
1. Imagine we have a non-pipelined processor running at 1MHz and want to run a program with 1000 
instructions.  

a) How much time would it take to execute the program? 

1 instruction per cycle. 

1MHz clock 

1000 instructions = 1000 cycles @ (106)Hz = 1000/106 = 1000us 

Assuming ideal conditions (perfect pipelining and no hazards), how much time would it take to execute the 
same program in: 

b) A 5-stage pipeline? 

1 instruction per cycle. 

5MHz clock 

+4 extra cycles to load the pipeline 

(1000 + 4 cycles)/(5*106)Hz = 200.8us ~5x faster 

c) A 20-stage pipeline? 

1 instruction per cycle. 

20MHz clock 

+19 extra cycles to load the pipeline 

(1000 + 19 cycles)/(20*106)Hz = 50.95us ~20x faster 

d) A 100-stage pipeline? 

1 instruction per cycle. 

100MHz clock 

+99 extra cycles to load the pipeline 

(1000 + 99 cycles)/(100*106)Hz = 10.99us ~100x faster 

Looking at those results, it seems clear that increasing pipeline should increase the execution speed of a 
processor. Why do you think that processor designers (see below) have not only stopped increasing pipeline 
length but, in fact, reduced it? 

Pentium III – Coppermine (1999) – 10-stage pipeline 
Pentium IV – NetBurst (2000) – 20-stage pipeline 
Pentium Prescott (2004) – 31-stage pipeline 
Core i7 9xx – Bloomfield (2008) – 24-stage pipeline 
Core i7 2xx/3xx – Sandy Bridge (2013) – 19-stage pipeline 

IncidenceIncidenceIncidenceIncidence of  of  of  of Data Data Data Data HazardsHazardsHazardsHazards::::    The more stages in the pipeline the further away a previous 

instruction can be while still maintaining a dependency 

ImpactImpactImpactImpact of  of  of  of both Data and Control both Data and Control both Data and Control both Data and Control HazardsHazardsHazardsHazards:::: The more stages in the pipeline, the more 

cycles we need to stall the pipeline when a hazard occurs. 

Hardware costsHardware costsHardware costsHardware costs: The more stages in the pipeline the more extra buffering is needed and 

the more extra wiring to communicate stages. Implementing forwarding is specially a 

concern as the number of forwarding paths needed increases nearly quadratically with 

the number of stages. 

Clock limitationClock limitationClock limitationClock limitation: The clock can not be made infinitely fast. Power dissipation increases 

with clock frequency, rapidly increasing the consumed energy and the temperature of 

the chip. 



2. Consider a simple program with two nested loops as the following: 

while (true) { 
    for (i=0; i<x; i++) { 
        do_stuff 
    } 
} 

With the following assumptions: 

do_stuff has 20 instructions that can be executed ideally in the pipeline. 
The overhead for control hazards is 3-cycles, regardless of the branch being static or conditional. 
The two loops can be translated into a single branch instruction each. 

Calculate the instructions-per-cycle that can be achieved for different values of x (2, 4, 10, 100): 

a) Without branch prediction. 

outer outer outer outer looplooplooploop: always branches � always fails :: 3-cycle penalty per outer loop iteration 

inner inner inner inner looplooplooploop: branches (x-1) out of x iterations � (x-1) fails :: 3*(x-1) cycles penalty per 

outer loop iteration  

Instructions = x*(20+1) + 1 

Cycles = Instructions + penalties = x*(20+1) + 1    + 3*(x+ 3*(x+ 3*(x+ 3*(x----1) + 31) + 31) + 31) + 3 

 

b) With a simple branch prediction policy - do the same as the last time. 

1st loop: always branches � always predicts (except first time) :::  no penalty 

2nd loop: first (predicts no branch, but branches) and last (predicts branch but doesn’t) iterations always fail, 

rest always predict (predict branch AND branches) ::: two 3-cycle penalties per outer iteration 

Instructions = x*(20+1) + 1 

Cycles = x*(20+1) + 1 + 3*(2)+ 3*(2)+ 3*(2)+ 3*(2)    

  

c) With perfect branch prediction - always predicts correctly. 

1st loop: always predicts :::  no penalty 

2nd loop: always predicts :::  no penalty 

Instructions = x*(20+1) + 1 

Cycles = x*(20+1) + 1  

 

 xxxx    ====    2222    xxxx    ====    4444    xxxx    ====    10101010    xxxx    ====    100100100100    

InstructInstructInstructInstructions (per 1st loop iteration)ions (per 1st loop iteration)ions (per 1st loop iteration)ions (per 1st loop iteration)    43 85 211 2101 

a) a) a) a) Cycles Cycles Cycles Cycles ----    w/o BPw/o BPw/o BPw/o BP    49 97 241 2401 

a) a) a) a) IPC IPC IPC IPC ----    w/w/w/w/oooo BP BP BP BP    0.8780.8780.8780.878    0.8760.8760.8760.876    0.8760.8760.8760.876    0.8750.8750.8750.875    

b) b) b) b) Cycles Cycles Cycles Cycles ----    simple simple simple simple BPBPBPBP    49 91 217 2107 

b) b) b) b) IPC IPC IPC IPC ----    simple simple simple simple BPBPBPBP    0.8780.8780.8780.878    0.9340.9340.9340.934    0.9720.9720.9720.972    0.9970.9970.9970.997    

c) c) c) c) Cycles Cycles Cycles Cycles ----    perfect perfect perfect perfect BPBPBPBP    43 85 211 2101 

c) c) c) c) IPC IPC IPC IPC ----    perfperfperfperfect ect ect ect BPBPBPBP    1.0001.0001.0001.000    1.0001.0001.0001.000    1.0001.0001.0001.000    1.0001.0001.0001.000    

 



3. Consider a 10-stage fully pipelined processor as the one below. 

IF ID EX MEM WB 

□ □ □ □ □ □ □ □ □ □ 

  (IF and MEM: 3 stages each; EX: 2 stages; ID and WB: 1 stage each) 

 

  a) How many cycle penalties will be incurred by the different kinds of Hazards in such  
   processor? 

 

Data Hazards:Data Hazards:Data Hazards:Data Hazards:    

Up to 5 cycle penalty (1EX+3MEM+1WB) for 2 consecutive instructions with data 

dependencies if forwarding is not implemented. 1st instruction needs to WB before the 

2nd advances to EX (see below) 

 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

add r1,r0,r3 IF IF IF ID EX EXEXEXEX    MEMMEMMEMMEM    MEMMEMMEMMEM    MEMMEMMEMMEM    WBWBWBWB          

sub r1,r0,r3  IF IF IF ID stall stall stall stall stall EX EX MEM MEM MEM WB 

 
 

Control Hazards:Control Hazards:Control Hazards:Control Hazards:    

Unconditional branches: 3 cycles (2IF + 1ID). We don’t know it’s a branch until ID 

stage (3 instructions already fetched) 

 1 2 3 4 5 6 7 

b n IF IF IF IDIDIDID    EX EX MEM 

inst 1  IF IF IF ID EX EX 

inst 2   IF IF IF ID EX 

inst 3    IF IF IF ID 

n     IF IF IF 

 

Conditional branches: 5 cycles (2 IF + 1 ID + 2 EX). We don’t know whether we need 

to branch or not until end of EX stage (5 instructions already fetched) 

 1 2 3 4 5 6 7 

Beq n IF IF IF ID EX EXEXEXEX    MEM 

inst 1  IF IF IF ID EX EX 

inst 2   IF IF IF ID EX 

inst 3    IF IF IF ID 

inst 4     IF IF IF 

inst 5       IF IF 

n       IF 



4. Consider the following program which implements R = A2 + B2 + C2 + D2 

LD r1 @A 
MUL r2 r1 r1 -- A^2 
LD r3 @B 
MUL r4 r3 r3 -- B^2 
ADD r11 r2 r4 -- A^2 + B^2 
LD r5 @C 
MUL r6 r5 r5 -- C^2 
LD r7 @D 
MUL r8 r7 r7 -- D^2 
ADD r12 r6 r8 -- C^2 + D^2 
ADD r21 r11 r12 -- A^2 + B^2 + C^2 + D^2 
ST r21 @R 

a) Simulate its execution in a basic 5-stage pipeline without forwarding.  
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

LD r1, A IF ID EX MEM WB
 MUL r2 r1 r1 IF ID Stall Stall EX MEM WB

LD r3, B IF Stall Stall ID EX MEM WB
 MUL r4 r3 r3 IF ID Stall Stall EX MEM WB

 ADD r11 r2 r4 IF Stall Stall ID Stall Stall EX MEM WB
LD r5, C IF Stall Stall ID EX MEM WB

 MUL r6 r5 r5 IF ID Stall EX MEM WB
LD r7, D IF Stall ID EX MEM WB

 MUL r8 r7 r7 IF ID Stall Stall EX MEM WB
 ADD r12 r6 r8 IF Stall Stall ID Stall Stall EX MEM WB

 ADD r21 r11 r12 IF Stall Stall ID Stall Stall EX MEM WB
ST r21, R IF Stall Stall ID Stall Stall EX MEM WB  
 

b) Simulate the execution of the original code in a 5-stage pipeline with forwarding. 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

LD r1, A IF ID EX MEM WB
 MUL r2 r1 r1 IF ID Stall EX MEM WB

LD r3, B IF Stall ID EX MEM WB
 MUL r4 r3 r3 IF ID Stall EX MEM WB

 ADD r11 r2 r4 IF Stall ID EX MEM WB
LD r5, C IF ID EX MEM WB

 MUL r6 r5 r5 IF ID Stall EX MEM WB
LD r7, D IF Stall ID EX MEM WB

 MUL r8 r7 r7 IF ID Stall EX MEM WB
 ADD r12 r6 r8 IF Stall ID EX MEM WB

 ADD r21 r11 r12 IF ID EX MEM WB
ST r21, R IF ID EX MEM WB  
 

Note: Colored stages represents dependencies between instructions (e.g. cyan in MUL r2,r1,r1 EX has a dependency on LDR, r1,A MEM



 

 

c) Draw the dependency graph of the application. 

LD A LD B LD C LD D 

MUL MUL MUL MUL 

ADD ADD 

ADD 

STR R 

 

d) Based on the dependency graph discuss the suitability of the code to be run in a 2-way superscalar 

Looking at the dependency graph we can see that there are many independent instructions 

that could be issued in parallel to exploit instruction level parallelism. Only the last two 

instructions (ADD and STR) would not be able to be issued in parallel. 

 

e) Simulate the execution of the original code in a 5-stage 2-way superscalar pipeline with forwarding. 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

LD r1, A IF ID EX MEM WB
 MUL r2 r1 r1 IF ID Stall EX MEM WB

LD r3, B IF Stall ID EX MEM WB
 MUL r4 r3 r3 IF ID Stall EX MEM WB

 ADD r11 r2 r4 IF Stall ID EX MEM WB
LD r5, C IF Stall ID EX MEM WB

 MUL r6 r5 r5 IF ID Stall EX MEM WB
LD r7, D IF Stall ID EX MEM WB

 MUL r8 r7 r7 IF ID Stall EX MEM WB
 ADD r12 r6 r8 IF Stall ID EX MEM WB

 ADD r21 r11 r12 IF ID EX MEM WB
ST r21, R IF ID EX MEM WB  
 

f) Simulate the execution of the reordered code in a 5-stage 2-way superscalar pipeline  
1 2 3 4 5 6 7 8 9 10 11

1 LD r1, A IF ID EX MEM WB
2 LD r3, B IF ID EX MEM WB
3 LD r5, C IF ID EX MEM WB
4 LD r7, D IF ID EX MEM WB

 5 MUL r2 r1 r1 IF ID EX MEM WB
 6 MUL r4 r3 r3 IF ID EX MEM WB
 7 MUL r6 r5 r5 IF ID EX MEM WB
 8 MUL r8 r7 r7 IF ID EX MEM WB
 9 ADD r11 r2 r4 IF ID EX MEM WB

 10 ADD r12 r6 r8 IF ID EX MEM WB
 11 ADD r21 r11 r12 IF ID EX MEM WB

12 ST r21, R IF ID EX MEM WB  
 



5. Consider we want to execute 2 programs with 100 instructions each. The first program suffers an i-cache 
miss at instruction #30, and the second program another at instruction #70. Assume that  

+ There is parallelism enough to execute all instructions independently (no hazards) 

+ Switching threads can be done instantaneously  

+ A cache miss requires 20 cycles to get the instruction to the cache. 

+ The two programs would not interfere with each other’s caches lines 

Calculate the execution time observed by each of the programs (cycles elapsed between the execution of the 
first and the last instruction of that application) and the total time to execute the workload  

a) Sequentially (no multithreading),  

Thread A

Thread B

29
20

71

31
20

69

1111

1111

 

Total: 240  A: 121  B: 121 

 

b) With coarse-grain multithreading,  

Thread A

Thread B

29 71

3169

1111

1111

Cycle wasted

20

20  

Total: 202  A: 171  B: 172 

 

c) With fine-grain multithreading, 

Thread A

Thread B

29 29

3029

1111

111120

20

21

22
20

20  

Total: 202  A: 201  B: 201 

 

d) And with 2-way simultaneous multithreading. 

Thread A

Thread B

30

3130

1111

1111

3140
20

20
39

 

Total: 101  A: 101  B: 101 



6. Consider a 4-way superscalar processor with 4-way multithreading and the 4 threads, with the instructions 
issued as per the diagrams below. ICM stands for instruction cache miss and means no instruction can be 
issued that cycle.  

 

1 2 1 2 3 1 2 3 1
3 4 5 ICM ICM
4 5 6 6 ICM 2 3 4
7 8 7 4 5 5 6
9 10 11 12 8 6 7 8

ICM ICM 7 9 10 11 12
ICM ICM 8 9 10
ICM 9 10 11 12
13 13 14
14 15 16 15 16

Thread A Thread B Thread C Thread D

 

 

Draw a diagram showing the execution flow (issuing only) of the threads of a multithreaded processor (first 
10 cycles only).  
Assume the processor starts issuing instructions from the different threads in order A >> B >> C >> D >> A: 

 

a) Coarse-grain multithreading 

 

1111 2222

3333

4444 5555 6666

7777 8888

9999 10101010 11111111 12121212

ICMICMICMICM

1111 2222 3333

4444 5555

6666

7777  

Swap thread upon ‘expensive’ operations (ICM) 

 

b) Fine-grain multithreading 

 

1111 2222

1111 2222 3333

1111 2222 3333

1111

3333

4444 5555

4444 5555

2222 3333 4444

4444 5555 6666

6666  

Round robin over ‘ready’ threads 

 

c) Simultaneous multithreading 

 

1111 2222 1111 2222

3333 1111 2222 3333

1111 3333 4444 5555

4444 5555 6666 6666

2222 3333 4444 7777

8888 7777 4444 5555

5555 6666 9999 10101010

11111111 12121212 8888 6666

7777 8888 7777

9999 10101010 11111111 12121212  

Issue instructions from several threads per cycle 



7. Consider a modern 6-core processor with 2-way multithreading and 4-way superscalar pipelines. 

 

a) What is this processor’s peak IPC? 

6 cores, each of them with a 4-way superscalar can issue/commit up to 24 instructions in a 

single cycle. 

 

b) How many concurrent threads are supported by this processor? 

6 cores running 2 threads each: 12 in total 

 

c) Assume the processor has a MESI cache coherency protocol with copy back. For the following 
sequence of accesses to variable ‘x’, show the bus transactions, the cache states and the actions in 
main memory. Assume all the corresponding cache lines start in the ‘I’ state.  

core0: LDR r0, x 

Read miss: Cache0 sends a MEM_READ. No other cache has it, so main memory sends the 

value. Cache0 changes to ‘E’  

 

core1: LDR r1, x 

Read miss: Cache1 sends a MEM_READ. Cache0 has the cache line, so sends the value. Cache0 

and Cache1 change to ‘S’  

 

core2: STR r0, x 

Write miss: Cache2 sends a RWITW. Cache0 and Cache1 change to ‘I’, main memory sends the 

value and Cache2 changes to ‘M’  

 

core3: LDR r3, x 

Read miss: Cache3 sends a MEM_READ. Cache2 has the cache line, so sends the value to 

Cache3 and updates main memory. Cache3 and Cache2 change to ‘S’  

 

core3: STR r5, x 

Write hit: Cache3 sends an INVALIDATE. Cache2 changes to ‘I’, Cache3 changes to ‘M’  



8. Consider the following 3 processors: 

 Proc 1 Proc 2 Proc 3 
# of cores 8 6 8 
Multithreading No 4-way fine-grain 2-way SMT 
Superscalar 4-way 4-way 2-way 
Clock freq. 1.5 GHz 2.5 GHz 3GHz 

For each of them compute: 

 

a) single-thread peak performance 

For single-thread performance we need to multiply the peak IPC (superscalar lanes) by the 

clock frequency 

Proc 1: 4*1.5 = 6Ginstr/s 

Proc 2: 4*2.5 = 10Ginstr/s 

Proc 3: 2*3 = 6Ginstr/s 

 

b) peak IPC of the system (instructions per cycle) 

For peak IPC, we need to multiply the number of cores times the maximum number of 

instructions that can be executed per cycle. 

Proc 1: 8*4 = 32 instr/cycle 

Proc 2: 6*4 = 24 instr/cycle 

Proc 3: 8*2 = 16 instr/cycle 

 

c) peak computing throughput of the system (instructions per second) 

For the computing throughput we need to multiply the number of cores, the IPC and the 

freq. 

Proc 1: 8*4*1.5 = 48Ginstr/s 

Proc 2: 6*4*2.5 = 60Ginstr/s 

Proc 3: 8*2*3 = 48 Ginstr/s 

 

d) the total number of hardware threads supported by the system 

For the number of threads, we multiply the number of cores times the threads per core 

Proc 1: 8*1 = 8 threads 

Proc 2: 6*4 = 24 threads 

Proc 3: 8*2 = 16 threads 


