compelling reasons that individuals will
choose equilibria (for example in the prisoners’ dilemma game) these often do not constitute
the optimal outcome for both players. Moreover, when observing behaviours ‘in the real
world’ one finds that often people do not behave so selfishly.

There are different approaches to addressing these issues.

• Instead of concentrating on individual one can look at the system arising from a number
of agents playing such games. One might then ask whether there are stable states for
such systems. That gives rise to a different notion of solution.

• Rather than focussing solely on pay-offs gained one can consider different ways of mea-
suring success in a game. There is a notion of regret, typically measured by the difference
between the actual pay-off and that which one might have achieved by making a dif-
ferent decision. In some cases minimizing the regret (over time) can lead to different
solutions than calculating an equilibrium point.

• One can allow the agents playing the game to negotiate with each other rather than
forcing them to make a decision without consultation.

B Exercise 16. (a) Find all equilibria in the game from Exercise 10 (a).

(b) Do the same for the game from Example 1.9, whose normal form is given on page 24.
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A Exercise 17. For the game in Exercise 10 (b) can you find a path in the game tree that
leads to an equilibrium point pay-off? (It is possible to do so without writing out the normal
form, although it might be helpful to draw a game tree first.) How many strategies lead to
this pay-off, and how many equilibrium points exist? This part goes beyond a simple exercise
in places.

2.4 Properties of equilibria in 2-person zero-sum games

When we only consider 2-person zero-sum games then the idea of considering the equilibria of
a game as its solutions becomes much more compelling. We give here some of the properties
enjoyed by such solutions to show why this is so.

We begin by looking at a simple way of finding some equilibria.
We need some formal notation. Let us assume we have a matrix (or table) with elements

ai,j , where i indicates the row and j indicate the column.

a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
...

am,1 am,2 · · · am,n

We say that this is an (m × n) matrix. A 2-person zero-sum game in normal form is
described by an (m×n)-matrix where m is the number of strategies for Player 1 and n plays
the same role for Player 2.

Proposition 2.7. For a 2-person zero-sum game in normal form the strategy pair (i, j) is
an equilibrium point if and only if the corresponding pay-off is maximal in its column and
minimal in its row.

Proof. Assume that (i, j) is an equilibrium point. Since i is a best response to strategy j it
has to be one of the maximal pay-offs possible when playing against strategy j. These pay-offs
are given by the column corresponding to j (which varies Player 1’s strategy while that of
Player 2 stays fixed). Since j is a best response to i (and Player 2 is trying to minimize the
pay-offs as given in the matrix) it similarly has to be the case that it is minimal it its row.

If on the other hand ai,j is maximal in its column then i is a best response to j, and if it
is also minimal in its row then j is a best response to i.

This result gives us a very convenient algorithm for finding equilibria: We merely have to
check whether any given value in the matrix is maximal in its column and minimal in its row.

B Exercise 18. Find the equilibria in the 2-person zero-sum games given by the following
matrices:

(a)

4 3 1 1
3 2 2 2
4 4 2 2
3 3 1 2

(b)

2 −3 1 −4
6 −4 1 −5
4 3 3 2
2 −3 2 −4

We now look at some other properties of equilibria. To illustrate the next point we go
back to the example of Amelia and Scottie.

Amelia’s first step consisted of calculating, for a fixed row, that is for a fixed i, the
minimum of all the ai,j where j ranges over the number of columns (here 1 ≤ j ≤ 4). That
is, she determined, for each 1 ≤ i ≤ 4,

min
1≤j≤4

ai,j .

And then she calculated the largest one of those to make the corresponding road her choice,
that is she computed

max
1≤i≤4

min
1≤j≤4

ai,j .
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Scottie, on the other hand, first computed, for a fixed column, that is for a fixed j, the
maximum of the ai,j , that is

max
1≤i≤4

ai,j .

Then he took the least of those and chose accordingly, that is he looked at

min
1≤j≤4

max
1≤i≤4

ai,j .

We can summarize this information in the original table of heights as follows.

Scottie
1 2 3 4 min of row

1 7 2 5 1 1
Amelia 2 2 2 3 4 2

3 5 3 4 4 3
4 3 2 1 6 1

max of col. 7 3 5 6 3\3

So Amelia calculated

max
i

min
j

ai,j

and matching strategies

while Scottie looked at

min
j

max
i

ai,j

and associated strategies.

Note that in a general 2-person zero-sum game given by a matrix as above we have the
following.

The value

max
i

min
j

ai,j

is the largest expected pay-off
Player 1 can guarantee for him-
self;

the value

min
j

max
i

ai,j

is the largest expected pay-off
Player 2 can guarantee for her-
self.

We can see that this is true by the following consideration. From Player 1’s point of view,
for her strategy i the worst that can happen is the pay-off minj ai,j . What she does is to
maximize the worst case that can occur. For Player 2 the situation works similarly, we just
have to remember that Player 2 is trying to minimize the pay-offs as given by the matrix
(because they are the pay-offs for Player 1).

In the example of Amelia and Scottie the two numbers are equal, and the pay-off is that
of the (only) equilibrium point of the game. This is no coincidence.

B Exercise 19. For the zero-sum games in normal form given below, calculate

max
1≤i≤m

min
1≤j≤n

ai,j and min
1≤j≤n

max
1≤i≤m

ai,j :

(a)

4 3 1 1
3 2 2 2
4 4 2 2
3 3 1 2

(b)

2 3 4 1
4 2 3 2
1 2 3 2
3 1 2 3
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Informally the following is the case: If we have an equilibrium point for a game then these
two numbers have to be equal, and they give the pay-off at this equilibrium point. On the
other hand, if these two numbers are equal then we can find an equilibrium point.

Proposition 2.8. Let (i∗, j∗) be an equilibrium point for a 2-person zero-sum game in normal
form with m strategies for Player 1 (rows) and n strategies for Player 2 (columns) and pay-off
matrix

a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
...

am,1 am,2 · · · am,n

.

Then it is the case that

ai∗,j∗ = min
1≤j≤n

max
1≤i≤m

ai,j = max
1≤i≤m

min
1≤j≤n

ai,j .

If on the other hand
min

1≤j≤n
max

1≤i≤m
ai,j = max

1≤i≤m
min

1≤j≤n
ai,j ,

then the game has an equilibrium point.

Proof. Let us first assume that the game has an equilibrium point. Since ai∗,j∗ is the maximum
of its column, that is ai∗,j∗ = max1≤i≤m ai,j∗ , it is the case that

ai∗,j∗ = max
1≤i≤m

ai,j∗

≥ min
1≤j≤n

max
1≤i≤m

ai,j .

Since it is also the case that ai∗,j∗ is the minimum of its row we can calculate

ai∗,j∗ = min
1≤j≤n

ai∗,j

≤ max
1≤i≤m

min
1≤j≤n

ai,j .

Hence
max

1≤i≤m
min

1≤j≤n
ai,j ≥ ai∗,j∗ ≥ min

1≤j≤n
max

1≤i≤m
ai,j .

We next show that
max

1≤i≤m
min

1≤j≤n
ai,j ≤ min

1≤j≤n
max

1≤i≤m
ai,j

We know that for a fixed 1 ≤ i ≤ m and all 1 ≤ j ≤ n it is the case that

min
1≤j≤n

ai,j ≤ ai,j .

Now for all 1 ≤ j ≤ n we can take the maximum over all such i to get

max
1≤i≤m

min
1≤j≤n

ai,j ≤ max
1≤i≤m

ai,j .

But this is true for all j, and therefore it must also be true for the smallest such term, that is

max
1≤i≤m

min
1≤j≤n

ai,j ≤ min
1≤j≤n

max
1≤i≤m

ai,j .

We are done with this direction.
Let us now assume that the equation

min
1≤j≤n

max
1≤i≤m

ai,j = max
1≤i≤m

min
1≤j≤n

ai,j
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holds. We use v for this number. We can now choose i∗ in {1, . . . , m} such that

min
1≤j≤n

ai∗,j = v

and j∗ in {1, . . . , n} such that
max

1≤i≤m
ai,j∗ = v.

We claim that (i∗, j′) is an equilibrium point.
We note that

v = min
1≤j≤n

ai∗,j ≤ ai∗,j∗ ≤ max
1≤i≤m

ai,j′ = v

and so all these numbers are equal. In particular min1≤j≤n ai∗,j = ai∗,j∗ says that ai∗,j∗ is
minimal in its row, and max1≤i≤m ai,j′ = ai∗,j∗ says that ai∗,j∗ is maximal in its column, so
it is indeed an equilibrium point.

We get an immediate consequence:

Corollary 2.9. All equilibrium points in a 2-person zero-sum game lead to the same pay-off.

Question 20. Can you see why this result immediately follows from the previous one?

This means that some of the issues discussed in the previous section do not arise in the
case of 2-person zero-sum games: All equilibria for such a game lead to the same pay-off, so
it cannot happen that there are several equilibria each preferred by one of the players.

It also means we can refine our algorithm for finding equilibria: When we have found one
equilibrium we only have to look at those entries in the matrix which are equal to the pay-off
at the first equilibrium.

Definition 9. For a 2-person zero-sum game the (unique) pay-off at an equilibrium point is
known as the value of the game.

If we have a 2-person game with several equilibria then something interesting happens.

Proposition 2.10. Let (i, j) and (i′, j′) be equilibria for a 2-person zero-sum game. Then
(i, j′) and (i′, j) are also equilibria for that game.

Proof. The proof of this result is much easier if we assume that the game is in normal form.
First of all note that we have established already that the pay-offs at the given equilibria
have to be equal, that is ai,j = ai′,j′ . Now consider the pay-off at (i, j′), ai,j′ . It is in the
same column as ai′,j′ , and since that value is maximal in its column it has to be the case
that ai,j′ ≤ ai′.j′ . Similarly ai,j is minimal in its row and so ai,j ≤ ai,j′ . But ai,j = ai′,j′ and
so ai,j′ has to be equal to that number. But that means it is equal to the maximal value in
its column and also equal to the minimal value in its row and hence it is the pay-off at an
equilibrium point. The proof that (i′, j) is also an equilibrium point is much the same.

So if we have several equilibria we can often combine them to give even more. Moreover,
it is possible to pair any strategy for Player 1 that appears in some equilibrium point with any
strategy for Player 2 that appears in some equilibrium point and one gets another equilibrium.
Hence it makes sense to speak of an equilibrium point strategy for a player (some sources
also speak of an optimal strategy). Note that this only makes sense in the 2-person zero-sum
case.

In the various discussions above we have established a result regarding the value of the
game:

Proposition 2.11. A 2-person zero-sum game has an equilibrium point if and only if there
exists a value v ∈ R such that

• v is the highest pay-off Player 1 can guarantee for himself;

42



• −v is the highest pay-off Player 2 can ensure for herself.

This number v is the value of the game.

A Exercise 20. Find the proof of this result in the discussion so far.

Note that to formulate the previous two results we do not have to assume that the game
is given it normal form. There is one final result we can establish at this point.

Proposition 2.12. Every 2-person zero-sum game of perfect information in which every play
is finite has at least one equilibrium point.

Proof. The proof of this result is similar to that of Theorem 1.10. A few changes have to be
made, however. In that Theorem we assumed we only tracked outcomes regarding who was
winning by using numbers 1, −1, or 0 (it is okay to think of these as pay-offs). Now we want
to keep track of guaranteed pay-offs for both players. The induction hypothesis changes to
the assumption that each game of height at most n has a value v ∈ R, which we write down
at its root.

t1 t2

m1

m2

t

mk

tk

v1 v2 vk

The second adaptation is somewhat more complicated: In Theorem 1.10, we did not allow
the game to include any elements of chance. So apart from nodes where it is Player 1’s or
Player 2’s turn, we now have to include nodes where a random choice occurs.

Clearly every game of no moves has an equilibrium point—each player has precisely one
strategy so they have to be best responses to each other. Thus every game of height 0 has a
value, and we assume that this is true for games whose game tree is of height at most n.

Now consider a game tree of height n + 1. As argued in Theorem 1.10 we can view this
game as starting at the root with each possible first move mj leading to a game tj of height
at most n which is subsequently played out. We assume that at the root of each of these
sub-games its value is given. There are three cases to consider.

Let us first assume that the first move is made by Player 1. Then Player 1 can ensure
that his pay-off is the maximum

v = max
1≤j≤k

vj

of the values vj of the sub-games reached after the first move. Player 2, on the other hand,
can ensure that her pay-off is at least −v: No matter which first move Player 1 chooses, the
worst case for Player 2 is that where she gets −v. Hence v is indeed the value of the overall
game.

Let us now assume that the first move is made by Player 2. This case is almost the same
as the one we have just discussed, the only difference being that values are given referring
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to Player 1’s pay-off. Hence Player 2 will be looking to maximize −v, which is equivalent to
minimizing v, so she looks for the least

v = min
1≤j≤k

vj

of the values labelling the sub-games. The argument that this v is the value of the game is
similar to the one before, only that the roles of Player 1 and Player 2 are reversed.

Finally we have to consider the case where the first move is a chance move. Then the
highest pay-off Player 1 can hope for is the expected pay-off

∑

1≤j≤k

qjvj ,

which is calculated by taking the probability qj that a particular move mj occurs times the
value vj of the subsequent game, and summing those up over all possible first moves. But
that is precisely the best pay-off that Player 2 can expect.

Note that there is an algorithm hidden in this proof, and that this algorithm calculates
a number v with the properties given in Proposition 2.11. We look at a slight adaptation of
this in the form of the minimax algorithm which is described in Chapter 3. Note that this
result does not assume that the game is in normal form, nor does its proof.

However, not every 2-person zero-sum game has an equilibrium point. Let us look at
paper-stone-scissors whose pay-off matrix we repeat here.

0 1 −1
−1 0 1
1 −1 0

None of the entries is maximal in its column and minimal in its row at the same time.
If we think about how the game is played this is not surprising: If there was an equilibrium
point then there would have to be two strategies that are best responses to each other. But
for each choice there is one that betters it, so this cannot exist. The following section looks
at a more general approach.

2.5 Mixed strategies

Even when a game has no equilibrium point when playing it just one game theory can help
us play such games better. The answer is to work out ‘good play’ if the game is repeated
many times. This appears somewhat paradoxical: if we can’t even say how to play the game
well once, why should we be any better at trying to play it a number of times?

Mixing strategies

The answer is that that allows us to come up with something other than a single strategy
in our answer to the question of how best to play the game. We can make statements such
us ‘when playing paper-stone-scissors one should aim to use all three strategies with equal
frequency’. More formally what we do is assign a probability to each of the strategies we
might play.

Definition 10. For a game in normal form a mixed strategy for a player consists of a
probability distribution for all the strategies available to that player.

This means we have to assign a probability to each of the player’s strategies so that
these probabilities add up to one. If the player has strategies numbered {1, . . . , m} then we
represent a mixed strategy by an m-tuple

(q1, . . . , qm) where
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• qi is the probability that strategy i will be employed and

• all probabilities add up to 1, that is q1 + q2 + · · · + qm = 1.

So how do we play according to a mixed strategy? Before the game starts, we employ a
device which will give us a number from 1 to m, such that the result will be number i with
probability qi. We then use the strategy thus decided upon. A mixed strategy literally allows
us to mix our available strategies in any proportion we like.

Note that we have not lost the ability to just pick one strategy: If we always want to
use strategy i we can do so by employing the mixed strategy (0, . . . , 0, 1, 0, . . . , 0), where the
1 occurs at the ith entry. We sometimes abbreviate this strategy as i, as we did when we
were only considering ‘pure’ strategies. In contrast with mixed strategies some people refer
to our strategies as ‘pure strategies’—they are mixed strategies that are made up purely of
one strategy.

Consider a game like Paper-Stone-Scissors. Assume you are playing it many times against
your best friend. Clearly, if you decided to always play Paper then your friend would soon
catch on and start to always play Scissors, thus winning every single time. Hence employing
a pure strategy in this game is not a very good idea. What would be a good answer instead?
Intuitively it is clear that all strategies are equivalent, and that if we remove one of them from
our considerations we give the other player an advantage. In fact, everything that makes it
easier for him to predict what we are going to do next will give him an advantage. Hence
the intuitive solution to this game is that all three strategies should be employed with equal
probability, meaning that the mixed strategy (1/3, 1/3, 1/3) should come out as best.

This first of all raises the question of how we measure the performance of a mixed strategy,
but that is easily solved: We just use the expected pay-off when playing according to this
strategy. This makes it easy to assign a number to the outcome of playing a mixed strategy
against the pure strategy of an opponent: Assume that the opponent has n strategies, and
that our strategy i playing against his strategy j gives a pay-off of p1(i, j). Then the mixed
strategy (q1, . . . , qm) employed against strategy j will result in the expected pay-off

q1p1(1, j) + q2p1(2, j) + · · · + qmp1(m, j).

Let us consider our mixed strategy (q1, . . . , qm) against his mixed strategy (r1, . . . , rn),
which will result in the expected pay-off for Player 1 (which we again refer to as p1):

p1((q1, . . . , qm), (r1, . . . , rn)) = q1r1p1(1, 1) + q1r2p1(1, 2) + · · · + q1rnp1(1, n)

+ q2r1p1(2, 1) + q2r2p1(2, 2) + · · · + q2rnp1(2, n)

+ · · ·
+ qmr1p1(m, 1) + qmr2p1(m, 2) + · · · + qmrnp1(m, n)

=
m∑

i=1

n∑

j=1

qirjp1(i, j).

We can visualize what happens by looking at the following table.

2
r1 r2 . . . rn

q1 p1(1, 1) p1(1, 2) . . . p1(1, n)
1 q2 p1(2, 1) p1(2, 2) . . . p1(2, n)

...
...

...
qm p1(m, 1) p1(m, 2) . . . p1(m, n)

The probability that the pay-off p(i, j) is reached is the probability qi that Player 1 uses
strategy i times the probability rj that Player 2 uses strategy j. These are the probabilities
marking the row/column of p(i, j) respective. Hence what we have to do to calculate the
expected pay-off is
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• multiply each entry in the table above with its row and column probabilities and

• add up all these numbers.

If there are n players then we can still use the same principle.
So what happens is that we can derive pay-offs when using mixed strategies from the

normal form of the game, and no additional information is required. If the game is given in
extensive form the situation changes slightly.

Mixed strategies for games in extensive form

If we have a game given in extensive form then we have to rethink the notion of a mixed
strategy. If we do not know what all our available strategies are then it makes no sense of
wanting to mix them.

What we can do instead is mix our choice at the various decision points.

Definition 11. For a game in extensive form a mixed strategy for Player i is given by a
probability distribution over the available choices for each decision point belonging to i in such
a way that all the decision points in the same information set have matching probabilities for
all the available actions.

For example in the game of simplified poker whose game tree is given on page 13, a mixed
strategy for Player 1 consists of giving a probability for passing or betting for each choice of
card he might get, as well as probabilities for these choices in the case where Player 1 has
passed on the first move but Player 2 has bet. Note that these probabilities must not depend
on Player 2’s card. An example is given on page 47. Here probabilities arising from a chance
move are given in the form 1/3, say, while those indicating Player 1’s mixed strategy appear
as 1

3
.
We can now calculate the probability that a particular outcome occurs when playing in

accordance with that strategy by treating these probabilities in precisely the same way as we
would treat the player Nature (sometimes called Chance), see page 10.

But how do such strategies relate to the mixed strategies in Definition 10?
If we have a mixed strategy (q1, q2, . . . , qm) then we can turn it into a mixed strategy on

the extensive game as follows:

• Pick a decision point for the player in question.

– For each possible action at that point find all the strategies which choose that
particular action.

– Add up all the probabilities qi for the strategies found in the previous step.

• We now have probabilities assigned to each action from our decision point but these
may add up to less than 1. Scale the probabilities for all the actions by the same factor
so that they add up to precisely 1.

It is also not difficult to make a connection that goes in the other direction: Every mixed
strategy for a game in extensive form corresponds to a mixture of the fully specified strategy
for the same player.

Question 21. Why is this statement is true?

In other words fully specified strategies become a useful concept if we want to consider
mixed strategies in the extensive form of a game. What is less obvious is the fact that actually
every mixed strategy for the extensive form of a game corresponds to a mixture of strategies.4

4You may find statements to the contrary in the literature. This is true for games where it is allowed to have
information sets containing nodes that have differing histories visible to the player who owns the information
set. Game trees of this kind are sometimes allowed to model the players not having perfect recall, that is being
unable to remember everything that happened in the course of a game.
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In summary, any distribution of probabilities over all the outcomes that can be achieved
with the one form of mixed strategy can be achieved with the other. As a consequence we can
consider mixed strategies in either setting, that of games given in normal or extensive form.
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Equilibria

What happens to our notion of equilibrium if we allow mixed strategies? The answer is,
nothing—we can still use our original definition. In other words we still want to have choices
of (mixed) strategies such that each strategy is a best response for the remaining strategies
in the equilibrium point.

However we now have a problem: Even if there are only finitely many pure strategies
in a game, as soon as one player has at least two strategies there are infinitely many mixed
strategies for at least one of the players. How do we check whether we have an equilibrium
point? Previously we only had to check against finitely many alternative strategies whether
something was a best response. Fortunately we do not have to carry out infinitely many
checks.

Verifying mixed strategy equilibria

It seems difficult at first sight to determine that a given tuple of mixed strategies is an
equilibrium point for a game, but fortunately there is a proposition which tells us that we do
not, in fact, have to match it against all the mixed strategies for all the players. Doing that
with the pure ones suffices.

We establish this by first proving a lemma that turns out to be useful for a different
purpose.

Lemma 2.13. Given a tuple of mixed strategies (s1, . . . , sl) for some game, if Player i strategy
si gives as least as high a pay-off as can be achieved by any of his pure strategies then the
strategy si is a best response for the given strategies played by the other players.

Proof. Let s = (q1, q2, . . . , qni) be a mixed strategy for Player i. We have to show that the
pay-off to Player i when playing this mixed strategy is at most as high as that when playing
the given strategy si. It is the case that

pi(s1, . . . , si−1, s, si+1, . . . , sl) =

ni∑

k=1

qkpi(s1, . . . , si−1, k, si+1, . . . , sl)

≤
ni∑

k=1

qkpi(s1, . . . , si−1, si, si+1, . . . , sl)

= pi(s1, . . . , si−1, si, si+1, . . . , sl)

ni∑

k=1

qk

= pi(s1, . . . , si−1, si, si+1, . . . , sl).

as required.

Proposition 2.14. A tuple of mixed strategies (s1, . . . , sl) is an equilibrium point for a game
if and only if for every player i it is the case that i’s pay-off at the the given tuple is as least
as high as i can achieve by using any of his pure strategies against the other given strategies.

Proof. Clearly this is a necessary condition for being an equilibrium point since strategy si

is a best response to the given strategies for the other players it must give at least as good a
pay-off as any of i’s pure strategies.

It is also sufficient by the previous lemma.

So we can check whether or not a given mixed strategy tuple gives an equilibrium point
by performing finitely many calculations: We just have to check what happens for every pure
strategy for every player.

We return to our example of Paper-Stone-Scissors. We have claimed that the mixed
strategies (1/3, 1/3, 1/3) and (1/3, 1/3, 1/3)5 together define an equilibrium point. We first

5Since the game is entirely symmetric it should come as no surprise that the solution is symmetric as well.

48



calculate the expected pay-off which is

p1((1/3, 1/3, 1/3), (1/3, 1/3, 1/3)) =

(1/9 × 0 + 1/9 × 1 + 1/9 × (−1)) + (1/9 × (−1) + 1/9 × 0 + 1/9 × 1)

+(1/9 × 1 + 1/9 × (−1) + 1/9 × 0)

= 3 × (1/9 × 1) + 3 × (1/9 × (−1))

= 0.

We then compare this mixed strategy to each of the pure strategies for Player 1.

p1(1, (1/3, 1/3, 1/3)) = 0 × 1/3 + 1 × 1/3 − 1 × 1/3 = 0.

Because all the strategies are equivalent, p1(2, (1/3, 1/3, 1/3)) and p1(3, (1/3, 1/3, 1/3)) eval-
uate to the same value. For symmetry reasons this argument also applies to comparing this
mixed strategy to Player 2’s pure strategies. By Proposition 2.14, we have indeed found an
equilibrium point.

B Exercise 21. (a) Show that the game with the pay-off matrix given below has the mixed
strategy equilibrium ((1/2, 0, 0, 1/2), (1/4, 1/4, 1/2)).

−3 −3 2
−1 3 −2

3 −1 −2
2 2 −3

(b) Consider the following game. Alice has an Ace and a Queen, while Bob has a King and a
Joker. It is assumed that the Ace beats the King which beats the Queen, whereas the Joker
is somewhat special. Both players pay an ante of one pound into the pot. Then they select
a card, each from his or her hand, which they reveal simultaneously. If Bob selects the King
then the highest card chosen wins the pot and the game ends. If Bob chooses the Joker and
Alice the Queen they split the pot and the game ends. If Bob chooses the Joker and Alice the
Ace then Alice may either resign (so that Bob gets the pot) or demand a replay. If a replay
occurs they each pay another pound into the pot and they play again, only this time Alice
does not get the chance to demand a replay (so Bob gets the pot if he chooses the Joker and
Alice the Ace).

Draw a game tree for this game and then bring it into matrix form. If you have your strategies
in the same order as I do then you can show that an equilibrium is given by Alice’s mixed
strategy (0, 1/8, 1/4, 5/8) and Bob’s mixed strategy (1/4, 1/4, 1/2). To get your strategies in
the same order I suggest

• list Alice choosing the Ace before choosing the Queen and consider her ending the game
before demanding a reply and

• Bob choosing the King before the Joker.

Who has the advantage in the game? Strictly speaking, the requirement to order the strategies
correctly to prove the equilibrium point is more than I’d expect in an exam, but the individual
calculations for game tree, normal form, and checking equilibria I consider basic.

Properties of mixed strategy equilibria

The introduction of mixed strategies solves the problem of non-existence of equilibrium points.

Theorem 2.15 (Nash). Every game with finitely many pure strategies for each player has at
least one mixed strategy equilibrium point.
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Proof. This proof requires too much mathematical background to be appropriate for this
course.

This is quite surprising in many ways! Even if we’re not sure what to make of equilibria
as solutions to games which aren’t 2-person zero-sum at least we know that such a ‘solution’
always exists.

Section 2.4 establishes a number of properties of equilibria for 2-person zero-sum games.
These extend to mixed strategies where this makes sense.

Corollary 2.9 remains true, even if we allow mixed strategies to be employed. Hence the
notion of the value of such a game still makes sense. However the proof we used previously only
takes pure strategies into account, so we restate the result and prove it in its full generality.

Proposition 2.16. For a 2-person zero-sum game all equilibrium points, whether they consist
of pure or mixed strategies, lead to the same pay-off, which we call the value of the game.

Proof. One possible proof of this result is similar to that of Proposition 2.8, just using the
definition of the pay-off function for mixed strategies. There is an alternative proof which we
present here. Let (s, t) and (s′, t′) be equilibrium points for the game under consideration. (If
there are any pure strategies involved we still think of them as represented as mixed strategies,
with a probability of 0 being given to all but the chosen strategy.) These lead to pay-offs
p(s, t) and p(s′, t′) respectively for Player 1. By the definition of an equilibrium point, we
know that if one player changes away from an equilibrium point, his or her pay-off can only
decrease. Hence

p(s, t) ≥ p(s′, t) ≥ p(s′, t′) ≥ p(s, t′) ≥ p(s, t).

The first inequality is Player 1 changing away from (s, t), the second is Player 2 changing away
from (s′, t′), the third Player 1 changing away from (s′, t′), and the last Player 2 changing
away from (s, t). But the above chain of inequalities means that all these numbers have to
be equal, in particular p(s, t) = p(s′, t′).

Propositions 2.11 and 2.10 also remain true. The former tells us that the value of the
game still maximizes their pay-off in the worst case. The latter tells us that we can pair up
equilibrium strategies for the players in any way we like, and still gain an equilibrium point.
Hence the notion of ‘optimal’ strategies for both players still makes sense, although we need to
remember when using that term that these strategies are only optimal under the assumption
that the other player is also playing optimally!

There is also a version of Proposition 2.8 that is true, which really means reformulating
Proposition 2.11 in terms of pay-off functions. It is the case that

max
s

min
t

p1(s, t) = min
t

max
s

p1(s, t)

where s and t vary over all mixed strategies for Player 1 and 2 respectively.
It is also still the case that any equilibrium strategy for Player 1 paired with any equilib-

rium strategy for Player 2 gives an equilibrium point of the game—in fact, any mixed strategy
which assigns non-zero probabilities only to pure equilibrium strategies is another equilibrium
strategy.

There is quite a bit more that can be said about the nature of mixed strategy equilibria and
the strategies that appear in it with non-zero probabilities. For example, in a 2-person zero-
sum game any mixture of pure equilibrium strategies for either player is another equilibrium
strategy for that player. More generally, if ((q1, . . . , qm), (r1, . . . , rn) is an equilibrium point
of a 2-person game then if qi 6= 0 it is the case that pure strategy i is a best response for
Player 1 against (r1, . . . , rn). Some of these considerations are useful when one generally
wants to tackle the problem of computing equilibria, but a detailed study is beyond the scope
of this course.

However even for 2-person zero-sum games there is one drawback with considering only
equilibria when deciding how to play a game: Equilibria work well if both players know
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enough to play their optimal strategies. If one player is not capable of doing this then there
are usually opportunities for the other player to exploit that weakness. For example, one
optimal strategy might be better at this than another—or, alternatively, there might be a
non-optimal strategy that is the best response to the other player’s behaviour.

2.6 Finding equilibria

Having identified a notion of ‘solution’ to a game in the form of equilibria the question arises
how one can find these. This is not at all easy.

One issue we have to decide on is the following:

• Do we only want to find one equilibrium?

• Do we want to find all equilibria?

Depending on which task we seek to carry out we have to employ quite different strategies.
For 2-person zero-sum games finding one equilibrium point is sufficient to tell us how to play
the game: If we employ any one of our optimal strategies we’ll guarantee the best pay-off for
ourselves, provided the other player does so too.

For non zero-sum games pay-offs at equilibria can vary vastly. There finding one equilib-
rium is unlikely to lead to good play.

Reducing the size—dominance

In Chapter 1 it is stressed that one should try to keep the description of the game as small
as possible. There we looked at issues of symmetry that allowed us to reduce the size of the
game tree. If we are only interested in finding one equilibrium point then we can take this
idea lot further.

Definition 12. We say that a strategy s for Player i is dominated by a strategy s′

for the same player if

• for all choices of strategies by the other players it is the case that

– the pay-off for Player i when playing strategy s is less then or equal to that when
playing strategy s′.

It is very important to note the universal (‘for all’) quantification in this definition.
What this definition tells us is that in all situations the strategy s is outperformed by the

strategy s′ (or at least the strategy s′ will give the player at least as good a pay-off). We
conclude that there is no reason for the player ever to use strategy s because strategy s′ is
preferable. In other words we can remove dominated strategies from consideration.

By Lemma 2.13 to check that a strategy is dominated it is sufficient to do so against all
the pure strategy choices for the other players.

Here is an example. Consider the 2-person zero-sum game given by the following matrix.

1 −1 2
−1 1 3
−3 −2 4

Player 2 wishes to minimize her pay-out to Player 1, and from her point of view her
strategy 3 is particularly undesirable: If she compares it point by point with her strategy 1
she notices that if Player 1 chooses his strategy 1 then she will only have to pay 1 if she
chooses her strategy 1 as opposed to 2 if she selects her strategy 3. If Player 1 goes for his
strategy 2, the values become a win of 1 versus a pay-out of 3, and for Player 1’s strategy 3
a win of 3 compared to a pay-out of 4. In other words, Player 2’s strategy 3 is dominated by
her strategy 1.

If we remove strategy 3 for Player 2 from consideration we obtain the following game
matrix.

51



1 −1
−1 1
−3 −2

Now it is the case that Player 1’s strategy 3 is dominated by both, strategies 1 and 2, so out
it goes, leaving us with the following table.

1 −1
−1 1

Note that we could not remove Player 1’s strategy until we had removed a strategy for
Player 2.

We now have a symmetric matrix game with a particularly simple solution: the mixed
strategies (1/2, 1/2), (1/2, 1/2) define an equilibrium point. If we wish to formulate this
solution in terms of the original game, all we have to do is to turn those into mixed strategies
(1/2, 1/2, 0) and (1/2, 1/2, 0).

In the prisoners’ dilemma game Example 2.4 the ‘talk’ strategy dominates the ‘don’t talk’
one: No matter what the other player does, the ‘talk’ strategy always gives a better pay-off
than the ‘don’t talk’ one does in the same situation. Hence we can reduce that game by
removing dominated strategies to a (1× 1)-matrix giving the pay-off at the equilibrium point
(talk, talk).

B Exercise 22. Reduce the games given by the matrices below via dominance consideration
as far as possible.

(a)

2 4 0 −2
4 8 2 6

−2 0 4 2
−4 −2 −2 0

(b)

2 −3 1 −4
6 −4 1 −5
4 3 3 2
2 −3 2 −4

Note that in the prisoner’s dilemma game Example 2.4 the ‘talk’ strategy dominates the
‘don’t talk’ strategy for both players, so removing those gives us the equilibrium point where
both talk.

However, often we cannot get very far with removing strategies in this way even for
2-person zero-sum games. Note that our definition of dominance does not refer to pure
strategies—it also applies to mixed strategies. This gives us a more complicated method that
allows us to find more dominated strategies.

Consider the following game as an example.

−1 2
2 −1
0 0

No (pure) strategy for Player 1 is dominated by any other. Similarly for Player 2’s two
strategies.

Again we’re faced with the problem of finding out whether we can remove a strategy for
either player by using the idea of dominance. Who should we start with, Player 1 or Player 2?
As a rule of thumb, if one player has more strategies than the other, he or she is a good target,
and so we will start with Player 1.

So which of Player 1’s three strategies might be dominated by a mix of the other two?
Strategy 1 has a potential pay-off of 2 which is maximal in its column, and so cannot be

outperformed by the remaining entries. Similarly, strategy 2 has the unique highest value in
the first column. That leaves the only feasible target of strategy 3.

The question becomes: can we find a probability λ such that strategy 3 is dominated by
the mixed strategy

(λ, 1 − λ, 0)?
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In order to find such a λ we have to calculate the pay-offs for playing that mixed strategy
versus playing the pure strategy 3 for each of the choices that Player 2 can make. We need
a λ with the property that the following inequalities are true simultaneously.

Player 2 plays Strategy 1 0≤− λ + 2(1 − λ)=2 − 3λ

Player 2 plays Strategy 2 0≤2λ − (1 − λ) =3λ − 1

The former is equivalent to

λ ≤ 2

3

and the latter to

λ ≥ 1

3
,

so λ = 1/3 will do the job. Hence Player 1’s strategy 3 is dominated by his mixed strategy
(1/3, 2/3, 0).

It is also possible to remove dominated strategies from consideration even if one hasn’t
calculated the matrix of the game—instead one can remove strategies from consideration
looking at the extensive form of the game. One then produces an already reduced matrix for
the game. A concrete example of this technique appears in Section 2.7.

Making the game smaller in this way is only safe if we know that a solution to the reduced
game can be turned into a solution of the original game.

Proposition 2.17. Let G′ be a game that results from the game G by removing a pure strategy
j for Player i which is dominated by some other strategy. Any equilibrium point for the game
G′ can be turned into an equilibrium point for the game G by putting the probability that
Player i plays strategy j to be 0.

The proof of this result is lengthy but not too difficult, and we omit it here.
Hence any equilibrium we find for the smaller game ‘is’ an equilibrium for the original

one. In some games one can get a fairly long way by reducing the size:

• Sometimes one can reduce the game to a (1 × 1)-matrix, that is, there is only one
strategy left for each player. An example for this is the prisoners’ dilemma game. In
that case applying the above considerations leads directly to the solution in the form of
an equilibrium point. However, this may not be the only equilibrium point.

• Sometimes one can reduce the game to a (2×2)-matrix. If the game cannot be reduced
further there is an equilibrium point which is a mixture of two strategies by each player.
In the case of a 2-person zero-sum game this equilibrium can be calculated by solving
two systems of two linear equations: It uses the fact that we know that in the equilibrium
point it must be the case that

min
t

max
s

p1(s, t) = max
s

min
t

p1(s, t)

where s ranges over all strategies for Player 1 and t over those for Player 2.

In all other cases reducing the size is merely a preparatory step before applying methods
outlined below. Note that if we remove strategies in this way we may remove equilibria.
There is an adjusted technique that removes fewer strategies but which keeps all equilibria
which we do not discuss in detail.
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Calculating equilibria

For most cases calculating equilibria is a hard, and for some cases there is no known algorithm.
We here give a summary of what is known. The following statements concern games in normal
form. Games in extensive form have only recently attracted more attention. We study ways
of approaching these in Chapters 3 and 4.

2-person zero-sum. In the case of such games there is an algorithm requiring polynomial
time that finds all equilibria. The problem of finding equilibria in this case can be reformulated
so that it belongs to a family known as ‘linear programming problems’. At least three different
algorithms are known, and how good they are depends on the specific problem in question.
There are nonetheless still open problems in this area regarding the precise question of how
hard a problem this is to solve.

2-person general sum. There is a known algorithm, the Lemke-Howson algorithm, for
finding one equilibrium point of a given game. In the worst case it runs in exponential time.
This algorithm belongs to a complexity class between ‘P’ (can be solved in polynomial time)
and ‘NP’. For those doing the algorithms course it might be interesting to know that there
are a number of NP-complete problems related with finding equilibria in these games. We
only give some of those.

• Are there at least two equilibria?

• Is there an equilibrium where Player 1’s pay-off is at least some given number?

• Is there an equilibrium where the combined pay-off of the two players is at least some
given number?

n-person games. This case is even more difficult than the previous one and not much
is known here at all. There is no known algorithm that works for all such games. This is
particularly problematic since many of the applications are for multi-agent games (for example
routing problems in a network).

Since the case of finding even one equilibrium point is quite hard in general sum games
people have come up with alternatives to equilibria that are easier to calculate.

• There is a notion of an approximate equilibrium which guarantees that the pay-off for all
players is at most a given (small) number ε below the pay-off at an actual equilibrium
point.

• There is a notion of a correlated equilibrium where players are allowed to correlate their
choices with each other.

There’s quite a lot of literature regarding these notions and it is beyond the scope of these
notes to cover it in more detail.

Learning equilibria

If it is difficult to calculate equilibria can one set up systems of agents that will learn these?
This is a sensible question, and the issue of learning in games will be considered in detail in
Semester 2.

Here we only want to stress some of the issues that have to be decided when setting up
a learning situation. Note that in this case there has been quite a bit of work on games in
extensive form: It is certainly quite intuitive to consider agents that are learning about a
game as it is played in the usual manner.

• Is there only one learning agent in an environment where the other agents are static?
In this case we are not really treating the full problem.

• If the other agents in the system also vary, do they apply a learning algorithm? Is it
the same one as that employed by ‘our’ agent?
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• What exactly is our agent expected to learn? Is it to find a best response to the other
agents? How are we going to define that if the other agents employ variable strategies?

• What information does our agent get? Does it find out the pay-off for the other agents?
What does it learn about moves made by the other agents? (For example in games like
poker, does it find out the cards the other player had?)

• What should we model explicitly in our agent (the other agents or just the rules of the
game as they apply to our agent)?

• Even if we have a system of agents all employing the same learning algorithm can we
expect them to move towards an equilibrium point (that is a situation where they play
best responses to one another)? Will they reach it?

This is an area with a lot of on-going research, some of which is carried out in this
department. For the moment we just want to point out that there are a lot of decisions to
be made when it comes to addressing this issue, and for a few of those we do not have all the
answers just yet. This is even true for the 2-person zero-sum case.

2.7 Extended example: simplified poker

This section is for the most part taken from A.J. Jones book on game theory (see the list of
sources), and she attributes the study to H.W. Kuhn.6

Poker as it is actually played (it does not particularly matter which variant we are talking
about) is much too big for a detailed analysis. We radically simplify it by fixing the number
of players at 2, and by assuming there are only 3 cards (which each player being dealt a hand
of 1). While this would not be a very interesting game to play in practice, it turns out that
many issues of playing ‘real’ poker appear when analysing this simple game, for example, that
of bluffing, or folding with a hand which appears quite good. The game is as described in
Example 3. We repeat the rules here for convenience.

Each of the two players has to pay one unit to enter a game (the ante). They then are
dealt a hand of one card each from a deck containing three cards, labelled J , Q and K. The
players then have the choice between either betting one unit or passing. The game ends when

• either a player passes after the other has bet, in which case the better takes the money
on the table (the pot),

• or there are two successive passes or bets, in which case the player with the higher card
(K beats Q beats J) wins the pot.

The full game tree appears on page 13, but it is rather large and unwieldy. We can also
visualize what happens in the following way.

There are six possible deals (Player 1 might get one of three cards, and Player 2 will get
one of the two remaining cards, making 3 × 2 = 6 possibilities). For each of these deals, the
subsequent game tree is given in Figure 2.4, and we briefly explain the notation used there.
The players’ options in each case are to bet (B) or to pass (P ). The result is expressed by
giving the winner (1 is Player 1, 2 is Player 2 and H is the holder of the higher card) and
the amount he or she will win (where we have deducted the player’s own contribution to the
pay-off), that is 1:1 means that Player 1 wins 1 unit.

If we consider the available strategies for Player 1 we find that he has to make a decision
whether to pass or to bet, depending on his card, for round 1 and a potential round 2. We
record his strategies in tables, where for example

J Q K

PB PP B

6The full article is: H.W. Kuhn, A simplified two-person poker. In: Contributions to the Theory of

Games, I, Ann. Math. Studies No. 24, 105–116, 1950.
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Figure 2.4: Simplified poker

means that if Player 1 has the Jack (J) he will pass in the first round and bet in the second
(if they get that far), if he has the Queen (Q) he will always pass, and if he has the King (K),
he will bet in the first round. But we do not really need a table to gather all the information:
After all, the order J , Q, K is constant. Hence we can use a triple (PB, PP, B) to denote the
same information. Since Player 1 has three choices, PP , PB, and B, for each of the three
cards he might possibly be dealt, he has 3 × 3 × 3 = 33 = 27 (pure) strategies.

Now for Player 2. Her strategies may depend on her own card (one of three) as well as
Player 1’s move in the first round (one of two). For each of her potential cards, there are
four strategies (giving an answer for the two first moves Player 1 might have made), giving 43

strategies altogether. Again we encode these as triples which tell her how to make a choice
based on her card. However, her potential moves depend on Player 1’s first move as well, and
therefore we need a different encoding. We use the four options P |P , P |B, B|P , and B|B,
where the first component says what to do if Player 1 bets, and the second what to do if he
passes. So P |B, for example means to pass if Player 1 bets and to bet if Player 1 passes.

We wish to solve this game, but at the moment it is still somewhat large. Hence we try
to make it smaller by removing from consideration those strategies which are dominated by
others. Clearly, when confronted with a bet, a player should bet if he or she has the K, and
pass if he or she has the J : the former guarantees a win, and the latter will result in a loss of
1 rather than 2 units.

Let us go through this argument in more detail. We start with Player 1. If Player 1 has
the J , and the course of play so far has been P, B then if Player 1 decides to bet, he will lose
2 units rather than just the 1 he will lose if he passes in that situation. Hence we remove all
strategies which have PB in their first component (which describes what to do if one’s card
is the J). If Player 1 has the K, on the other hand, then if the course of play so far has been
P, B he should definitely bet, guaranteeing a win of 2 rather than just 1 unit. Therefore we
remove all strategies which have PP in their last component (which describes what to do if
one’s card is the K). That leaves us with 2 × 3 × 2 = 12 strategies for Player 1. Note that
these considerations do not say that Player 1 should be on the first move if has the K!)

Now we apply similar considerations to Player 2. If she is faced with a bet, that is the
course of play so far has been B, and she holds the J , then she will lose 1 unit if she passes,
and 2 if she bets, so passing is the better option. Therefore we remove all strategies that have
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B|P or B|B in their first component. If Player 2 has the K, on the other hand, she should
never pass, that would only decrease her potential winnings. When faced with a course of
play so far of P , then if she passes too she will win 1 unit, whereas she might win 2 if she were
to bet. When faced with a course of play so far of B then by betting in return she will win 2
rather than lose 1. Hence we insist that all her strategies have B|B as their last component.
That leaves 2 × 4 × 1 = 8 strategies for her.

Now that we have removed some strategies from consideration we can use this information
to get rid of more: We may use the fact that the strategies we have removed already are out
of consideration. If Player 1 holds the Q, he should pass in the first round and only bet if
Player 2 bets in her first go: If Player 2 has the K she will definitely bet no matter what (as
we have just ruled out all other strategies). Hence Player 1 will lose 2 if he bets in the first
round, and the same amount if he instead first passes and then bets in the second round. If
Player 2 has the J , on the other hand, then she will pass when confronted with a bet (we
have ruled out all her other strategies in the previous paragraph). This gives the following
possibilities when comparing the strategies B and PB under the assumption that Player 1
has the Q.

P1 has the Q

P1’s strategy B PB

P1’s first move B P

P2’s card J K J K

P2’s move P B B P B

P1’s snd move B B

pay-off for P1 1 −2 2 1 −2

If we compare the possible outcomes of playing B versus playing PB when Player 1 holds
the Q, we find that he can only improve his situation when choosing PB. The only difference
occurs when Player 2 holds the J : she might be tempted into betting when facing a pass (in
which case there is a chance of Player 1 winning 2 units rather than 1) but she certainly won’t
do so when faced with a bet. Hence we remove all the strategies for Player 1 which have a B
in the second component. That leaves 2 × 2 × 2 = 8 strategies for Player 1.

Finally we look at the case of Player 2 holding the Q and facing a pass. It must be the
case that Player 1 holds either the J or the K, and we only have to consider those components
of Player 1’s strategies. This leaves us with four strategies for Player 1 (combining PP or B
for the first component with PB or B for the last component), and the four possibilities for
the middle component of Player 2’s strategies: P |P , B|P , P |B, and B|B.

To fill in the resulting table we have to work out how a strategy for Player 2 with the
given middle component would do against a strategy for Player 1 with the given first and third
component. Since either case occurs with the same probability and we are only interested in
dominance we do not have to take probability factors into account.

So if a strategy for Player 1 of the form (PP, , PB) faces a strategy for Player 2 of the
form ( , P |P, ) then, under the assumption that she has the Q and he has either the J or the
K, there are two cases which are equally likely.

Player 1 has the J : The course of play will be P, P and the pay-off will be −1 for Player 1.

Player 1 has the K: The course of play will be P, P and the pay-off will be 1 for Player 1.

Hence we can summarize this case by saying that the expected pay-off will be 0. Treating
all the other cases in the same way we obtain the following full table.

Second component
P |P B|P P |B B|B

(PP, , PB) 0 0 1 1
(PP, , B) 0 1 0 1
(B, , PB) 2 −1 3 0
(B, , B) 2 0 2 0
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We notice that strategy 3 for Player 2 is dominated by strategy 1 and that strategy 4
for the same player is dominated by strategy 2. This means that having P |B or B|B in the
second component is something that Player 2 should avoid.7

We can argue the same case without looking at a matrix. Assume Player 2 holds the Q
and play so far consists of a pass P by Player 1. If she bets then if Player 1 holds the J he
will pass (because we have excluded his other strategies) and she will win 1, and if he holds
the K he will bet (again because we have excluded his other strategies) and she will lose 2.
If, on the other hand, she passes then she will once again win 1 if Player 1 holds the J , but
only lose 1 if he holds the K.

Hence we we strike all her strategies which have P |B or B|B in the second component.
That leaves 2 × 2 × 1 = 4 strategies for Player 2 (P |P or B|P in the first component, the
same for the second, and B|B in the third).

Discarding all these strategies makes it feasible to look at the full matrix of the remaining
strategies for this game. To calculate the pay-off function for playing, say, (PP, PP, PB)
against (P |P, P |P, B|B), we have to calculate the expected pay-off. For this we must consider
all possible deals. We give these as pairs, with the first component the card of Player 1, and
the second component that of Player 2. Each of these deals occurs with the probability 1/6.

(PP, PP, PB) versus (P |P, P |P, B|B) :

(J,Q): The moves played are P, P and Player 1 gets −1.

(J,K): The moves played are P, B, P and Player 1 gets −1.

(Q,J): The moves played are P, P and Player 1 gets 1.

(Q,K): The moves played are P, B, P and Player 1 gets −1.

(K,J): The moves played are P, P and Player 1 gets 1.

(K,Q): The moves played are P, P and Player 1 gets 1.

Hence the expected pay-off when playing (PP, PP, PB) against (P |P, P |P, B|B) is

(1/6 × (−1)) + (1/6 × (−1)) + (1/6 × 1) + (1/6 × (−1)) + (1/6 × 1) + (1/6 × 1) = 0.

We give the full matrix, but to make it easier to compare the entries, we multiply all of
them by 6. So the true game matrix is 1/6 times the one given below.

(P |P, (P |P, (P |B, (P |B,
P |P, B|P, P |P, B|P,
B|B) B|B) B|B) B|B)

(PP, PP, PB) 0 0 −1 −1
(PP, PP, B) 0 1 −2 −1

(PP, PB, PB) −1 −1 1 1
(PP, PB, B) −1 0 0 1
(B, PP, PB) 1 −2 0 −3
(B, PP, B) 1 −1 −1 −3

(B, PB, PB) 0 −3 2 −1
(B, PB, B) 0 −2 1 −1

One can easily verify that the following 12 mixed strategies are equilibrium point strategies
for Player 1 for this matrix (and thus for simplified poker):

7It should be pointed out that we could argue as we did only because all strategies consist of independent
components.

58



2/3 (PP, PP, PB) + 1/3 (PP, PB, PB)
1/3 (PP, PP, PB) + 1/2 (PP, PB, B) + 1/6 (B, PP, PB)
5/9 (PP, PP, PB) + 1/3 (PP, PB, B) + 1/9 (B, PB, PB)
1/2 (PP, PP, PB) + 1/3 (PP, PB, B) + 1/6 (B, PB, B)
2/5 (PP, PP, B) + 7/15 (PP, PB, PB) + 2/15 (B, PP, PB)
1/3 (PP, PP, B) + 1/2 (PP, PB, PB) + 1/6 (B, PP, B)
1/2 (PP, PP, B) + 1/3 (PP, PB, PB) + 1/6 (B, PB, PB)
4/9 (PP, PP, B) + 1/3 (PP, PB, PB) + 2/9 (B, PB, B)
1/6 (PP, PP, B) + 7/12 (PP, PB, B) + 1/4 (B, PP, PB)
5/12 (PP, PP, B) + 1/3 (PP, PB, B) + 1/4 (B, PB, PB)
1/3 (PP, PP, B) + 1/3 (PP, PB, B) + 1/3 (B, PB, PB)
2/3 (PP, PB, B) + 1/3 (B, PP, B)

These are also all the equilibrium point strategies for that player. Player 2 has far fewer
such strategies, namely just the following two

1/3 (P |P, P |P, B|B) + 1/3 (P |P, B|P, B|B) + 1/3 (P |B, P |P, B|B)
2/3 (P |P, P |P, B|B) + 1/3 (P |B, B|P, B|B).

There are ways of categorizing these strategies using behavioural parameters, but we will
not look at those here. The interested reader is encouraged to look up the treatment in
Jones’s version or to go back to the original article.

It is worth pointing out that two practices employed by experienced poker players play a
role in Player 1’s arsenal of optimal strategies, namely bluffing and underbidding.

Bluffing means betting with a J (a card which is bound to lose if a comparison is forced)
and underbidding refers to passing (at least initially) with a K (a card that is bound to win
under any circumstances). Almost all Player 1’s equilibrium strategies involve both those.
Similarly, all such strategies for Player 2’s involve bluffing. Bluffing is not really an option
for her, due to the specific rules of our game.8

When looking at ordinary poker it is commonly observed that the average player will

• not bluff often enough—people generally have the feeling that they should be able to
win a ‘show-down’ before betting on their cards;

• not underbid often enough. This case is slightly more complicated. In ordinary poker
(as opposed to our ‘baby’ version here), underbidding is usually more varied. When
people have a reasonably good hand, they will almost inevitably bet fairly highly on it,
assuming erroneously that their having an above-average hand must mean that nobody
else can have one (let alone one which beats theirs). While our example is too simple
to show this effect, we get at least its shadow.

The value of simplified poker is −1/18, so Player 1 will lose on average. In this simplified
version of the game having to take the initiative is a disadvantage. In other such variants the
opposite is true. The lesson of this section is that game theory can indeed help us to improve
our game at the kinds of games people play as a pastime. If the actual game is too large to
analyse, looking at simplified versions can produce useful guidelines.

A Exercise 23. Alice and Bob play a different form of simplified poker. There are three
cards, J , Q and K, which are ranked as in the above example. Each player puts an ante of one
pound into the pot, and Alice is then dealt a card face down. She looks at it and announces
‘high’ or ‘low’. To go ‘high’ costs her 2 pounds paid into the pot, to go ‘low’ just 1. Next
Bob is dealt one of the remaining cards face down. He looks at it and then has the option to
‘fold’ or ‘see’. If he folds the pot goes to Alice. If he wants to see he first has to match Alice’s
bet. If Alice bet ‘high’ the pot goes to the holder of the higher, if she bet ‘low’ it goes to the
holder of the lower card.

Draw the game tree for this game, indicating the information sets. Convince yourself that

8If one assumes that both, the ante as well as the amount players can place on a bet, are real numbers, then
one can play with these parameters and see their effect on the equilibrium strategies. Some of these variants
rule out bluffing. Again, see Jones for a discussion of this.
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Alice has 8 (pure) strategies and that Bob has 64. Discard as many of these strategies you
can by arguing that there are better alternatives. You should be able to get the game down
to 2 strategies for Alice and 4 for Bob. Find the matrix for the reduced game and solve it.9

Summary of Chapter 2

• The solution to a game is often taken to be given by equilibrium points.

• For zero-sum games equilibrium points make sense, but for other games it is not obvious
that these can be considered solutions.

• In order to guarantee the existence of an equilibrium point we may have to switch to
mixed strategies, meaning that pure strategies are chosen with certain probabilities. We
can also define mixed strategies for games in extensive form.

• Equilibria have the property that if any one player moves away from them unilaterally,
his pay-off can only get worse.

• Every (non-cooperative) game has at least one equilibrium point (of mixed strategies).

• In 2-person zero-sum games, all equilibrium points lead to the same pay-off, the value
of the game. The value is the least pay-off that Player 1 can guarantee for himself, while
Player 2 can ensure that it is the highest amount she may have to pay to Player 1. In
such a game, it makes sense to talk of equilibrium strategies as optimal for the respective
player. If the game is one of perfect information, then an equilibrium point consisting
of pure strategies exist.

• In practice, we can make a game matrix smaller by removing dominated strategy. How-
ever, finding equilibria is a hard problem in general. Only in the 2-person zero-sum case
do we have a polynomial-time algorithm.
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Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V. Vazirani. Algorithmic Game
Theory. Cambridge University Press, 2007.

J. D. Williams. The Compleat Strategyst. McGraw-Hill Book Company, Inc. 1954.

J. F. Nash. Non-cooperative games. In: Annals of Math., 54, 286–295, 1951.

J. von Neumann and O. Morgenstern. Theory of Games and Economic Behaviour.
Princeton University Press, 1947.

M.J. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press, 1994.
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9This problem isn’t easy—and there will not be anything like it in the exam. It is a good exercise in
reasoning about strategies, which is why I left it in the notes.
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Chapter 3

Two important algorithms

In the previous chapter our remarks regarding calculating equilibria were mostly directed at
games in normal form. As is explained in Chapter 1 many games of interest are too large to
be presented in normal form. Recall that the size of the game tree is exponential in its height
and that the number of strategies is roughly exponential in the size of the game tree.

In order therefore to play games such as chess, checkers, go and many others we cannot
rely on having the game in normal form. This chapter is concerned with two algorithms that
allow us to find certain solutions (which are not necessarily equilibria) to games in extensive
form. Moreover these algorithms are also used to find ‘good’ strategies in situations when
precise solutions cannot be calculated because the game in question is too big.

Our starting point is the proof of Theorem 1.10 and Proposition 2.12. In the former there
is a hint of an algorithm which there determines whether or not a player can force a win
or ensure a draw. In the latter the same idea is applied to calculating the highest pay-off a
player can guarantee for himself, no matter what the other player does.

We extract that algorithm and consider what it calculates in more general situations. The
result is the minimax algorithm. It can be refined in a way that makes it faster by carefully
considering whether the entire game tree has to be searched. The result of this is known as
alpha-beta search or alpha-beta pruning. Even in situations where the game tree is too
large to be traversed fully these algorithms can be employed, and the chapter on game-playing
program describes their vital role for that situation.

3.1 The minimax algorithm

In the proof of Proposition 2.12 an algorithm is described that finds the value of a 2-person
zero-sum game. It does so by recursively determining the value of each sub-game. In a 2-
person zero-sum game the value is the largest expected pay-off Player 1 can guarantee for
himself (and its negative is the largest expected pay-off Player 2 can guarantee for herself).

Looking at the algorithm again we note the following:

• There is no reason to restrict the algorithm to two players.

• If we run it in the non zero-sum case we have to run it separately for each player.

• In that case when carrying out the algorithm for Player i we should at each step calculate

– max vj if it is Player i’s turn at the current node and

– min vj if it is another player’s turn and

– qjvj if it is a chance move and qj is the probability for choosing the jth sub-tree,

where vj is the value already determined for the jth sub-tree.

• For each sub-tree this algorithm calculates recursively the largest expected pay-off
Player i can guarantee for himself (even in the worst case). We call this the value
of the game for Player i.
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• If for each node where it is Player i’s turn we remember which choice(s) lead to the
maximal pay-off we can determine the strategies that guarantee this pay-off.

In the case of a 2-person zero-sum game the number determined for Player 1 is the value
of the game. This algorithm has to be altered if we are dealing with games of imperfect
information.

Question 22. How could the algorithm be adapted to cope with a game of imperfect infor-
mation?

However, in the general case it is important to note that the number calculated for each
player does not necessarily correspond to the pay-off at an equilibrium point. All we are
doing is calculating the ‘best choice that maximizes the pay-off in the worst case’. We hence
implicitly assume that the other players will play in a manner that does the worst for Player i
when in reality these players are all concerned with maximizing their own pay-off. Only in
the 2-person zero-sum case do the two objectives coincide.

One could try an alternative algorithm: Instead of looking for the smallest vj if it is
another player’s turn one could attempt to pick the vj which belongs to the sub-tree that
maximizes the pay-off for the player whose turn it is. However, there might be several such
moves leading to the same pay-off for that other player, but to different pay-offs for Player i,
so this is not a deterministic algorithm any longer! Clearly there is no sensible way of picking
one of several such subtrees.

Hence we have an algorithm that can calculate the value of the game for each player which
we can think of as minimal expected pay-off for each player (in the sense that it is the pay-off
that a player can ensure for himself, no matter what the other players do). In the case of a
2-person zero-sum game

• the value for Player 1 is the value of the game while

• the value for Player 2 is the negative of the value of the game.

Question 23. What are the advantages and disadvantages of following the play suggested
by the algorithm in a 2-person general sum game?

What we have described here is a recursive algorithm: To find the value of a position (and
its corresponding sub-tree), we need to know the values of all its immediate successors, and
to calculate those we need to know the values of their immediate successors, and so forth,
until we reach a final position, where we can read off the value from the pay-off function.

But how do we calculate this value in practice? So far we have thought of it in a bottom-up
approach, that is, one starts at the final positions and work one’s way up from there. This
approach is demonstrated in Figure 3.1.

But in practice the game tree is typically given by

• the root and

– links to all the immediate sub-tees or

– a way of generating all the immediate sub-trees.

(Sometimes a node is linked to its siblings, but usually there are no additional links available.)
Hence in order to get to a leaf we have to work our way down from the root. If we found

all the leafs first in order to follow the bottom-up approach we would have to traverse a lot
of the tree several times. Many positions and their values would have to be kept in memory
at the same time (or generated repeatedly).

Instead this algorithm is typically programmed using a depth-first approach. An example
of calculating the value for Player 1 for the root of the game tree (and thus for all the positions)
is given in Figures 3.2 and 3.3. The only values that are known at the start are those of the
leaves (once the leaves have been found/generated).

This procedure is called the minimax algorithm, because minima and maxima (over the
values of successor positions) are taken as it proceeds. Figures 3.2 and 3.3 assume that from
each node, we can only move to its children and its parent. If the chosen data structure knows
about siblings then it is not necessary to return to the parent between visiting two siblings,
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Figure 3.1: A bottom-up approach to determining the value

?

?

?

2 −1 2 1

2 −24

−1

P1

P2

P1

1

1 2 −1 2 1

2 −24

−1

P1

P2

P1

P1

P2

P1

?

?

?

?

2 −1 2 1

2 −24

−1

1

?

2 −1 2 1

2 −2

−1

P1

P2

P1

1

? ?

? ?

1 2

3 4

5 6

2 4 2

1 2 −1 2 1

2 −24

−1

P1

P2

P1

1 2 −1 2 1

2 −24

−1

P1

P2

P1

?

?

Figure 3.2: A depth-first approach—the minimax algorithm
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Figure 3.3: A depth-first approach—the minimax algorithm

but this speed is gained at some cost to the space needed to store the currently required part
of the game tree.

Hence we have identified a way of finding equilibria point for a 2-person zero-sum game of
perfect information which does not require that all the strategies be identified first (provided
we record all the decisions that lead to the identified value). In the next section we discuss
ways of speeding up the minimax algorithm (so that we can deal with even larger games).

B Exercise 24. (a) Carry out the minimax algorithm for each player in the game pictured
in Figure 3.4. What are the values for the root of the game, which are the corresponding
strategies, and what happens if they play these strategies against each other?

(b) Apply the minimax algorithm to the game from Exercise 10 (b).

It has to be pointed out here that the minimax algorithm as described does not apply to
games which are of imperfect information. This should come as no surprise: While all the
positions in the same information set must have the same immediate moves, ‘down the line’
the game trees will become different, and in particular they will lead to different pay-offs. A
typical example are card games: A player only knows his own hand, and his moves are the
same initially no matter what cards the other players hold. But eventually the pay-off will
depend on everybody’s hand, so there cannot be a good decision procedure which makes do
without that information (the game trees for card games are typically such that the potential
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P1
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P1 (2, 3) (−2, 4)(4, 3)

(2,−2) (1, 2)(−1, 3)(2,−2)(1,−1)

(−1, 4)

Figure 3.4: A non-zero sum game

difference in pay-offs for positions in the same information set is huge). Compare Simplified
Poker, Chapter 2.7. One can adjust the algorithm to cope with that to some extent, but the
result is not necessarily as useful:

If the uncertainty regarding the current position is a result of

• a chance move then one could take the expected pay-off for the Player i in question;

• another player’s move then one could take the worst-case pay-off for Player i.

However, in many practical examples the uncertainty arises from a combination of the two,
requiring a rather more careful analysis. Otherwise the algorithm will no longer calculate the
value as defined.

3.2 Alpha-beta pruning

The minimax algorithm allows us to find strategies maximizing the worst case pay-off without
having to generate all strategies first. It does so by traversing the tree, visiting each leaf node
precisely once. This looks at first sight as if it is an optimal solution. But, in fact, it can
be improved upon. In the small games typically drawn in this notes the difference may seem
trifling, but with larger games (which can easily be held in a computer) the difference can
be enormous. Most game-playing programs for chess, go and many other games use the
algorithm we introduce below. They would be much less effective without it. We see in the
following chapter how it is typically used.

The idea behind alpha-beta pruning is to use the values calculated for the sub-games so
far to make decision on whether or not it is worthwhile to look at other sub-games. Consider
the situation in Figure 3.5.

At the root, we have as yet no idea at all what the real value is. All we know is that it
is a real number, so we know it is somewhere in (−∞,∞). In order to find out its value we
need to search the children of the root. As we pass down to them we pass on what we know
already in terms of the possible values. So far, that is nothing—that is, the values we are
interested in are all those in (−∞,∞).
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Figure 3.5: A minimax calculation passing down relevant ranges—alpha-beta pruning

Then we reach a position for which we can just read off the value, namely 4. Once we
know this we know that the parent of that leaf, the node marked A, being a min node, will
have a value of at most the value of this child, 4. So when we return to A we update the
available information: The true value of the note is in the interval (−∞, 4]. When we look at
other children of A we are only interested in their values provided that they are in the given
range. Values larger than 4 will not contribute to our calculation of the value of A. Hence
when we descend to the next child, the node B we pass along that we are only interested in
values in (−∞, 4].
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Figure 3.6: A minimax calculation passing down relevant ranges—alpha-beta pruning

Passing down to the first child of B we can read off another value, namely −2. That value
is returned to B and we now know that the value of B is at least −2 since it is a max node.
We therefore now have

• a lower bound −2 for the value of B and

• an upper bound 4 for the value of A which gives us an upper bound for those numbers
we are interested in when it comes to determining the value of B.
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Figure 3.7: A minimax calculation passing down relevant ranges—alpha-beta pruning

We visit the node C, again passing along the range of values we are interested in. We find
a value −4 which is outside that range.
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Figure 3.8: A minimax calculation passing down relevant ranges—alpha-beta pruning

We now know the following:

• In order to determine the value of A we only need to consider values of B which are
below 4.

• The value of B is at least −2 and so only need to look at values for its children if these
are above that number

• The value of C is at most −4, hence it will not contribute to calculating the value of B.

Hence we do not have to determine the value of C to find the value of either B or A! As
a consequence we do not have to look at any of the other children of C. We have ‘pruned’
part of the tree and do not have to visit any nodes in that part.

When we return to the node B we know that its value is −2 too, and we report that value
upwards to its parent A. We can now update what we know about the value of A–since it is
a min node its value will be at most −2.
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Figure 3.9: A minimax calculation passing down relevant ranges—alpha-beta pruning

We move to the node D and then to its first child. Let us assume that we eventually
establish a value of 1 for it as indicated in Figure 3.10. Then we can once more stop searching
the tree below D: We know that a value for D below −2 contribute to the value of A. We
have just discovered that the value of D is at least 1, so the true value of D is not relevant
to calculating the value of A. We have no need then to look at any other children of D to
determine the value of A and we can prune part of the tree once again.

The fact that 1 is not in our range of interest is equivalent with the fact that it will not
be of relevance to the value of nodes higher above it. This establishes a value of −2 for the
node A.
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Figure 3.10: A minimax calculation passing down relevant ranges—alpha-beta pruning

Note that in order to find this value we did not have to search the entire tree rooted there!
By passing down the relevant ranges as we recursively move through the tree in a depth-first
manner, we may cut off the search at various points. That is what alpha-beta search is all
about. We continue with our example.

Returning to the root for the first time we can finally give a smaller possible range. The
value we will obtain for it is at least −2 since the max player can ensure that by moving to
the first child. Let us assume that further search eventually returns a value of 1 for the second
child of the root.
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Figure 3.11: A minimax calculation passing down relevant ranges—alpha-beta pruning

Again this value is reported to the root and leads to an update of the relevant range—we
now know that the value of the root is at least 1, which the max player can ensure by moving
to the second child of the root.

We descend to the third child of the root E, again passing along the relevant information.
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Figure 3.12: A minimax calculation passing down relevant ranges—alpha-beta pruning

If eventually we find a value of −1 for the first child of E as in Figure 3.13, it is again
outside of the relevant range, and once more we may stop our search without traversing the
tree further. We now know that the value of the root is 1.
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Figure 3.13: A minimax calculation passing down relevant ranges—alpha-beta pruning

Let us summarize how we did this. On each recursive call of the procedure that determines
the value, two parameters (the ‘alpha’ and ‘beta’ in ‘alpha-beta pruning’, or ‘alpha-beta
search’) are passed along to indicate the relevant range of values. At the start, these are set
to −∞ and ∞ respectively. When we get to a new node we know that are only interested in
values between α and β. When we now visit the children of that node we (eventually) find a
value v for it. We then do the following.
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Node is of type
Value v is max min

ignore v and move on value of current node is irrelevant;
below or equal to α to next child return to parent

set α to v and move set β to v and move
between α and β on to next child on to next child

value of current node is ignore v and move on
above or equal to β irrelevant; return to parent to next child

It should be clear where the ‘pruning’ in alpha-beta pruning comes from: By finding that
we do not have to explore a particular subtree we effectively cut it off from the tree that we
will have to traverse to find the value of the root. In other words, we ‘prune’ the tree under
consideration by cutting off irrelevant parts.

We note that alpha-beta pruning is particularly effective if the first child investigated is
the best move for the Player who makes it:

The final value of a node is the value of that particular child which corresponds to the
best move for the Player whose turn it is. Hence by investigating that child first we guarantee
that we will never get a better value coming from another child, which means that all the
other children will allow some pruning!

When carrying out alpha-beta pruning it is therefore advantageous to try promising moves
first. How to find ‘promising’ moves is a science in itself which clearly has to be adapted to
the game under consideration. We look at this issue in the section on game-playing programs.
Alpha-beta pruning can be applied to find values for a game for all players, and strategies
which ensure that a player will get a pay-off at least as high as that value.

This works provided that the game is small enough so that the game tree can be created as
required. For many interesting games this is not the case. In that situation something that is
typically is done to have a heuristic that tries to ‘guess’ the true value of a node. Alpha-beta
pruning is then carried out by searching to a given depth and then using the heuristic value
as if it were the actual one. Clearly if the heuristic is far from reality then this leads to poor
results.

In a 2-person zero-sum game may use alpha-beta pruning to find equilibrium strategies
as well as the pay-off at the equilibrium points. In particular that means if there is a winning
strategy for one of the players then this algorithm will find it.

S Exercise 25. Find a winning strategy in the following games using alpha-beta pruning.
Try to do so without first creating the game tree, and make use of symmetry whenever you
can. Which player can force a win? For the player who isn’t so lucky, can you find a ‘good’
strategy that allows him to win if the other player makes mistakes? Can you find a way of
generalizing your strategy to larger Chomp/Nim games?

(a) 2 × 3-Chomp;

(b) (3, 3, 3)-Nim.
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Summary of Chapter 3

• For general games we can define a value for each player which is the minimum pay-off
the player can secure for himself.

• For 2-person zero-sum game the value for Player 1 agrees with the one introduced in
Chapter 2.

• If a game is small enough that its tree can be fully traversed then the minimax algorithm
can be used to find these values, as well as strategies guaranteeing these as the worst
possible pay-off.

• This can be improved upon by alpha-beta pruning, where information regarding relevant
values is passed down in the search, so that parts of the tree can be discarded as
irrelevant. This makes finding good strategies faster, and it allows applying the idea to
larger games.

Sources for this chapter

Most of the material in this section is well known, although this presentation is original. I
did have a look, however, to see how other people present it, and found:

David Eppstein’s notes on Strategy and board game programming at the University of Cali-
fornia at Irvine, http://www.ics.uci.edu/~eppstein/180a/.

A.N. Walker’s notes on his course in Game Theory (with a part on alpha-beta pruning) at
the University of Nottingham, http://www.maths.nott.ac.uk/personal/anw/G13GAM/.

Pui Yee Chan, Hiu Yin Choi and Zhifeng Xiao’s webpage on Game trees and alpha beta search
at McGill University, http://www.cs.mcgill.ca/~cs251/OldCourses/1997/topic11/.
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Chapter 4

Game-playing programs

The previous chapter concerns games that are small enough that alpha-beta pruning can be
applied to determine values as well as strategies guaranteeing them. In particular in the
case of 2-person zero-sum games we can use it to find equilibria. There are, however, many
games whose game trees are too large to be amenable to these methods. This chapter is
about establishing how such games still find good moves to make (and so determine good
strategies). The methods described here underlie every available commercial chess program
as well as many others. We now only consider 2-person zero-sum games.

4.1 Writing game-playing programs

We introduce the various tasks that need to be carried out to write a game-playing programs
and then discuss them in some detail. Examples of the kinds of games that we are interested
here are chess, go, othello (also known as reversi), hex, go-moku, connect-4, checkers, and
backgammon. Note, however, that we do not make many comments about chance elements.

The first task that has to be performed is to implement a way of representing the
current position and generating the legal moves for a position. The latter is necessary
so that the game tree can be generated as needed.

All successful programs for the kind of games we are interested in involve some version of
a minimax algorithm with alpha-beta pruning. Since we are interested here in finding a good
next move, for the remainder of this chapter we refer to this as alpha-beta search.

But how can we employ this algorithm in situations where it is not feasible to work one’s
way to the final positions of the game in order to calculate values for the various nodes? What
these programs typically do is the following:

• Use alpha-beta pruning to search the game tree to a specified depth.

• When a node at the given depth is reached use a heuristic to determine an approximate
value for that node without searching the game tree below it.

• Use the approximate value as if it were the real one.

This idea has proved to be very successful in finding good strategies.
Heuristics like this are referred to as evaluation functions. They assigns a score to a

given position based on various criteria which depend on the game in question. This is a tough
job: Imagine you had to look at a chess board and say somehow how good a position this is!
Typically there is no one right answer to the question—what is required of a good evaluation
function is that it gives a decent approximation, and in particular that it can compare one
position to another. To put it bluntly, an evaluation function is guessing the true value of a
position, and it is the job of the programmer to make it the most educated guess possible. In
particular if the evaluation function assigns a higher value to some position than to another
then it ought to be the case that it is easier to win from the former than from the latter!

For such a program to work well
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• the evaluation function must be as accurate as possible and

• the program must search the game tree to the highest depth possible (using alpha-beta
search).

The limiting factor regarding the latter is speed—the program needs to return a move
within a given amount of time. Hence programmers typically aim to optimize the processes
of

• generating the game tree (which requires finding, doing, and undoing moves) and

• writing the evaluation function in a form that is quick to calculate for a given position.

In competitions programs typically have a limited amount of time, either per move or for
a given number of moves. Good programs will search the game tree as deeply as possible
given time constraints while also keeping track of the best move found so far. If the search
has to be aborted for time reasons this allows the program to play at least a sensible move.

To see a graphical presentation of the way a particular chess programme searches among
positions, go to http://turbulence.org/spotlight/thinking/chess.html.

One amusing phenomenon in computers playing games is that every now and then they
spot lines, due to carrying out an exhaustive search, which are so complicated that human
opponents are unlikely to see them. One program, playing a Grandmaster, suddenly seemed
to offer a rook for capture for no reason that the assembled experts could discern. After the
game was over they made the machine go back to that position and asked it what would
happen if it had made the move judged ‘obviously better’ by the audience. The machine
pointed out an intricate mate which it was trying to avoid. Arguably, it would have been
better off leaving the rook alone and just hoping that the opponent wouldn’t see the mate!

Another phenomenon that comes up with machines playing games is that if there is a
mistake in the program, for example it has a weakness if a particular line or position comes
up, then this weakness can be explored over and over again, because most programs are
incapable of learning. Many tournaments between various programs seemed to be more
about who could discover whose built-in faults, rather than whose program genuinely played
best!

In this chapter we discuss the following:

• possible solutions to the problem of representing the board and finding valid moves,

• some potential criteria for finding reasonable evaluation functions,

• variations on carrying out alpha-beta search and

• some of the pitfalls that typically arise, as well as other components that are employed
by some programs.

4.2 Representing positions and moves

Speed is the one thing that is at the bottom of every decision made when designing a game
playing program. Hence even the internal presentation of positions and moves is important:
Speeding up the program’s ability to generate, do and undo moves makes the whole search
process faster, and since the program will spend a lot of time doing that, getting this right
can make a real difference. Game programmers quite often use clever encodings which allow
bit-wise operations to make their programs faster.

Let us consider the example of chess. Obviously the current position on the board will
have to be represented in the program. But there also has to be a way of denoting whose
turn it is, whether a player can still castle, and whether a capture en passant is possible.
Worse, there are rules about repeating previous positions in chess (which will lead to a draw),
so the program has to have a way of remembering those! Clearly, whichever format is used
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to represent a board position, saving all previously seen positions would be expensive, and
searching them a nightmare.

Chess programs typically use a large hash table to keep track of positions that have
occurred in play. This table can also be used to keep track of what is currently known about
a position that has been searched previously: When we search to depth, say, 8 then every
position we may be in after we have made a move, followed by one of the other player, has
already been searched to a depth of 6. If we can remember something about that search we
can use the information

• to pick an order in which to examine the available moves (remember that the better the
first searched move is the more we can prune the tree)

• provide a ‘fallback-move’ in case carrying out the current search to the desired depth
takes too long.

Something else that should be easily possible in the program is to undo moves. This is
not so much in case a (human) opponent wishes to cheat by reconsidering a move made, but
because in the course of generating the game tree and carrying out alpha-beta search, moves
have to be made and undone. That means that the program will have to remember where a
given piece came from, and which, if any, piece was captured by the moves.

A fairly obvious presentation of the game board is as an 8 × 8 array, with each element
of the array containing the code for one (or none) of the pieces. To generate valid moves, a
program then has to loop over the array to pick up one piece after the other. The moves of
knights are easy in the sense that all it takes for a given move to be valid is that the field where
the piece ends is not already occupied by a figure of the same colour—that’s just one look-up
operation. For a king, not only does the field it goes to have to be vacant of own pieces, it
also must not be a field any of the enemy pieces may go to in one move, so the program also
has to figure out the valid moves for the opponent. For the other pieces, rook, bishop, queen
and pawn, the program has to make sure that all the fields on the way to the new one have to
the new position are empty, generating many more look-up operations.1 Finally the program
has to ensure that the move would end on a valid field and not go beyond the borders. When
a move has been made the position is updated by changing the entries in source and target
fields. Even with a simple figure like a pawn, there are four possible moves: move one field
forward, move two fields forward, capture on the left and capture on the right (including the
possibility of capture en passant).

An alternative to this presentation is to give each square of the board a number (a single
byte), where the high four bits decode the row and the low four bits the column, leading to
a table like this:

a b c d e f g h

0000 0001 0010 0011 0100 0101 0110 0111 low bits

8 0111 112 113 114 115 116 117 118 119
7 0110 96 97 98 99 100 101 102 103
6 0101 80 81 82 83 84 85 86 87
5 0100 64 65 66 67 68 69 70 71
4 0011 48 49 50 51 52 53 54 55
3 0010 32 33 34 35 36 37 38 39
2 0001 16 17 18 19 20 21 22 23
1 0000 0 1 2 3 4 5 6 7

high bits

To move one field to the left or right, just subtract or add one. To move up a row, add
16, to move down a row, subtract 16. The whole board is then represented as an array with
128 entries, only 64 of which correspond to actual fields on the chess board. At first sight,

1At least the program should be clever enough to remember fields previously looked up when trying to
move a bishop, rook or queen one field beyond the one previously tried.
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this is puzzling—why use this particular presentation?2 The answer is that checking whether
a number describes a valid field is very easy: It does if the number i satisfies i&0x88 == 0
(where & is a bitwise operation and 0x88 is the hexadecimal representation of the number 136).
It is the reason why this presentation is sometimes referred to as 0x88. It provides a sufficient
speed-up over our first one that it is implemented in a number of chess playing programs.

Another popular representation uses bitboards. Rather than use an array where entries
stand for a square on the board and hold the type of piece on that square, the approach here
is, for each piece, to hold a presentation of the board indicating where to find such a piece.

The advantage of this is that, given a particular piece, for each square of the board we
require only one bit to state whether or not that piece can be found on that square. That
means that for every piece we can store the required information in a 64-bit word (or two
32-bit words). Then many operations can be carried out using bit-wise Boolean operations,
speeding them up considerably. Let us consider an example.

Figure 4.1: A chess position

In the board position given in Figure 4.1, the following bitboard describes the position of
the white pawns.

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 1
0 0 0 0 0 0 0 0

The bitboard representing all the fields occupied by black pieces is then merely the bit-wise
‘or’ of all the bitboards for the black pieces. Bit-wise operations are extremely fast, which
can be used to good effect here. Similarly we can compute a bitboard for all the occupied
positions, or just those occupied by a white piece. A move of a piece by one row consists of
shifting the corresponding bitboard by 8. If a bitboard of empty fields is required, a bit-wise

2My source claims that performing a look-up operation in a one-dimensional array is a tad faster than in
a two-dimensional one, but I’m not sure about that.
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negation of the bitboard of occupied fields will suffice—this allows a quick test of whether the
intended move is valid. If required, all the legal moves of pawns by one field can be stored in a
bitboard, and similarly for all legal moves of pawns by two fields (carrying out a bit-wise ‘and’
operation with the board which contains ‘1’s on the fourth row and ‘0’s everywhere else makes
sure only the pawns which are allowed to move two fields will be considered—and constant
bitboards can be prepared at compile time to be available in a library). Pawn captures are
equally quick to calculate (shifting the bitboard by 7 or 9 and bit-wise ‘and’ing it with the
bitboard for pieces of the opposite colour).

The code required when using bitboards is more complicated than that for using arrays.
However, it has the following advantages:

• bit-wise operations are fast;

• bitboards required more than once only have to be computed once (compare that with
checking whether a field is occupied in the array representation);

• several moves can be generated at the same time.

A disadvantages is that it is more complicated to turn a bitboard of possible moves into
a list of such moves. Many tricks are used to make such operations (for example finding the
non-zero bits in a bitboard) fast.

No matter which representation is chosen, undoing moves should be done by having a
stack of moves made with sufficient information to undo them—using a stack of positions is
a lot slower.

In many ways, generating moves (and representing the board internally) is the easiest of
the tasks we have identified. Once it has been implemented, it can typically be left alone, and
no changes will be required down the line provided that sufficient attention has been paid in
the design process. However alpha-beta search works fastest if the best move is considered
first. This is typically done by using results of previous searches, but that information has to
be integrated in the part of the program that generates the moves to be investigated.

4.3 Evaluation functions

Whereas we are mostly concerned with speed when it comes to the internal representation of
moves and position, finding a good evaluation function is a matter of implementing knowledge
about the game in question.

The basic idea for this is fairly simple. Since we cannot expect to work our way through
the entire game tree for chess, or go, we have to have a way of turning positions into values
without further searching the game tree. That is the purpose of the evaluation function. It
provides us with a provisional value for a position, which by force has to be crude. After
all, it is a static process which does not take into account how the game might develop from
a given position. Instead, it is an attempt to assign a value by merely looking at what is
currently on the board. If this part goes wrong, the alpha-beta search will pick moves which
may not lead to good positions, which can then be exploited by the opponent. There is no
way of guaranteeing one has ‘the right’ evaluation function (such a thing certainly does not
have to be unique), and a big part of writing game playing programs consists of watching the
program play and fine-tuning the evaluation function accordingly. Apart from a few common
sense ideas, evaluation functions are therefore mostly based on heuristics.

There is one aspect regarding evaluation functions which concerns speed: Evaluating a
position can be quite a complicated process, with various aspects of the position requiring
scoring. Therefore calculating such an estimated value for each position separately will in-
evitably repeat some of the work done previously, and hence be fairly slow.

By forcing an evaluation function to provide a value by looking only at the current position
it is difficult to take into account, for example, whether the piece in question is protected
against capture by another piece, or whether in case of a capture a recapture would make the
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exchange worthwhile. Some evaluation functions allow a limited further search of the game
tree to provide a more accurate value by taking these issues into account.

Here are some aspects that might be relevant to evaluating a position. Just how important
they are will vary from game to game. To judge a position it is typically important to do
these evaluations for both players—having many pieces on the board does not give White any
advantage if Black is about to checkmate him!

• Material. In chess, that would be the number of pieces, where each piece gets its
own value, in go, it would be a count of pieces on the board, and similarly in, say,
othello. This is not equally useful in all games, however: In othello, for example, it
is not really the number of pieces in one’s own colour that is important, but whether
one holds specific fields, for example corner positions. Quite often the player with the
better position will have fewer pieces on the board. There are other games where the
number of pieces may be irrelevant.

• Space. In some games it is possible to divide the board into areas of influence, where
a given player controls a number of fields. This is particularly relevant for go. In chess,
one can count the number of fields threatened by one player for this purpose, and in
othello the number of pieces which cannot be taken by the opponent (a connected group
of pieces surrounding a corner). One could just calculate the size of these regions, or
attach some sort of weight to them if not all fields are equally important.

• Mobility. Having many different moves available can be an advantage in a game,
othello being a particular example. For chess there is some doubt as to whether or not
this is a useful measure—some people have tried and discarded it while others have
retained the principle.

• Tempo. In games such as go there is a question of which player has the initiative,
that is the ability to make moves which advance his own agenda (as opposed to having
to make defensive moves whose main purpose is damage limitation). Often having the
initiative means that in reply, the other player has to make a defensive move to avoid
worse, leaving the initiative with the original player. In other games, some sort of parity
argument works: there are positions which lead to a win for the player whose turn it is
(or sometimes for the player whose turn it is not), and that often merely depends on
numbers easy to evaluate (in nim and connect-4 these arise quite often).

• Threats. Can one of the players capture (or threaten to capture) a piece? In Connect-
4, or go-moku, does one of the players have a number of pieces lined up already? In
othello, is a player threatening to take a corner?

• Shape. This is really about various pieces on the board relating to each other. In
chess, for example, a line of pawns advancing is much stronger than, say, pawns sharing
a column. In go, shape is about ‘territory to be’—a few well-placed stones outline
a territory which the player can defend when threatened.3Judging shape can be very
difficult, and typically shape is formed by a number of moves being made, where every
one such move improves the position only incrementally, but where the resulting position
can be a lot stronger. Shape is also typically a long-term target. An evaluation function
partially based on shape will have to be based on something other than the simple
addition of piece-based evaluation functions we discussed above.

• Known patterns. In many games there are patterns which come up over and over
again. This is particularly true for go, where there are many libraries of sequences of
moves concerning a small area (such a sequence is known as a joseki, where players
following such an established line can maintain balance). In chess, a bishop capturing

3This is an over-simplification, really, but then go is the game which to date most stubbornly defies pro-
grammers.
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a pawn on the border is often trapped. In othello, it is sometimes advantageous to
sacrifice one of the corners if one can then force ownership of another corner. It might
be worthwhile to program such things explicitly in order to avoid making a bad move, or
to follow the moves from a library if certain constellations are reached. What is typically
difficult is to reliably recognize positions where such patterns should be applied, and to
adjust the moves identified to the current situation.

The above criteria result in a variety of components that might make up the actual
evaluation function. Typically these components are weighted and then added up, where the
weights are determined based on heuristics. The reason for this is that summation is a simple
process for combining numbers, which is fairly fast. There certainly is a question of whether
one could not assign probabilities (for the other player to choose various moves, for example)
to help with defining weights, but game programmers typically do not use such an analysis.

Typically an evaluation function consists of a number of components each with a weight,
that is, given a position p we have

e(p) = w1e1(p) + w2e2(p) + · · · + wnen(p),

where

• the wi are numbers known as ‘weights’ and

• the ei implement one of the measures suggested above.

One can think of the weights as allowing us to give varying importance to the different parts
of the evaluation function.

Typically to improve an evaluation function there are then two alternatives:

• Make the evaluation function more sophisticated by introducing further functions ei.

• Adjust the weights wi to get better results.

Much time is typically spent on the second of these. Here are a few ideas that can be used
to fine-tune the weights.

• Deducing constraints. In games such as chess, every piece is given a material value.
Clearly a rook, say, is more powerful than a pawn, and the material value should reflect
that. By analysing typical games, it can be possible to deduce constraints that these
values should satisfy. chess players know, for example, that it is usually advantageous
to exchange a rook for a two pawns and a bishop, or two pawns and a knight, but a
disadvantage if there is only one pawn involved. Hence the weight of a rook should be
below that of two pawns and a bishop, but above that of one pawn and a bishop. That
drastically reduces the numbers one might have to try.

• Hand tweaking. This is what happens most often in practice. Programmers watch
their implementation play and then try to judge which parameters should be changed,
and how. They perform the change and watch again. This produces reasonable results
fairly quickly, but requires that the programmer knows enough about the game to
analyse what is going wrong.

• Optimization techniques. Rather than use human judgement to tweak any parame-
ters involved, one can use general optimization techniques. One example for these is ‘hill
climbing’: Small changes are made to the parameters, and changes are only kept if they
improve the performance. This requires some sort of measure to judge performance, for
example the percentage of won games against some opponent. This tends to be slow and
risks being stuck in positions where each small change makes the performance worse,
but where a big change might bring huge gains (such situations are known as ‘local op-
tima’). This algorithm can be modified by randomly sticking with some changes which
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do not improve performance in the hope of avoiding this problem. The ‘randomness’ is
controlled by some probabilities which typically should start out fairly high and then
become smaller as a good value is approached. This adjusted method is slower than the
original, but can get good values.

• Learning. When the first game playing programs were written it was envisaged that
machine-based learning would be the most important aspect in developing them. This
faith in Artificial Intelligence has not proved appropriate in practice. All world-class
game-playing programs use other principles foremost. Examples of approaches based
on learning involve genetic algorithms and neural networks. Both are in practice rather
slow methods, and their main advantage is that they do not require much ‘human
intelligence’ in the form of knowledge relevant to the game in question. The reason
they can be very slow is that the number of test games required is typically very high
(commercial game programmers who have worked with these approaches tried about
3000 matches to allow the program to learn about the game, and that was not sufficient
to perform better than hand tweaking). Another problem is that if the program plays
against an opponent that is too good it will lose all the time and never start learning.
As a result learning is more often applied to smaller games.

Almost all these methods require some sort of measure for the performance of the evalua-
tion function which results from a particular choice of parameters. One way of doing so is to
run the program on a large suit of test positions which come, for example, from high-quality
human games, and see whether the program can follow the winner’s actions. (This is actually
useful to just test whether one’s program plays reasonably well, for example by trying it on
‘checkmate in two’ kind of positions.) This method is typically combined with letting the
program play a large number of matches against a known opponent, such as another pro-
gram, or even a version of itself which has different weights, so that the two can be compared
to each other. The problem with the latter is that playing what is, for the most part, the
same program against itself will often lead to the same lines being explored over and over. To
avoid this one might want to start the program(s) from positions a few moves into a game,
or introduce a random factor for the opening few moves.

4.4 Alpha-beta search

As outlined above, a game playing program will apply the minimax algorithm making use of
alpha-beta pruning. Rather than explore the game tree all the way down to the final positions
it will stop at a pre-programmed depth. It will there use the value given by the evaluation
function as an estimate for the real value, and otherwise use the algorithm as described in
Section 3.2. You can find a nice illustration of the number of moves a program might search by
going to http://turbulence.org/spotlight/thinking/chess.html (you must have Java
enabled in your browser for this to work).

In this section we look at some variations of alpha-beta search.
Iterative deepening. One of the problems with searching to a pre-defined depth is

that time constraints may mean that not all moves can be explored. Also when applying
alpha-beta search, the order in which moves are searched becomes vital—the better the first
move, the more pruning can occur. That is why many programs first carry out shallow
searches, deepening the level one by one. This sounds inefficient, but shallow searches are
fast. Compared with an exhaustive search to a higher depth, it does not really amount to
much. This technique is often combined with others which make use of the information gained
from the shallow search. But, if nothing else, we can use this information to decide the order
in which we consider moves in the alpha-beta search, and it ensures that we’ve got a decent
move to make if we should run out of time while searching to a greater depth. And if we use
a hash table as outlined above to keep track of positions already searched then any position
we encounter on the board will already have been searched to some depth before we made
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our previous move, so that sort of information should already be on hand, so that we don’t
have to start from scratch.

Modified alpha-beta search. When we do ordinary alpha-beta search as described in
Section 3.2 we have no preconceived idea what the value of the root of the tree might be. As
the search reports back a value for the child of the current position we get

• successively increasing lower bounds for the value if the current node is a max node,
this value is usually called α (the ‘alpha’ from ‘alpha-beta’);

• successively decreasing upper bounds for the value if the current node is a min node,
this value is typically called β the ‘beta’ from ‘alpha-beta’).

As we descend into the tree we keep track of the current values of α and β by passing
them down and updating them as appropriate.

• If the current node is a max node we only consider moves which lead to a value of at
least α, because we know that we have found a move guaranteeing it, and thus are only
interested in finding better ones. If we find a move with a better value we adjust α
accordingly.

If we find a value of above β then we have discovered a part of the tree that is irrelevant
for our search, and we return to the parent without adjusting α or β.

• If the current node is a min node we only consider moves which lead to a value of at
most β, because we know that we have found a move limiting us to this, and thus are
only interested in finding better moves from the opposing player’s point of view. If we
find a move with a lower value we adjust β accordingly.

If we find a value of below α we know that we have found a value which is irrelevant
for our search, and we return to the parent without adjusting α or β.

It is worth mentioning at least that there is no need to program an ‘alpha-beta for max
nodes’ and an ‘alpha-beta for min nodes’: By using the negative of existing values and
exchanging α and β when moving down one level we can ensure that the same code works for
both kinds of nodes.

Iteratively deepening search provides us with a provisional value, say v, for a position we
want to search to a higher depth now. One can then pretend that one already has an upper
and a lower bound for the possible score. We thus use a range from α to β with

α ≤ v ≤ β

to achieve further pruning as follows. Carry out the alpha-beta search algorithm to the
required depth, but on a max node

• only consider moves which lead to a value at least α (this allows more pruning)—this
is as before, only then α was a value we could guarantee as a minimum;

• if you find a value w above β, stop the search and report w back.

On a min node

• only consider moves which lead to a value of at most β (again, this allows more
pruning)—again this is as before, only then β was a value we could guarantee as being
the maximum achievable;

• if you find a value w below α, stop the search and report w back.

Whereas before we could be sure that values above β (respective below α) resulted from
descending into irrelevant parts of the tree this is no longer true with our guessed parameters,
so we have to keep track of this.

The following cases may then arise
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• The search returns a value in the given range from α to β. This will be the correct
value.

• The search returns a value w larger than β. That means that our preliminary value
was too pessimistic. We have to adjust our preliminary value to w, and might consider
allowing a larger range. This is known as ‘failing high’.

• The search returns a value w below α. That means that our preliminary value was
overly optimistic. Again we have to start over with the adjusted preliminary value w in
the place of v, and again we may want to allow a larger range. This is known as ‘failing
low’.

This technique is known as ‘aspiration search’. In the very best case (where the best move
is explored first, and the considered range always contains the correct value) the total size
of the tree searched is reduced to (

√
b)d, where b is the branching factor of the tree and d is

the depth. That means that using this algorithm, one can search twice as deeply in the same
time (at least in the best case). This explains why such variants of alpha-beta pruning are
employed in almost all commercially available game playing programs.

When combining this alpha-beta search algorithm with the hashing of positions as de-
scribed on page 74 one has to be careful to store enough information for the hash table to
be really useful.4 It is typically a good idea to store the best approximation of a value so
far, together with upper (alpha) and lower (beta) bounds, which may be useful when that
position is revisited.

Move ordering. As stated above, in order for the alpha-beta search algorithm to perform
at its best, that is to prune as often as possible, it is vital that the good moves are explored
first. Of course, the whole point of alpha-beta search is to find good moves, but we can still
use some of the clues we gain along the way to speed the process up as far as possible. For
one, if we have searched a position before, even at a lower depth, we have some idea of which
moves lead to good positions. (This kind of information can come either from a hash table
or from employing an iteratively deepening search.) Secondly, we may have some ideas about
which moves are typically good for the game in question (for example capturing moves in
chess), and lastly we may have found a good move in a similar position (a sibling in the game
tree) which may still be valid. Using these criteria, one should sort the available moves by
expected quality, and then do the search in that order. And quite often (when pruning can be
applied) it is good enough to just order the first few moves because the others may never be
explored. Hence it makes sense to apply a sorting algorithm like SelectionSort or HeapSort
which deliver the sorted items one by one. An obvious choice for a move to search first are
known as ‘killer moves’—moves which literally end the game. In chess these are captures of
big pieces (in particular by small ones), checks and promotions.

When a good such sorting principle is in place and the best move is fairly often explored
first, it can pay off to reduce the range for alpha-beta search on siblings of this expected best
move. If this search fails, a normal search can still be applied. Since rather more positions are
pruned when doing this, it can speed up the program considerably. This technique is known
as ‘PVS’, short for ‘principal variation search’, because everything is compared against this
principal variation (the first move searched). A related idea is discussed below.

Selective extension. Many game playing programs today do not search to a given depth
no matter what the position is. Instead, they are selective about that and search to a greater
depth whenever

• there is reason to believe that the current value for a position is inaccurate or

• when the current line of play is particularly important.

4In fact, one of my sources claims that the proper interaction between the two is not easy to achieve, and
many bugs occur in this area.
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A popular choice is to look at the deepest positions to be evaluated (that is, after reaching
the current search horizon) and extend all lines which start by moves which are likely to change
the evaluation of the position considerably. In chess such moves are capturing moves (and
that is true for other games such as checkers). This is also known as ‘quiescent search’.
Alternatives are to extend the depth of search whenever the line of play under consideration
contains a capturing move (this would be good enough to work for the example in Figure 4.3),
or maybe a check. Clearly this has to be used in a limited fashion or the tree searched might
expand hugely, possibly even infinitely, so some sort of termination mechanism has to be
implemented. But at least this avoids making moves towards a position where, say, the
opponent can capture our queen but our evaluation function thought that our pieces were
placed well enough to give us an advantage over the opponent!

Many programs (for example Deep Blue, see the section on chess) apply an extended
search to moves which they identify as the ‘principal line’, because they start with a move
that is much better (on current knowledge) than its siblings, thus trying to ensure that when
they choose this move no ugly surprises lurk below the horizon. There are also tricks when
instead of increasing the depth of some lines, the depth is decreased on ‘obviously bad’ lines.

4.5 Further issues

Only looking a limited number of moves ahead can lead to some surprising problems. We
discuss two of them here and also provide ideas for solving them. We also look at other
program components used in some commercial software.

Winning positions which don’t lead to wins

One of the problems with alpha-beta search is a situation which seems almost paradox. When
programmed naively, some winning positions may not lead to a win! The reason for this is
not that ‘the algorithm is wrong’ but that it may need some encouragement to force progress.
The reason for that is this: Say we give each winning position (that is, one we know we can
win from) a value of 1000. When looking for the next move to make this will ensure that
from a winning position we will always move to another winning position. That sounds quite
good, but it’s not good enough: It does not ensure that the move we have made leads to an
actual win. Figure 4.2 gives a situation where this idea might fail.

Figure 4.2: Another chess position
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If White moves the king to e6 (one field to the right) then he is still in a winning position,
with Black’s only valid moves being to d8 and f8. Let’s assume Black moves to d8. Then
moving the king back to d6 again gives White a winning position. But if Black now moves
back to e8, we are back where we started and our program might go into a loop. This will
lead to a draw since there are rules about repeating the same position.

We can avoid falling into this trap by assigning a slightly adjusted value to a winning
position, say 1000 minus the number of moves required to get to the win. Then alpha-beta
search will indeed ensure that the program wins when it finds itself in a winning position.5

The horizon effect

One way of formulating the problem explained in the previous item is that while a win can
be forced, it stays forever below the horizon (and the program is happy with moving to a
position from where it can (still) win, because we have not told it otherwise). There is also
the opposite effect.

A program as we have defined it so far is quite happy with bad moves as long as the
consequences lie below the current search horizon. Clearly, there is no way the program can
know about these consequences. We do get an effect when something ‘bad’ is about to happen,
say the opponent might capture one of the program’s pieces. Then the program will often try
to avoid this capture (which might be inevitable) and thus will play a sequence of pointless
moves to keep the event so long that it moves below the horizon, and so effectively can’t be
seen by the program.

Figure 4.3: Yet another chess position

In the situation depicted in Figure 4.3 the black bishop is trapped by the white pawns.
Eventually it will be taken, for example by the white rook moving from h2 to h1, a1 and
finally a2. This would therefore occur after six moves. Assume the program playing Black
searches six moves ahead. An accepted ‘good’ line for Black in this situation is to trade off
the bishop against a pawn by capturing the pawn on b3 and being taken by the pawn on
c2. The three connected pawns then might be good enough to win or draw against the rook.
A program searching six moves will, however, typically move the black pawn e4 forward to
e3, checking the king, a move which requires White to move the king (possibly capturing the

5Clearly there are some programs, such as othello, where this is not required since this game ends after at
most 60 moves.
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attacking pawn). That delays the taking of the bishop long enough so that the program can’t
see it any longer, and it thinks the bishop is safe. A program might thus throw away all its
pawns to delay what is inevitable—setting itself up for a loss as a result.

There are several ways of trying to overcome this problem. One might try adding knowl-
edge to the program so that it can detect when one of its pieces is trapped. This is typically
rather difficult to achieve. Another way is to try and increase the overall depth of search
in the hope that pushing back the horizon will make this sort of situation less likely. But
probably the best tactics to employ is to instead selectively search deeper in situations like
this, where a piece (like the pawn here) is being sacrificed. We discuss this as the next item.

Additional program components

Apart from the components introduced above many commercially available game-playing
programs make use of libraries of some kind so that some moves can be read off rather than
having to be calculated.

Opening libraries. In particular chess playing programs will contain libraries that know
about the typical sequence of opening moves which have been found over time to be strong.
They only begin applying alpha-beta search after the first few moves.

Well-known sequences. Some games allow us to identify situations that are likely to
recur in a number of games, such as joseki in go. Some programs contain software that
recognizes such situations, and a library regarding which moves to play for the next few
moves.

Endgame. Once the game comes towards the end the situation is somewhat simplified
since there are typically fewer moves available. Some games such as chess have endgame
libraries. It is known, for example, that a king and a queen can force a win against a king and
a rook, and how to go about winning in such a situation. One can put this information into
a library for the program to use. Alternatively, in the last stages of the game the game tree
typically has a much smaller branching factor, that is, number of actions at any one node. It
might be possible to search the full game tree once the endgame has been reached.

4.6 The history of chess programs

In this section we look at chess as an example to show how game playing programs developed.
Originally it was thought that one might be able to write programs that mimic human decision
making, but it turns out that most of the improvement in game playing programs over time
has come through the ability to search through more positions in the game tree. This history
also illustrates how many of the ideas introduced in previous sections were developed.

Of all the game playing programs those playing chess have had the most time and man
power invested in them, and as a result they are the most sophisticated. Just how sophisti-
cated up-to-date programs currently are is described below. In the remainder of this section,
when we talk about ‘level of search’, or the like, we typically count a move of the program
followed by a move of the opponent as one level. chess players speak of a ‘ply’ when they
mean what we call a move—for them a move consists of a move by White followed by one by
Black.

In 1950 Claude Shannon (probably known best for his contributions to information theory)
described principles for a program that could play chess. He suggested that each position
should have a value (or score), to be calculated from the number of the various pieces (that
is our ‘material’ criterion), each with an appropriate weight (so that a pawn is worth less
than a bishop, say), their mobility and with special values for good ‘pawn formations’. The
program was then to search the game tree, and Shannon suggested two alternatives:

• The program might search to a given depth, the same everywhere; and he called that
the ‘fixed depth’ method.
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• The program might search to a variable depth depending on the ‘type’ of a position.
Thus it should decide that if a move was ‘obviously bad’ there was no point in searching
the game tree below it. There would have to be some notion of what he called ‘stability’
to decide at which step to stop. He called this the ‘variable depth’ method.

The program was then to apply a depth-first minimax algorithm to adjust the value of some
given position. As discussed above it clearly is not realistic to wait for a program to calculate
the actual value of some position, hence the need to fix a depth for the search in some way.
His outline is still the basis for most game playing programs, although employing alpha-beta
pruning is typically applied to increase speed. Shannon advertised this idea for one to find
some application for computers, but also to gain insights into playing games, and thus into
making intelligent decisions.

In 1951, Alan Turing6 created the first algorithm for computer chess here in Manchester.
Turing had worked at Bletchley Park during the war and where he was a central figure in
the breaking of the German Enigma codes; computing machines were used there in order
to try many different combinations quickly, thus helping with the decoding of messages. In
the thirties he wrote a paper introducing the first formal notion of ‘computability’ with the
help of Turing machines which were named after him. He originally came to Manchester
to help build the first computer here, the ‘Baby’, but was actually a member of the Maths
Department. His chess algorithm was not very good, searching to a low depth and with a very
crude evaluation function. It was meant to be carried out by hand, and he did, in fact, play
games employing this algorithm—making Manchester the place where the first chess playing
program was designed and ‘executed’.

Soon after that the first ‘real’ chess programs appeared, and in 1966 the first match
between a Soviet and a US American program took place, the former winning 3 to 1. The
rules for the match gave a time-out of 1 hour for every 20 moves, where each player was
allowed to bring ‘saved time’ forward into the next 20 moves. That meant that searches had
to be cut off, and typically a program would allow 3 minutes per move, that is, the same time
for all moves (without trying to take into account how complicated the current situation was).
The decision of which moves to explore first (and thus which moves might not be explored at
all) was fairly random.

In 1974 the first world computer chess championships took place, which were repeated
every three years thereafter. By the late eighties, the following improvements had been
made.

• In order to avoid exploring the same position twice programs employed hash tables to
remember which positions had already been searched, and what value had been discov-
ered for them. This technique is known as employing transposition tables. However,
programs typically failed to update this value if in the course of the game a different
one was found.

• Most programs had opening libraries so that at the beginning, programs would just
follow ‘approved opening lines’ (and thus not make catastrophic moves early on).7

• Programs employed hash tables to store ‘tricky positions’ for future play, thus imple-
menting some sort of ‘learning’.

• Rather than doing a pure depth-first search for the next move, many programs switched
to ‘iteratively deepening search’. A shallow search is carried out for all possible moves,
and the result might be used to decide in which order to explore these moves to the
desired depth. No pruning should be carried out at this point, since moves which might
look bad if one only looks one step ahead (such as sacrifices) might become very good

6See A. Hodges, Alan Turing: The Enigma, Vintage, 1992, or visit http://www.turing.org.uk/turing/.
7It was much later that endgame libraries were used for the first time. When both those are employed

the really interesting part of a chess program is how it does in the middle game—and that’s also the most
interesting part of a game between human players.

85



moves if the game tree is explored to a higher depth. Many of the early programs fell
into this trap of avoiding to lose pieces at all cost (since such moves were classified as
‘obviously bad’), whereas they are an integral part of playing chess.

• Instead of searching to a given depth for all positions attempts were made to make
this more dynamic, depending on whether the current situation is ‘tricky’ or straight-
forward. In practice this is achieved by setting time-limits (low for ‘simple’ positions,
high for ‘tricky’ ones), and then carrying out complete searches of iterative depths (first
all moves on level 1, then all moves on level 2, and so on) until time runs out. Then the
best move found during that time is made.

Some of the techniques learned over time were useful for other areas of computing, for
example the ‘iteratively deepening search’ technique is successfully applied in automated
theorem proving. In fact, one of the reasons for putting that much effort into writing chess
playing programs was that the lessons learned would be applicable to other situations where
a space had to be searched.

In the seventies, when Artificial Intelligence was assumed to be ‘just around the corner’
(at least by some people), chess playing programs were taken to provide a prime example
of what might be done using machine learning, and a lot of research went into that. The
only contribution to chess programming made by this approach was its use in solving various
endgames in the late seventies and early eighties. The real power of chess programs consists
in the speed with which they can search the game tree. While doing this cleverly with good
evaluation functions requires some real knowledge, everything else is raw computing power!

The first ‘serious’ man-computer match occurred in 1978—man won. In the late eighties,
AT&T developed the first ‘chess circuitry’ which lead to a program (called Deep Thought8)
which dominated the computer chess scene for years. As a result of its special circuits it could
generate moves very quickly and so search more positions in a given time frame than other
programs.

A further development in the eighties was the inclusion of entire opening databases into
programs, thus making whole books of openings available to the computer. Similarly endgame
databases were developed, and all five piece endgames were solved in that period. Again, the
computer’s raw power allowed the finding of solutions which had eluded people so far. As a
result, the official chess rules were changed—the previous version did not allow for some of
the checkmates to be played out (due to a restriction in the number of moves the players were
allowed to make without the capture of a piece or a ‘check’ occurring).

To illustrate the development of chess playing programs, Figure 4.49 shows the number
of positions examined in three minutes by a program versus its rating according to the chess
rating system. For a computer, this is a ‘brute force’ chart connecting playing ability and
computing power. Note the logarithmic scale along the horizontal axis! Certainly humans look
at far fewer positions as machines. They have a much better way of weeding out ‘obviously
bad moves’, and research has shown that very good players do recognize patterns of some
form which allow them to only consider a few candidates for the next move to make. We do
not currently have any abstract way of describing such patterns, and chess players are not
really aware of how they do what they do. Understanding this would certainly do a lot to
advance a number of different subjects.

Another interesting question regarding Figure 4.4 is that of where exactly ‘perfect play’
would come in. Clearly machines have improved a lot over time, but how far off is it? And
does the curve suggested really approach it, or does it have a lower limit?

Another issue worth examining is how much difference it makes to increase the search
depth, that is the number of moves considered before making a decision. Figure 4.5 shows
the results of playing the same program (Belle) against itself, using different depths to which
alpha-beta search is carried out. The results are shown as ‘won games out of 20’, and are

8Anybody want to guess more obscure references?
9All tables and figures in the remainder of this section are taken from Newborn’s book, see sources.
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Figure 4.4: The level of play of programs

based on two experiments carried out by Thompson, the creator of the Belle program, in the
late 70s.

3 4 5 6 7 8 rating

3 4 1091
4 16 5.5 1332
5 14.5 4.5 1500
6 15.5 2.5 1714
7 17.5 3.5 2052
8 16.5 2320

4 5 6 7 8 9 rating

4 5 .5 0 0 0 1235
5 15 3.5 3 .5 0 1570
6 19.5 16.5 4 1.5 1.5 1826
7 20 17 16 5 4 2031
8 20 19.5 18.5 15 5.5 2208
9 20 20 18.5 16 14.5 2328

Figure 4.5: Two experiments studying the effect of increasing depth

Figure 4.5 shows quite convincingly what a big difference searching three or four levels
more can make—that of totally outclassing the opponent. The one constraining factor for
searching to greater and greater depth is time, and computer programs have made great
strides not only because a lot of time has been spent on making them better but because
today’s machines are so much faster and thus allow searching to greater depth. Of course,
every bit of time gained by being ‘clever’ (for example, early on abandoning search on hopeless
moves) can then be spent on going even deeper on promising moves.

The other interesting observation to be made regarding Figure 4.5 is the relation between
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depth of search and the program’s rating. While Figure 4.4 seems to suggest a linear con-
nection between depth of search (logarithmic in number of positions searched means roughly
linear in depth) and rating until about 2500, Thompson’s experiments suggest that linearity
only applies to level 2000. His data appears somewhat more convincing since no other im-
provements than depth of search have been made in his case, whereas Figure 4.4 compares
very different programs with each other. One might tentatively state that the improvement
beyond that which might be expected from adding depth to the search must result from other
improvements made. After all, 25 years separate the early programs in Figure 4.4 from Deep
Blue.

An alternative way of measuring improvement when increasing the search of depth is to
compare how often the more thorough (and more expensive) search actually pays off. The
following table attempts to measure that by looking at the number of times searching to a
higher depth resulted in a different move being picked.

percentage of moves picked approximate
level different from predecessor rating

4 33.1 1300
5 33.1 1570
6 27.7 1796
7 29.5 2037
8 26.0 2249
9 22.6 2433

10 17.7 2577
11 18.1 2725

Hence different moves are indeed picked quite frequently when searching to a higher depth,
which presumably explains the results in Figure 4.5. The table also shows that the return of
this is diminishing with increasing depth.

The late eighties saw the first time that Grandmasters10 were beaten by programs, and
in tournaments rather than in display matches. The first program to be rated Grandmaster
was Deep Thought. But playing against the world champion in 1989 it was defeated in only
41 moves. In 1993 it managed to beat the youngest Grandmaster ever, Judit Polgar.

The main development from the late eighties onwards is the development of more special-
ized hardware to speed up the generation of moves, with considerable use of parallel machines.
Programs that have been build to play at the highest level are therefore increasingly hard-
ware dependent and cannot run on other machines. Computers participate increasingly in
tournaments, in particular in the US (for example state championships). The following table
gives some idea of the hardware and computing power thrown at this problem over time.

Name Year Description

Ostrich 1981 5-processor Data General system
Ostrich 1982 8-processor Data General system
Cray Blitz 1983 2-processor Cray XMP
Cray Blitz 1984 4-processor Cray XMP
Sun Phoenix 1986 Network of 20 VAXs and Suns
chess Challenger 1986 20 8086 microprocessors
Waycool11 1986 64-processor N/Cube system
Waycool 1988 256-processor N/Cube system
Deep Thought 1989 3 2-processor VLSI chess circuits
Star Tech 1993 512-processor Connection Machine
Star Socrates 1995 1,824-processor Intel Paragon
Zugzwang 1995 96-processor GC-Powerplus distributed system

(based on the PowerPC)
Deep Blue 1996 32-processor IBM RS/6000 SP with 6 VLSI chess

circuits per processor

10Bent Larsen, beaten by Deep Thought.
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Until the early nineties, writing chess programs on this level was entirely an academic
effort, and commercial programs available for sale typically played on a much weaker level.12

It was only then that IBM entered the scene and created Deep Blue, probably the best-
known chess program, based on Deep Thought. In 1996 a 6-game match was arranged between
it and the reigning world champion, Gary Kasparov. Deep Blue won the first game, but lost
the match 2 to 4. In 1997 a rematch occurred which was won by the machine 3.5 to 2.5.
Kasparov made a mistake in the deciding match, leading to his loss of the series. You may
therefore be surprised to find Deep Blue ranking below Kasparov in Figure 4.4. The reason
for this is that Deep Blue was very much fine-tuned to play against this one opponent. It had
whole books on lines which Kasparov liked to play, and others on lines which Kasparov was
known to avoid (in the hope that he did not know them well enough to play that strongly
when forced into them by Deep Blue). Arguably the human player learns from playing against
the machine and can then exploit its weaknesses. However, Deep Blue had access to hundreds
of games that Kasparov had played, whereas the creators of the program were very reluctant
to let him have access to games it had played prior to the match. Wikipedia has a nice entry
on Deep Blue.

In summary the history of chess programs shows that currently, game programming is not
really about mimicking the way human beings reason and make decisions. Instead it became a
case study in applying the speed at which computers can carry out instructions to searching a
given space. In particular it has shown us something about the relation between greater depth
of search and reaching better results. As far as other games are concerned: In 1982 a program
called IAGO was assessed as playing othello (also known as reversi) at world championship
level, but didn’t take part in any tournaments. In 1994 a program called Chinook became
world checkers champion, but the reigning world champion had to forfeit the match due to
illness. Go playing programs currently are many levels below even good amateurs, let alone
professionals. The people who created Chinook solved the game in 2007, using the program:
Either side can enforce a draw. Go to http://webdocs.cs.ualberta.ca/ chinook/ for a
lot of information on it.

11This serves to show that this expression goes quite some way back!
12Presumably it would be harder to sell a program which requires its own hardware, and expensive such a

thing would be too.
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Summary of Chapter 4

• Three tasks have to be solved when writing a game-playing program: Designing an inter-
nal board representation and generating valid moves, designing an evaluation function
and implementing (some variant of) alpha-beta search.

• The program carries out alpha-beta search to a given depth and then uses the evaluation
function for the nodes at that depth to get an approximate value which it uses as if
it were the actual value to determine which move to make. Because of the use of
approximate values this move may not be the best one available.

• All considerations are overshadowed by the need for speed.

• Board representations should make the generation of moves, doing and undoing them
fast.

• Evaluation functions require knowledge about the game in question. They are an at-
tempt to assign a value to a board position from just what is on the board, without
further descending into the game tree.

• Alpha-beta search is concerned with assigning a value to a position by searching the
game tree below it and eventually applying the evaluation function. Searching to greater
depth will result in a better program, so any gain in speed goes into searching to a
greater depth. There are many tricks one might try to employ in order to concentrate
on searching the relevant parts of the game tree; in particular ordering moves to search
the most promising ones first.

• Most effort so far has gone into creating chess-playing programs. They have profited
from faster hardware, and many improvements have been made which are very chess-
specific: better heuristics, opening and endgame libraries, and the like.

Sources for this chapter

The material in this section has been compiled from the following.

David Eppstein’s notes on Strategy and board game programming at the University of Cali-
fornia at Irvine, http://www1.ics.uci.edu/~eppstein/180a/w99.html.

A.N. Walker’s notes for his course on Game Theory at the University of Nottingham, available
at http://www.maths.nott.ac.uk/personal/anw/G13GAM/.

M. Newborn. Kasparov versus Deep Blue: computer chess comes of age. Springer,
1997.

The Scientific American’s account of the second match between Kasparov and Deep Blue at
http://www.sciam.com/explorations/042197chess/.

IBM’s account of the same match at http://www.chess.ibm.com/.

D. Levy and M. Newborn. How Computers Play chess. Computer Science Press, 1991.

The Chinook webpage (about checkers) at http://www.cs.ualberta.ca/~chinook/. This
includes a link to the paper on the solving checkers.
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Solutions for the exercises

Note. The exercises in the notes are there to make sure you have understood the concepts
as they are introduced. None of the exercises are particularly complex. Examples for the
various tasks that need to be solved are given in the notes. Hence these model answers do
not attempt to explain in detail how to solve an exercise but they provide a solution you can
compare yours to.

Exercise 1. (a) Here is the game tree, pared down by symmetry considerations.

Player 1 loses
Player 2

Player 1

Player 2

P.layer 1

Player 1 losesPlayer 1 loses

Player 2 loses Player 2 loses

Player 2 loses

(b) The game tree is similar to Figure 2, just starting with a larger bar of chocolate. It is
given in two parts in the solution to Exercise 25.

Exercise 2. (a) Here is the tree that corresponds to throwing two dice which show the
numbers 1, 2 and 3 each with the same probability. At each leaf we give the two numbers
thrown. The probability for each of the leaves being reached is 1/3 × 1/3 = 1/9. The

1/3
1/3 1/3

1 2

1/3

1 2 3

1 2 3 1 2 3 3

1/3
1/3 1/3 1/3

1/3
1/3 1/3

1/3

1,1 1,2 1,3 2,2 2,3 1,3 2,3 3,31,2

probability for throwing a 2 and a 3, for example, is the sum of all the probabilities of
reaching a leaf labelled accordingly, that is

1/9 + 1/9 = 2/9,

because this label occurs for two leaves. The overall probabilities are summarized in the
following table.

1,1 1,2 1,3 2,2 2,3 3,3

1/9 2/9 2/9 1/9 2/9 1/9

(b) The game tree is given in Figure 4.6.

There are 3 different cards that Player 1 may get, which leaves 2 possibilities for Player 2.
All in all there are therefore 3× 2 draws. Player 1 has the higher card if he has the K, which
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1/3
1/3 1/3

QJ K

1/2
1/2

1/2 1/2

1/2 1/2

Q K J K J Q

Player 1’s card

Player 2’s card

Figure 4.6: Dealing cards

occurs in two draws, and if he has the Q while Player 2 has the J . Hence in three of the
draws Player 1 has the higher card—this is half of them, as you should have expected. The
probability that Player 2 has the Q is 1/3, and that she has the K while Player 1 has the J
is 1/6, so she wins in 1/3 + 1/6 = (2 + 1)/6 = 3/6 = 1/2 of all draws.

Exercise 3. Here is the game tree for this version of simplified poker. Nodes in the same
information set are connected by dotted lines.

L L

1 1 -3

Bob

Bob

Alice

Alice

1 2 1 2 -3 -3 1 -2 2 1 3 1 1 -2 1 -2 1 3 1 31

L H H H

J Q K

Q K Q K J K J K J Q J Q

SFSSF FSFSFSFSFSFSFSFSFSF

1/3

1/3

1/2

1/2 1/2 1/2
1/2 1/2

1/2

1/3

1/2
1/21/2

1/2 1/2

Exercise 4. (a) There are three decision points with more than one option for Player 1 in
(2×2)-chomp (the root and the two decision points ‘in round 2’). We have to combine all the
possible choices with each other, which leads to 4 × 2 × 2 fully specified strategies. They’re
all drawn in the following.
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There are also three decision points with more than one option for Player 2, with two, two
and three choices available respectively. Hence there are 2 × 2 × 3 = 12 strategies for this
player. Again we draw them.

(b) In (2, 2)-nim Player 1 has two decision points with more than one choice, they have two
choices each. Hence there are four fully specified strategies for the player.

Alternatively one could describe the strategies verbally:

• For the first move, take two matches. If Player 2 takes one match in case we take one
match for the first move, take one match on next move.

• For the first move, take two matches. If Player 2 takes one match in case we take one
match for the first move, take two matches on next move.

• For the first move, take one match. If Player 2 takes one match on the next move, take
one match on the next move.

• For the first move, take one match. If Player 2 takes one match on the next move, take
two matches on the next move.

This formulation makes it obvious that the first two strategies are overspecified.

For Player 2 there are also two decision points which have more than one choice, one with
two and one with three available options. This gives 6 strategies for the player.

Exercise 5. (a) Player 2 has

1 × 2 × 2 × (1 + 1 + 1) = 2 × 2 × 3 = 12

strategies.
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(b) The answer is given in Section 2.7 on simplified poker which starts on page 55.

Exercise 6. (a) For (2, 2)-nim, compare the game tree in Exercise 1 (a), and the fully spec-
ified strategies in Exercise 4 (b). The first two fully specified strategies lead to the same
behaviour and become just one strategy.

Alternatively we can look at the situation as follows: Player 1 has the choice of taking one or
both matches from one of the two piles. If he takes two then he has no further choices to make
as the game continues. If he takes just one match, then in case Player 2 chooses the middle
move (which leaves one pile of two matches) in the next move Player 1 may choose between
taking both matches or just one. We could encode his strategies as 2 (take 2 matches in the
first move), (1, 1) (take one match in the first move, 1 match in the next move if there is a
choice) and (1, 2) (take one match in the first move, two in the next move if the possibility
arises).

For Player 2 the fully specified strategies are all different strategies since they do not specify
play in situations that may not arise. To prepare the solution for the next exercise we explain
our naming of strategies for Player 2. For Player 2, it all depends on which first move Player 1
makes. If Player 1 takes 2 matches in his first move, Player 2 may herself take one or two
matches in her first move, and those are all the choices she ever makes. If Player 1 only takes
one match, she may choose to take one match from the pile with 1 match, one match from
the pile with 2 matches, or both matches from the pile with two matches. We can encode
her choices as (1|1(1)), (1|1(2)), (1|2(2)), (2|1(1)), (2|1(2)), and (2|2(2)). Here before the | we
indicate what Player 2 will do if Player 1 takes two matches in his first move, and after the
| if Player 1 takes just one match in the first move. We indicate which pile to take a match
from by (1) (the one with one match) and (2) (the one with two matches).

(b) Again, this is done in Section 3.6

Exercise 7. (a) We give a matrix with a pay-off of 1 or −1 for Player 1. For the names used
for the various strategies see the previous exercise.

(1|1(1)) (1|1(2)) (1|2(2)) (2|1(1)) (2|1(2)) (2|2(2))

2 −1 −1 −1 1 1 1
(1, 1) 1 1 −1 1 1 −1
(1, 2) −1 1 −1 −1 1 −1

Note that (1|2(2)) is a winning strategy for Player 2: if she plays according to it, she will
always win.

(b) We have Player 1 as the row player and Player 2 as the column player. The pay-off is
given for Player 1, that for Player 2 is obtained by multiplying with −1.

H T

H −1 1
T 1 −1

Exercise 8. (a) For (2, 2)-nim there are four fully specified strategies for Player 1 and six
for Player 2. For Player 1, the strategy that takes 2 matches on the first move turns into
two fully specified strategies. Using a similar notation as in the previous exercise we get the
following pay-off matrix.

(1|1(1)) (1|1(2)) (1|2(2)) (2|1(1)) (2|1(2)) (2|2(2))

(2, 1) −1 −1 −1 1 1 1
(2, 2) −1 −1 −1 1 1 1
(1, 1) 1 1 −1 1 1 −1
(1, 2) −1 1 −1 −1 1 −1
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(b) In this small and simple game the fully specified strategies are the same as the strategies,
hence the normal form is as given for the previous exercise.

Exercise 9. (a) The game tree should be familiar. Here we give at each leaf the sum of the
two numbers thrown. The probability for each of the leaves being reached is 1/3×1/3 = 1/9.

1/3
1/3 1/3

1 2

1/3

1 2 3

1 2 3 1 2 3 3

1/3
1/3 1/3 1/3

1/3
1/3 1/3

1/3

3 4 3 4 5 4 5 62

The probability for throwing a 5, for example, is the sum of all the probabilities of reaching
a leaf labelled with a 5, that is

1/9 + 1/9 = 2/9,

because 5 occurs for two leaves. The overall probabilities are summarized in the following
table.

2 3 4 5 6

1/9 2/9 3/9 2/9 1/9

The expected value is 2/9 + 6/9 + 12/9 + 10/9 + 6/9 = 36/9 = 4.

(b) Here is the matrix for this game.

S|S S|T T |S T |T
0 −2/9 −4/9 −6/9

Exercise 10. (a) The following table gives the pay-off function for the three players, P1, P2
and P3, where their strategies are given as 1 (bet one) and 2 (bet two).

P1 P2 P3

(1, 1, 1) 1 1 1
(1, 1, 2) 2 2 5
(1, 2, 1) 2 5 2
(1, 2, 2) 5 2 2
(2, 1, 1) 5 2 2
(2, 1, 2) 2 5 2
(2, 2, 1) 2 2 5
(2, 2, 2) 1 1 1

(b) Figure 4.7 shows the game tree for this game.

L R

L L L

R R

R R R R

(1, 1, 1) (0, 0, 3) (0, 3, 0) (−2, 2, 2) (3, 0, 0)

P1

P2

P3

LL

L

(2, −2, 2) (2, 2, −2) (−1, −1, −1)

Figure 4.7: The left-right game

There are 2 strategies for Player 1, 4 for Player 2 and 16 for Player 3.
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Exercise 11. (a) There are seven nodes in a full binary tree of height 3 which are not leaves,
that is, where a decision is made. Clearly there are a number of ways of splitting those decision
points between two players. We do not discuss them in detail.

(b) For height n + 1: If n + 1 is odd then the number of strategies for Player 1 is twice
the number of strategies for Player 2 at height n. This is because the desired number of
strategies can be calculated as follows: Player 1 has the choice between left and right at the
(new) root of the tree, and thereafter he is either in the left or the right subtree. But the
decision points there for him are precisely those Player 2 had in the game of height n. The
number of strategies for Player 2 does not change because she still has the same number of
decision points. If n + 1 is even then the number of strategies for Player 1 is the same as at
height n. But the number of strategies for Player 2 is the square of the number of strategies
for Player 1 at height n. This is because for each of Player 1’s choice of ‘left’ or ‘right’ she has
to choose a strategy, one for the left and one for the right subtree. But her decision points
there are those of Player 1 for a game of height n.

Exercise 12. (a) Player 1 has a winning strategy, the first move of which consists of eating
one piece of chocolate. Now Player 2 has the choice of immediately eating the poisonous piece
and losing, or eating either one of the two remaining non-poisonous pieces, leaving Player 1
to eat the other, and again requiring Player 2 to take the tainted one.

(b) Player 2 has a winning strategy. If Player 1 takes two matches on the first move, Player 2
may take one of the two remaining ones leaving Player 1 to take the last one and losing. If
Player 1 takes just one match then Player 2 may take the pile of two matches, again leading
to Player 1 having to pick the last match, and losing.

Exercise 13. A winning strategy will ensure the pay-off of 1 against every strategy employed
by the other player. Without loss of generality we consider the case where Player 1 has a
winning strategy (this means we don’t have to mess around with indices). Hence for such a
strategy s∗ it is the case that for all strategies t for Player 2 we have

p1(s
∗, t) = 1.

But this is the highest pay-off possible for Player 1, so

p1(s
∗, t) = 1 ≥ p1(s, t)

for all strategies s for Player 1 and t for Player 2.

Exercise 14. (a) This game has no equilibrium point.

(b) In this game, both (1, 1) and (2, 2) are equilibrium points.

Exercise 15. (a) The equilibria are (1, 2) and (2, 1). Player 1 prefers the former (because it
gives him the higher pay-off of 10 over 8) while Player 2 prefers the latter (because it gives her
the higher pay-off of 8 over 6). But if Player 2 chooses her strategy 1 to aim for her preferred
equilibrium point then if Player 2 chooses his strategy 1 to achieve his preferred equilibrium
point she will get a pay-off of −300. It seems therefore much more prudent for her to ‘play it
safe’ by choosing her strategy 2.

(b) The two equilibrium points are (1, 2) and (2, 1) where both players prefer the latter. This
time it seems safe for Player 2 to choose her strategy 1 since it is unlikely that Player 1 will
choose his strategy 1 which would lead to the worst case pay-off for her. If they are both
rational (as we assume) they should choose this equilibrium point.

Exercise 16. (a) We have to go through each entry in the table, and check whether one of
the three players changing their mind leads to an improvement of their pay-off. Here are two
representative examples:
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• Assume the players have chosen strategies (1, 1, 1). If Player 1 changes his mind, they
move to (2, 1, 1), and Player 1’s pay-off goes from 1 to 2, so Player 1 can improve his
pay-off by unilaterally changing strategies, and this is not an equilibrium point.

• Assume the players have chosen strategies (1, 1, 2).

– If Player 1 changes his strategy they move to (2, 1, 2), and his pay-off stays at 2.

– If Player 2 changes his strategy they move to (1, 2, 2), and his pay-off stays at 2.

– If Player 3 changes his strategy htey move to (1, 1, 1) and his pay-off goes down
from 5 to 1.

Hence this is an equilibrium point.

There are 6 equilibrium points, the only exceptions being (1, 1, 1) and (2, 2, 2).

(b) The mechanics are much the same as in the previous exercise. The equilibrium points
are (1, 2, 1), (1, 2, 2). Note that neither of them is advantageous for Player 3!

Exercise 17. The game tree for this game is given above, see Exercise 10. When examining
the various possibilities, we find (by inspection) that (−1,−1,−1) is the only pay-off that
leads to an equilibrium point (for all others, one of the players can improve his pay-off by
changing his move). To reach this, Player 1 has to choose his strategy R. But for Player 2,
any strategy that chooses R provided that Player 1 chose R will lead to this pay-off; it does
not matter what Player 2 might do in the case where Player 1 chooses his strategy L. There
are 2 such strategies which could be encoded as (L|R) and (R|R). Finally, for Player 3 it
is sufficient that he chooses R provided that Players 1 and 2 have done so, and it does not
matter in the least what he will do for his other 3 decision points. Hence there are 23 = 8
such strategies for Player 3.

Exercise 18. (a) The equilibrium points are (2, 3), (2, 4), (3, 3) and (3, 4).

(b) The sole equilibrium point is (3, 4).

Exercise 19. (a) We collect the minimum of each row, and maximum of each column, in
the following table.

4 3 1 1 1
3 2 2 2 2
4 4 2 2 2
3 3 1 2 1

4 4 2 2 2\2

So we find that max1≤i≤4 min1≤j≤4 ai,j = 2 = min1≤j≤4 max1≤i≤4 ai,j .

(b) We find that max1≤i≤4 min1≤j≤4 ai,j = 2 but min1≤j≤4 max1≤i≤4 ai,j = 3.

Exercise 20. It is important to note that ‘the highest pay-off Player 1 can guarantee
for himself’ is maxi minj ai,j while ‘the highest pay-off Player 2 can ensure for herself’ is
minj maxi ai,j , where i ranges over the strategies for Player 1 and j over those for Player 2.

Hence the statement of the proposition amounts to a restating of Proposition 2.8.

Exercise 21. (a) If Player 1 chooses his mixed strategy (1/2, 0, 0, 1/2) his pay-offs against
Player 2’s pure strategies are as follows.

1 2 3

(1/2, 0, 0, 1/2) −1/2 −1/2 −1/2

When he plays with that strategy against her mixed strategy (1/4, 1/4, 1/2), his pay-off will
be −1/2, which is at least as big as the numbers appearing in the above table.

When Player 2 matches her mixed strategy (1/4, 1/4, 1/2) against Player 1’s pure strategies
the pay-offs are as follows.
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1 2 3 4

(1/4, 1/4, 1/2) −1/2 −1/2 −1/2 −1/2

These pay-offs are at most as high as that of playing (1/4, 1/4, 1/2) against the given mixed
strategy for Player 1. Hence by Proposition 3.9 this is indeed an equilibrium point. Note that
in the long run that means that Player 1 will lose 1/2 unit per game!

(b) The game tree is given below. Alice’s strategies are in the first instance to choose either

QA

A

J K

K K

J

J J

1

-1

-1 0

2

K

Q

E R

-2-2 0

Alice’s choice of card

Bob’s choice of card

Alice’s choice: end or replay

Alice’s 2nd choice of card

Bob’s 2nd choice f card

A or Q. In the former case, she can either end the game (E) if Bob chose the J , or she can
decide to go for a replay (R). In the latter case, she has to choose between A and Q again.
Hence we can list her strategies as (A, E), (A, R, A), (A, R, Q) and (Q). Bob on the other
hand has the choice between K and J as his first move. If he does choose the J he also has
to decide what he is going to do if Alice should go for the replay. Hence his strategies can be
listed as (K), (J, K), (J, J). We find the following game matrix

K J, K J, J

A, E 1 −1 −1
A, R, A 1 2 −2
A, R, Q 1 −2 0

Q −1 0 0

Showing that the given mixed strategies form an equilibrium point is done as in (a).

We find that

A, E A, R, A A, R, Q Q (0, 1/8, 1/4, 5/8)

(1/4, 1/4, 1/2) −1/2 −1/4 −1/4 −1/4 −1/4

All entries are below or equal to the final one as desired. We find for Player 1’s mixed strategy
that

K J, K J, J

(0, 1/8, 1/4, 5/8) −1/4 −1/4 −1/4

All these entries are bigger than or equal to the pay-off at the purported equilibrium point
−1/4, so we have verified that it is indeed one. (So we were lucky with our choice of order of
strategies.) Note that on average, Alice will lose 25 pence per game.
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Exercise 22. (a) Strategy 2 for Player 1 dominates his Strategies 1 and 4 and Strategy 1
for Player 2 dominates her Strategy 2. That leaves the following matrix.

4 2 6
−2 4 2

The first strategy for Player 2 dominates the third one. That’s as far as we can go here.

(b) From Player 2’s point of view, strategy 4 dominates all the others, leaving us with a 4×1
matrix (the fourth column of the original matrix). It is now easy to read off that 2 is the
value of the game and that its sole equilibrium point is (3, 4).

Exercise 23. The game tree is given below. Note that nodes in the same information set
are connected by dotted lines.

L L

1 1 -3

Bob

Bob

Alice

Alice

1 2 1 2 -3 -3 1 -2 2 1 3 1 1 -2 1 -2 1 3 1 31

L H H H

J Q K

Q K Q K J K J K J Q J Q

SFSSF FSFSFSFSFSFSFSFSFSF

1/3

1/3

1/2

1/2 1/2 1/2
1/2 1/2

1/2

1/3

1/2
1/21/2

1/2 1/2

Alice gets one of three cards, and can choose to go L or H for each of those, giving her
2 × 2 × 2 = 8 strategies. Bob knows that Alice has gone either L or H, and his own card
(which multiply to 2×3 possible scenarios for which he needs a plan), and in each of these he
can choose between F and S, giving him 26 = 64 strategies. We can encode his strategies as
triples where the first component gives his choice if he has the J , the second if he has the Q
and the third if he has the K. For each of those, his choice will depend on whether Alice bet
high or low. We represent such a choice as, for example, S|F , to mean S if Alice has gone L,
and F if she has gone H.

We start eliminating strategies by looking at Bob’s choices. If he has the J and Alice bet
low, then he can only win the showdown, so he should opt for S. If, on the other hand, he has
the J and Alice bet high he can only lose, so he should fold. If he has the K, the situation is
dual: If Alice has bet low, he can only lose, so he should fold, but if she has bet high he can
only win and should see. That leaves strategies of the form (S|F, ?, F |S), of which there are
four.

Alice, on the other hand, should bet low if she has the J , and high if she has the K. That
leaves her only two strategies which will be of the form (L, ?, H).

We now calculate the matrix for the game, where we only give Bob’s choice in case he has
the Q (in all other cases we have already determined what choice he will make). Because it
is convenient we extract a factor of 1/6 from each of the entries.

F |F F |S S|F S|S
(L, L, H) 3 5 4 6
(L, H, H) 2 4 3 5

We find that Alice’s first strategy dominates her second, and that there is an equilibrium
point at (1, 1). The value of the game (here we need to bear in mind the factor of 1/6 we
dropped from the matrix!) is 3/6 = 1/2.
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Exercise 24. (a) The minimax algorithm for Player 1 leads to the following value:

max

min

max 4 −22 2

2 −2

2

1 2 −1 2 1

2

−1

For Player 2 we get the following value:

3

−1 −2 3 −2 2

4

3 4

min

max

min −2−2

3 4

3

If the two players play these strategies against each other then they will go down the left-
most branch of the tree, leading to a pay-off of 4 for Player 1 and 3 for Player 2. This is
substantially better than the value of the game for Player 1, which is 2. Player 2, on the
other hand, does not do better than her worst case analysis.

(b) The value for all three players is −1, and when they each play according to the strategy
they found with the help of the minimax algorithm they end up with the equilibrium point
outcome with a pay-off of −1 for each of them (see the solution to Exercise 17).

Exercise 25. (a) Player 1 has a winning strategy in this game which can be discovered using
the minimax algorithm. It can be seen in the following excerpt from the game tree. (Note
that in both cases some moves are omitted to keep the size down.)

1 to move

2 to move

1

2 to move

1 to move

2 to move

1 to move

1

−1

1 1 1 1

−1 −1−1

1

1

1

1

1

−1
1 1

1

−1

1

1

1 1

1

1

1

1

1

−1 −1

If Player 1 picks any other opening move then Player 2 can force a win, as demonstrated
below.
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1 to move

2 to move

−1 −1 −1 −1 −1

−1

−1

−1

−1

−1

−1

−1

1 to move

2 to move

1 to move

1

1

1 1

1

1

−1 −1

−1

−1

−1

−1

1 1

−1

−1

−1

The game has been solved for arbitrary sizes of chocolate bars. I once set an extra difficult
exam question (the students were warned that this would be a difficult question) challeng-
ing students to describe a winning strategy (and proving how that can be done) but that
won’t happen for this course. Descriptions of general solutions assuming varying amounts of
mathematical theory are available online.

(b) Again Player 1 can force a win, by taking away an entire pile of three matches as his first
move, leaving two piles with three matches each. Then

• if Player 2 takes three matches, take two matches from the only remaining pile;

• if Player 2 takes two matches, take the entire pile with three matches.

• if Player 2 takes one match, take one match from the pile with three matches, leaving
(2, 2)-nim. We have seen already in Exercise 7 that the player going second (our Player 1)
has a winning strategy in that game.

If he chooses any other first move then Player 2 can force a win. Can you see how to work
out who has a winning strategy for nim of arbitrary size?
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