1. Imagine we have a non-pipelined processor runafrig’Hz and want to run a program with 1000
instructions.

a) How much time would it take to execute the paogy?
7 instruction per cycle:
TMHz clock
7000 instructions = 1000 cycles @ (10°)Hz = 1000/70° = 1000us

Assuming ideal conditions (perfect pipelining ammdhazards), how much time would it take to exetue
same program in:

b) A 5-stage pipeline?

7 instruction per cycle:

SMHz clock

+4 extra cycles to load the pipeline

(7000 + 4 cycles)/(5*10°)Hz = 200-8us ~5x faster
c) A 20-stage pipeline?

7 instruction per cycle:

20MHz clock

+79 extra cycles to load the pipeline

(7000 + 19 cycles)/(20*T10°)Hz = 50-95us ~20x faster
d) A 100-stage pipeline?

7 instruction per cycle:

T00MHz clock

+99 extra cycles to load the pipeline

(7000 + 99 cycles)/(100*10°)Hz = 10-99us ~100x faster

Looking at those results, it seems clear that amirg pipeline should increase the execution spéad
processor. Why do you think that processor desgyfsere below) have not only stopped increasindipae
length but, in fact, reduced it?

Pentium Il — Coppermine (1999) — 10-stage pipeline

Pentium IV — NetBurst (2000) — 20-stage pipeline

Pentium Prescott (2004) — 31-stage pipeline

Core i7 9xx — Bloomfield (2008) — 24-stage pipeline

Core i7 2xx/3xx — Sandy Bridge (2013) — 19-stagelpie

Incidence of Data Hazards: The more stages in the pipeline the further away a previous

instruction can be while still maintaining a dependency

Impact of both Data and Control Hazards: The more stages in the pipeline, the more

cycles we need to stall the pipeline when a hazard occurs-

Hardware costs: The more stages in the pipeline the more extra buffering is needed and
the more extra wiring to communicate stages- Implementing forwarding is specially a
concern as the number of forwarding paths needed increases nearly quadratically with
the number of stages:

Clock limitation: The clock can not be made infinitely fast- Power dissipation increases
with clock frequency, rapidly increasing the consumed enerqy and the temperature of
the chip-

2. Consider a simple program with two nested loophadollowing:

while (true) {
for (i=0; i<x; i++) {
do_stuff
}

}
With the following assumptions:

do_stuff has 20 instructions that can be executed ideallige pipeline.
The overhead for control hazards is 3-cycles, dgas of the branch being static or conditional.
The two loops can be translated into a single bramgtruction each.

Calculate the instructions-per-cycle that can beeaed for different values of x (2, 4, 10, 100):
a) Without branch prediction.
outer loop: always branches - always fails :: 3-cycle penalty per outer loop iteration
inner loop: branches (x-1) out of x iterations - (x-1) fails :: 3*(x-1) cycles penalty per
outer loop iteration
Instructions = x*(20+1) + 1

Cycles = Instructions + penalties = x*(20+71) + 1 + 3*(x-1) + 3

b) With a simple branch prediction policy - do #@me as the last time.
7 loop: always branches - always predicts (except first time) ::: no penalty

2nd IOOP.' first (predicts no branch, but branches) ﬂﬂd last (predicts branch but doesn’t) iterations ﬂ/WﬂyS Fai/,

rest a/ways predict (predict branch AND branches)

:2: two 3-cycle penalties per outer iteration
Instructions = x*(20+1) + T

Cycles = x*(20+1) + T + 3*%(2)

¢) With perfect branch prediction - always preditsrectly.
7 loop: always predicts ::: no penalty
2" loop: always predicts ::: no penalty
Instructions = x*(20+1) + 1
Cycles = x*(20+7) + 1

x=2 x=4 | x=70 | x =100
Instructions (per Tst loop iteration) 43 &5 211 2701
a) Cycles - w/o BP 49 97 2471 24071
a) IPC - w/o BP 0-878 0-876 0-876 0-875
b) Cycles - simple BP 49 97 217 2707
b) IPC - simple BP 0-878 0-934% 0-972 0-997
¢) Cycles - perfect BP 43 85 217 2701
¢) IPC - perfect BP 7-000 7-000 7-:000 7-:000

3. Consider a 10-stage fully pipelined processor a®tte below.

IF ID EX MEM WB

ooo O Ooad ooo O

(IF and MEM: 3 stages each; EX: 2 stages; ID\Af&] 1 stage each)

a) How many cycle penalties will be incurred byg different kinds of Hazards in such
processor?

Data Hazards:

Up to 5 cycle penalty (TEX+3MEM+TWB) for 2 consecutive instructions with data
dependencies if forwarding is not implemented- Tst instruction needs to WB before the
2nd advances to EX (see below)

712|324 5| 6 7 S e\ 7o\ 7|72 73 74 | 75 | 76
add r7,r0,r3 | IF| 1F| 1F| /D EX| EX | HED| HEH HEA WE
sub 17,r0,r3 IF| IF| F| /D | stall| stall| stall| stall| stall| EX| EX | HEN| VEN HEA WE)|

Control Hazards:

Unconditional branches: 3 cycles (2IF + 7ID)- We don’t know it’s a branch until |D
stage (3 instructions already fetched)

/12|34 5| 6 7
4 F\IF| 1A P EX| EX | 7EN
st 7 F\IF| F| 2| X Ze
/st 2 FlIF| F| 2 Ze
st 3 F| F| F 4
7 F| F F

Conditional branches: 5 cycles (2 IF + 7 ID + 2 EX)- We don’t know whether we need
to branch or not until end of EX stage (5 instructions already fetched)

7123 4| & 2 7
Beg 77 F| IF| 1F| 1D EX| EX | HIEF
st 7 | IF| 1F| 1D EX X
st 2 Al F| A D X
/st 3 F\| F| F /D
/st ¥ F| F Va
/st & F F
7 /F

4. Consider the following program which implements R? + B? + C + D?

LD r1 @

ML r2rlril -- AN2
LDr3 @

ML r4 r3r3 -- Br2

ADD rl11 r2 r4 -- AM2 + B2
LD r5 @

ML r6 r5r5 -- 2
LDr7 @

ML r8 r7 r7 -- DN2
ADDrl12 r6 r8 -- C'2 + D2
ADD r21 r1l1 ri12 -- AN2 + B2 + CC2 + DM2
ST r21 @

a) Simulate its execution in a basic 5-stage pipealvithout forwarding.

1 2 3 4 5 6 7 8 9 10 (11] 12 | 13 | 14 |1 15[16| 17] 18 [19| 20| 21 | 22 | 23 | 24| 25| 26 | 27 [28] 29 | 30 | 31

LDrl, A IF | ID | EX [MEM| WB

MULr2rlrl IF | ID |Stall| Stall] EX |MEM| WB

LDr3,B IF_[Stallf Stall| ID | EX [MEM[WB

MUL r4 r3 r3 IF | ID | Stall| Stall] EX |[MEM| WB

ADD r1l1r2r4 IF_[Stall| Stall| ID | Stall| Stall] EX [MEM| WB

LDr5,C IF_| Stall| Stall] ID | EX [MEM| WB

MUL 16 15 15 IF | ID | Stall EX |[MEM| WB

LDr7,D IF_| Stall ID | EX |[MEM| WB

MUL 18 r7 17 IF_| ID |Stall| Stallf EX |[MEM| WB

ADD r12r6 r8 IF | Stall| Stall| ID | Stall| Stall| EX [MEM| WB

ADD r21r11rl12 IF | Stall| Stall| ID | Stall] Stall| EX |MEM| WB

STr21, R IF | Stall| Stall| ID | Stall] Stall] EX |[MEM

b) Simulate the execution of the original code Brstage pipeline with forwarding.

1 2 3 4 5 6 7 8 9 10 (11)12 | 13| 14 | 15| 16 [17] 18 | 19 | 20
LDrl, A IF [ID | EX |MEM[WB
MULr2rlrl IF | ID |Stall| EX [MEM| WB
LDr3,B IF | Stall] ID | EX |MEM| WB
MUL r4 r3 r3 IF | ID |Stall] EX |[MEM| WB
ADD r1l1 r2 r4 IF_[Stall| ID | EX IMEM| WB
LDr5, C IF | ID | EX |MEM| WB
MUL 16 15 15 IF | ID |Stall] EX |[MEM| WB
LDr7, D IF | Stall] ID | EX |[MEM| WB
MUL r8 r7 17 IF | ID | stall] EX |MEM| WB
ADD r12r6 18 IF_|Stall| ID | EX [MEM| WB
ADD r21 r11 r12 IF | ID | EX [MEM[WB
STr21, R IF | ID | EX [MEM[WB

Note: Colored stages represents dependencies beimatrictions (e.g. cyan in MUL r2,r1,r1 EX hadependency on LDR, r1,A MEM

c) Draw the dependency graph of the application.

9

A

g
9

50
9

BRe

d) Based on the dependency graph discuss the ifitytabthe code to be run in a 2-way superscalar

Looking at the dependency graph we can see that there are many independent instructions
that could be issued in parallel to exploit instruction level parallelism- Only the last two
instructions (ADD and STR) would not be able to be issued in parallel-

e) Simulate the execution of the original code fstage 2-way superscalar pipeline with forwarding

1 2 3 4 5 6 7 8 9 10 | 11 | 12) 13 [14] 15| 16 | 17
LDrl, A IF | ID | EX |[MEM|] WB
MULr2rlrl IF | ID [Stall] EX |MEM| WB
LDr3,B IF_[Stall| ID | EX |MEM| WB
MUL r4 r3 r3 IF | ID [stall| EX [MEM| WB
ADD r11r2 r4 IF [Stall| ID [EX |MEM| WB
LDr5, C IF_[Stall| ID [EX |MEM| WB
MUL r6 r5 15 IF | ID [sStall| EX [MEM| WB
LD r7, D IF_|Stall| ID [EX [MEM| WB
MUL r8 r7 17 IF | ID [Stall] EX |MEM| WB
ADD r12 r6 18 IF_|Stall] ID [EX [MEM| WB
ADD r21 r11 r12 IF [ID | EX|[MEM| WB
STr21, R IF | ID | EX|MEM[WB

f) Simulate the execution of the reordered code fastage 2-way superscalar pipeline

1 2 3 4 5 6 7 8 9 |10 [11
1LDrl, A IF | ID | EX |[MEM| WB
2LDr3, B IF | ID | EX |[MEM| WB
3LDIr5,C IF | ID | EX |[MEM| WB
4LDr7,D IF | ID | EX [IMEM| WB
5MULr2r1rl IF | ID | EX |[MEM| WB
6 MUL r4 r3 r3 IF | ID | EX |[MEM| WB
7 MUL 61515 IF | ID | EX |[MEM| WB
8 MUL 8 r7 r7 IF | ID | EX |[MEM| WB
9ADD r11r2r4 IF | ID | EX [MEM| WB
10ADD r12r6r8 IF | ID | EX [MEM| WB
11 ADD r21r11r12 IF | ID | EX [MEM| WB
12STr21, R IF | ID | EX |MEM| WB

5. Consider we want to execute 2 programs with 168@uctions each. The first program suffers an heac
miss at instruction #30, and the second prograrthanat instruction #70. Assume that

+ There is parallelism enough to execute all irgtoms independently (no hazards)
+ Switching threads can be done instantaneously

+ A cache miss requires 20 cycles to get the in8tm to the cache.

+ The two programs would not interfere with eadheots caches lines

Calculate the execution time observed by eacheoptbgrams (cycles elapsed between the executithre of
first and the last instruction of that applicati@md the total time to execute the workload

a) Sequentially (no multithreading),

7
Thread A e—22 7 >
7
Thread B [69 37 >
Total: 240 A: 127 B: 127

b) With coarse-grain multithreading,

Cycle wasted
7
Thread A i >

7
Thread B . 69 i 3,

Total: 202 A: 177 B: 772

¢) With fine-grain multithreading,

Thread A e B2.20 29
Thread B emmeeZnnn20 20 L 2
Total: 202 A: 207 B: 207

d) And with 2-way simultaneous multithreading.
7
Thread A oe—32 40,37

7
Thread Be39 390 _ 31

Total: 707 A: 107 B: 107

6. Consider a 4-way superscalar processor with 4-waljithreading and the 4 threads, with the instcdi
issued as per the diagrams below. ICM stands &bruation cache miss and means no instruction ean b

issued that cycle.

Thread A

Thread B

2|

2

H

5

Olo|~|aw]~
<
©

ICM
ICM
13

ICM

Thread D

4]

=

11]12]

10

13

14

14] 15] 16|

15

16

Draw a diagram showing the execution flow (isswongy) of the threads of a multithreaded processist (

10 cycles only).

Assume the processor starts issuing instructiam the different threads in order A >> B >> C >>BA:

a) Coarse-grain multithreading

2]

5] 6]

10| 7] 72|

2] 3]

-
|\||m-k~gmu-hw~

Swap thread upon ‘expensive’ operations (I1CM)

b) Fine-grain multithreading

2
2|3
2|3

jwlt|n

|°)-k'\)-k-h(n|~:~nns.

Round robin over ‘ready’ threads

¢) Simultaneous multithreading

ofd|a|N|a 0w

[N ool w|[w|a]w]N]~

OV R|~]|w][=
S(® [N o|N|w|a|w[~|n

72|

Issue instructions from several threads per cycle

7. Consider a modern 6-core processor with 2-wayithtdading and 4-way superscalar pipelines.

a) What is this processor’s peak IPC?

6 cores, each of them with a 4-way superscalar can issue/commit up to 24 instructions in a

single cycle-

b) How many concurrent threads are supported Isyptticessor?

6 cores running 2 threads each: 12 in total

c) Assume the processor has a MESI cache cohepeatrycol with copy back. For the following
sequence of accesses to variable ‘x’, show thdransactions, the cache states and the actions in
main memory. Assume all the corresponding cacles Igtart in the ‘I’ state.

core0: LDR O, x

Read miss: CacheO sends a MEM_READ- No other cache has it, so main memory sends the
value: CacheO changes to ‘E’

corel: LDRr1, X

Read miss: Cachel sends a MEM_READ- CacheO has the cache line, so sends the value: CacheO
and Cachel change to ‘S’

core2: STRrO, x

Write miss: Cache2 sends a RWITW- CacheO and Cachel change to ‘I’, main memory sends the
value and Cache2 changes to ‘M’

core3: LDR 3, x

Read miss: Cache3 sends a MEM_READ- Cache2 has the cache line, so sends the value to
Cache3 and updates main memory: Cache3 and Cache2 change to ‘S’

core3: STRr5, x

Write hit: Cache3 sends an INVALIDATE- Cache2 changes to ‘I’, Cache3 changes to ‘M’

8. Consider the following 3 processors:

Proc 1 Proc 2 Proc 3
of cores 8 6 8
Multithreading No 4-way fine-grain 2-way SMT
Superscalar 4-way 4-way 2-way
Clock freq. 1.5 GHz 2.5 GHz 3GHz

For each of them compute:

a) single-thread peak performance

For single-thread performance we need to multiply the peak IPC (superscalar lanes) by the

clock frequency

Proc 1: 4*1-5 = 6Ginstr/s
Proc 2: 4*2-5 = 10Ginstr/s
Proc 3: 2*3 = 6Ginstr/s

b) peak IPC of the system (instructions per cycle)

For peak IPC, we need to multiply the number of cores times the maximum number of

instructions that can be executed per cycle-
Proc 1: 8% = 32 instr/cycle
Proc 2: 6*4¢ = 24 nstr/cycle
Proc 3: 8*2 = 16 instr/cycle

¢) peak computing throughput of the system (insibns per second)

For the computing throughput we need to multiply the number of cores, the IPC and the
freq:

Proc 7: 8*4*1-5 = 48Ginstr/s
Proc 2: 6*4*2-5 = 606Ginstr/s
Proc 3: 8*2*3 = 48 Ginstr/s

d) the total number of hardware threads supporyetid system

For the number of threads, we multiply the number of cores times the threads per core
Proc 1: 8* = 8 threads

Proc 2: 6*4 = 24 threads

Proc 3: 8*2 = 16 threads

