In this lecture, we outline the Turing model of computation and show that there exist non-computable functions. We present a framework for studying the intrinsic complexity of a problem (abstracted from any particular algorithm for solving it) in terms of minimal time- and space-resources required for deterministic and non-deterministic Turing machines to solve it. We present some basic results on the relationships between these complexity classes. The lecture three parts:

- Turing machines;
- time- and space-bounds;
- a separation result.
Outline

Turing machines

Time and space

A separation result

Summary
Turing machines

Time and space

A separation result

Summary

Alan Turing

Alonzo Church

Kurt Gödel
From the point of view of the rest of this course, an algorithm is a multi-tape Turing Machine:

We think of Tape 1 as the input, Tape K as the output, and Tapes 2–(K – 1) as work tapes.
• Formally, a Turing Machine is a quintuple

$$M = \langle K, \Sigma, Q, q_0, T \rangle,$$

where

• $K \geq 2$ (number of tapes)
• Σ is a non-empty, finite set (alphabet)
• Q is a non-empty, finite set (set of states)
• $q_0 \in Q$ (initial state)
• T is a set of transitions (for K, Σ and Q)—see below.

• A symbol is an element of $\Sigma \cup \{ [], \triangleright \}$
 • We pronounce $[]$ as blank and \triangleright as start.
• A transition (for K, Σ and Q) is a quintuple

$$\langle p, \bar{s}, q, \bar{t}, \bar{d} \rangle$$

where

- $p \in Q$ and $q \in Q$
- \bar{s} and \bar{t} are K-tuples of symbols
- \bar{d} is a K-tuple whose elements from $\{\text{left}, \text{right}, \text{stay}\}$

• It has the informal meaning:

 *If you are in state p, and the symbols written on the squares currently being scanned on the K tapes are given by \bar{s}, then set the new state to be q, write the symbols of \bar{t} on the K tapes and move the heads as directed by \bar{d}.***
• We insist that
 • the tape never moves left past \triangleright,
 • Tape 1 is read-only (input) and Tape K write-only (output) . . .
• M is deterministic if, for every p and every \bar{s}, there is at most one transition $\langle p, \bar{s}, q, \bar{t}, \bar{d} \rangle$.
• A configuration of M: a K-tuple of strings

\[\rhd, S_k, 1, \ldots, S_k, i - 1, q, S_k, i, \ldots, S_k, n(k). \]

representing the situation in which the kth tape of M reads $\rhd, s_k, 1, \ldots, s_k, n(k)$, the head is over square i, and the current state is q (same for all K strings).

• A run of machine M on input x is a sequence of configurations (finite or infinite) in which successive configurations conform to some transition in T.

• Just to be clear: M must make some transition if one is available.

• The run is terminating if it is finite. In this case, and for deterministic M, we write $M \downarrow x$; otherwise $M \uparrow x$.
Definition

Let M be a deterministic Turing machine over alphabet Σ, and let $x \in \Sigma^*$. If $M \downarrow x$, then the output tape of M will contain a definite string $y \in \Sigma^*$; and we can define the partial function $f_M : \Sigma^* \rightarrow \Sigma^*$ as follows.

$$f_M(x) = \begin{cases} y & \text{if } M \downarrow x \\ \text{undefined} & \text{otherwise} \end{cases}$$

We say that M computes the function f_M. A partial function $f : \Sigma^* \rightarrow \Sigma^*$ is computable if it is computed by some (deterministic) Turing machine.
• An important feature of Turing machines is that they are finite objects of the form \(\langle K, \Sigma, Q, q_0, T \rangle \).
• As such, they can be encoded in some (actually: in any) alphabet.
• The code of a TM can then be used as input to another Turing machine.
• There exists a universal Turing machine:

Theorem

Fix some alphabet \(\Sigma \). There exists a Turing machine \(U \) with the following property. For any Turing Machine \(M \) with alphabet \(\Sigma \), and any strings \(x, y \in \Sigma^ \), \(U \) has a terminating run on input \((M; x) \) leaving \(y \) on the output tape if and only if \(M \) has a terminating run on input \(x \) leaving \(y \) on the output tape; moreover, \(U \) has a non-terminating run on input \((M; x) \) if and only if \(M \) has a non-terminating run on input \(x \).*
Definition (Acceptance and recognition)
Let M be a Turing machine over alphabet Σ, and let $x \in \Sigma^*$. We say M accepts x if M has a halting run on input x, with the first head over the leftmost square.

(Alert: texts differ on the precise definitions here.)

The set of strings accepted by M is called the language recognized by M.

Theorem
If a language is recognized by some Turing machine M, then it is recognized by some deterministic Turing Machine M'.
• A language is **recursively enumerable (r.e.)** if there is a (deterministic) Turing Machine which recognizes it.

• A language L over alphabet Σ is **co-recursively enumerable (co-r.e.)** if $\Sigma^* \setminus L$ is r.e.

• A language is **recursive** if there is a deterministic Turing Machine M recognizing it, such that M always halts.

• As an exercise, prove the following:

 \[\text{A language is recursive if and only if it is both r.e. and co-r.e.}\]

• Sometimes, we use the vocabulary of **problems** and **decidability**

 • language \iff problem

 • recursive \iff decidable
• Example: the problem of determining whether an integer is prime is the language
\[\{ x \in \{0, 1\}^* \mid x \text{ denotes a prime number} \} . \]

• Consider the problem of determining whether a formula of propositional logic is satisfiable

\[
p_0 \land (p_1 \rightarrow p_{10}) \quad \neg((p_0 \land p_1) \lor (p_0 \land \neg p_1) \lor (\neg p_0 \land p_1) \lor (\neg p_0 \land \neg p_1))
\]

This problem is the language language
\[\{ x \in \{ p, 0, 1, \land, (,), \lor, \neg, \rightarrow \}^* \mid x \text{ is a wff and satisfiable} \} . \]

• Both these problems are decidable.
• It is easy to see from the above that a problem \(\mathcal{P} \subseteq \Sigma^* \) is decidable if and only if the total function

\[
f_\mathcal{P} : \Sigma^* \rightarrow \{\text{Yes}, \text{No}\}
\]

\[
f_\mathcal{P}(x) = \begin{cases}
\text{Yes} & \text{if } x \in \mathcal{P}; \\
\text{No} & \text{otherwise}.
\end{cases}
\]

is computable by a deterministic Turing machine.

• Typically, we present problems in the form

PROBLEM NAME
Given: a string \(x \) (coding some object we are interested in);
Return: Yes if \(x \) has some property \(\mathcal{P} \), and No otherwise.
Definition
The *Halting problem* is the following problem:

HALTING
Given: a pair of strings m, x;
Return: Yes if m is the code of a deterministic Turing Machine, $M,$ and x a string in the alphabet of $M,$ such that $M \downarrow x$;
No otherwise.

Theorem (Turing, 1936)
The Halting problem is not decidable.
Proof.
Suppose H is a deterministic TM such that, for every deterministic TM M with code m, and every string x in the alphabet of M, H outputs Yes on input $(m; x)$ if $M \downarrow x$, and No otherwise. Let be H^* as below, with code h^*.

![Diagram of H^*](image)

What happens if H^* is given input h^*? The embedded H receives input $h^*; h^*$. Hence:

$$H^* \downarrow h^* \Rightarrow H^* \uparrow h^*$$

$$H^* \uparrow h^* \Rightarrow H^* \downarrow h^*$$
Outline

Turing machines

Time and space

A separation result

Summary
• In these lectures, we are interested in the resources required by Turing machines to recognize languages (≡ decide problems).

• There are two main types of machine:
 • deterministic
 • non-deterministic

• There are two main types of resource:
 • time
 • space

• Warning: this four-way classification is not meant to exhaust the possible types of complexity analysis!

• There now follow some rather dreary definitions . . .
Definition
Let M be a Turing machine with alphabet Σ, and let $g : \mathbb{N} \rightarrow \mathbb{N}$. We say M runs in time g if, for all but finitely many strings $x \in \Sigma^*$, any run of M on input x halts within at most $g(|x|)$ steps. Similarly, M runs in space g if M always terminates and, for all but finitely many strings $x \in \Sigma^*$, any run of M on input x uses at most $g(|x|)$ squares on any of its work-tapes.
• Thus, it makes sense to say, for example, that a given Turing machine runs in time (or space) n^2, or $3n^3 - 13n + 42$.

• Usually, however, we are not interested in the exact running times of this or that TM, since these measures tell us little about the problem at hand.

• Suppose M is a Turing machine running in time/space g, and let $c > 0$.

• Provided g is moderately fast-growing, there exists a TM M', running in time $c \cdot g$, halting exactly when M does, and writing the same results on its output tape. ("Linear speed-up".)

• A similar result holds for space bounds.
• This allows us to define the intrinsic complexity of a given language (problem) L in terms of the time- and space bounds of any Turing machine that recognizes (decides) it.

• We begin with non-deterministic TMs:

Definition
Let L be a language over some alphabet, and let G be a set of functions from \mathbb{N} to \mathbb{N}. We say that L is in $\text{NTIME}(G)$ (or $\text{NSPACE}(G)$) if there exists a Turing machine M recognizing L and a function $g \in G$, such that M runs in time (respectively, space) g.

If $G = \{g\}$, we write $\text{NTIME}(g)$ instead of $\text{NTIME}(\{g\})$, and similarly for space.
• When talking about the complexity of problems, we typically consider fairly large classes of functions:

\[
P = \{ n^c \mid c > 0 \}
\]

\[
E = \{ 2^{n^c} \mid c > 0 \}
\]

\[
E_2 = \{ 2^{2^{n^c}} \mid c > 0 \}
\]

\[
E_k = \{ 2^{2^{\cdots^2}} \}^{n^c} \text{ \,times} \mid c > 0 \}
\]

• A function \(g : \mathbb{N} \rightarrow \mathbb{N} \) which is in \(E_k \) for some \(k \) is said to be elementary. (We know all about these from an earlier lecture.)
• Thus we have the following non-deterministic complexity classes.

• The usual names are on the left-hand sides of the equations, their meanings on the right-hand sides.

\[
\begin{align*}
\text{NPTIME} & = \text{NTIME}(P) \\
\text{NExpTime} & = \text{NTIME}(E) \\
k\text{-NExpTime} & = \text{NTIME}(E_k)
\end{align*}
\]

\[
\begin{align*}
\text{NLogSpace} & = \text{NSpace}(\log n) \\
\text{NPSPACE} & = \text{NSpace}(P) \\
\text{NExpSpace} & = \text{NSpace}(E) \\
k\text{-NExpSpace} & = \text{NSpace}(E_k).
\end{align*}
\]
We can also restrict attention to **deterministic** TMs:

Definition
Let L be a language over some alphabet, and let G be a set of functions from \mathbb{N} to \mathbb{N}. We say that L is in $\text{TIME}(G)$ (or $\text{SPACE}(G)$) if there exists a deterministic Turing machine M recognizing L and a function $g \in G$, such that M runs in time (respectively, space) g.

If $G = \{g\}$, we write $\text{TIME}(g)$ instead of $\text{TIME}(\{g\})$, and similarly for space.
This yields the deterministic complexity classes:

- $\text{PTime} = \text{Time}(P)$
- $\text{ExpTime} = \text{Time}(E)$
- $\text{k-ExpTime} = \text{Time}(E_k)$
- $\text{LOGSPACE} = \text{Space}(\log n)$
- $\text{PSPACE} = \text{Space}(P)$
- $\text{EXPSPACE} = \text{Space}(E)$
- $\text{k-EXPSPACE} = \text{Space}(E_k)$.
• Thus, we showed in earlier lectures that
 • DIRECTED GRAPH CYCLICITY
 • GRAPH CONNECTEDNESS
 • PERFECT MATCHING

 are all in \textit{PTime}. (Recall that the last of these is not so obvious: the na"ive algorithm takes exponential time.)

• Two famous problems that are in \textit{PTime}, but not obviously so, are
 • LINEAR PROGRAMMING FEASIBILITY (Khachiyan, 1979)
 • PRIMES (M. Agrawal, N. Kayal, and N. Saxena, 2002)
This problem should be pretty familiar to you

REACHABILITY

Given: a directed graph G and vertices u, v of G

Return: Y if v is reachable from u in G; N otherwise.

Obviously, REACHABILITY is in PTIME. But what about the space-bound?
Theorem

REACHABILITY is in NLogSpace.

Proof.
Here is an ‘algorithm’:

begin reachND(G, u, v)
 n := number of vertices in G
 w := u
 c := 0
 while w \neq v and c < n
 pick w’ such that w = w’ or there is an edge from w to w’
 w := w’
 increment c;
 if c < n
 return Y
return N
Exercise: try writing out definitions of the above problems in the standard form:

PROBLEM NAME
Given: . . . ;
Return: . . .

We will encounter many examples of problems in other complexity classes in the coming lectures.
• Complexity classes fit inside one another in some obvious ways:

\[\text{TIME}(G) \subseteq \text{NTIME}(G) \quad \text{SPACE}(G) \subseteq \text{NSPACE}(G) \]
\[\text{TIME}(G) \subseteq \text{SPACE}(G) \quad \text{NTIME}(G) \subseteq \text{NSPACE}(G) \]

• Also, if \(G \subseteq H \), then \(\text{TIME}(G) \subseteq \text{TIME}(H) \), and similarly for \(\text{NTIME}, \text{SPACE} \) and \(\text{NSPACE} \).

• Some slightly less obvious inclusions can be established using the notion of a configuration graph for a TM \(M \) on input \(x \).
• A **configuration** is possible state of M, describing the contents of the tapes, the head positions and the state.

• A tape with symbols a_1, \ldots, a_p with the head at position i ($1 \leq i \leq p$) and M in state s can be conveniently encoded as a string

$$\sigma = a_1 \cdots a_{i-1}sa_i \cdots a_p.$$

Hence a configuration of a k-tape TM can be conveniently described by k such strings (with separators):

$$c = \sigma_1 ; \sigma_2 ; \cdots ; \sigma_k.$$

• If there is a bound on the space used—say $s(n)$, where n is the length of the input x, then there are at most $2^{O(s(n))}$ configurations to be considered.

• The set of these configurations, say V, forms a graph $G = (V, E)$ where $(c, d) \in E$ just in case M has a transition taking c to d.

• We can identify a start configuration c_0 (with input x) and a success configuration c^*.
Theorem
\[\text{NSPACE}(g) \subseteq \text{TIME}(2^{O(g)}) \]

Proof.
Let \(M \) be in \(\text{NSPACE}(g) \). We must show it is in \(\text{TIME}(2^{O(g)}) \).

Take any input \(x \) with \(|x| = n \). We can easily (write a deterministic TM to) construct the configuration graph, of \(M \) with space bound \(n \). But \(|G| < 2^{O(g)} \), and we may search for a path from the start configuration (with input \(x \)) to the(!) success configuration in time linear in the size of \(G \).

Corollary
\[\text{NLogSpace} \subseteq \text{PTime}, \text{NPSPACE} \subseteq \text{ExpTime}, \text{NExpSpace} \subseteq 2^{-\text{ExpTime}}, \text{etc.} \]
• We observed above that \(\text{Time}(g) \subseteq \text{Space}(g) \) and \(\text{NTime}(g) \subseteq \text{NSpace}(g) \).

• These inclusions can be strengthened with a simple trick.

• If \(M \) is a (non-deterministic) TM running time \(g \), then it makes, on input \(x \) with \(|x| = n \), a series of at most \(g(n) \) choices as to which transition to take; each of these choices is made from a fixed list of (say) \(q \) choices.

• We can represent any run as a sequence of symbols \(k_1, \ldots, k_{g(n)} \) (chosen from a fixed alphabet of size \(k \)).
Theorem
\(\text{NTIME}(g) \subseteq \text{SPACE}(g) \).

Sketch proof.
Let \(M \) be in \(\text{NTIME}(g) \). We must show it is in \(\text{SPACE}(g) \).

We can write a deterministic TM \(M^* \) running in space \(g \) (just as \(M \) does) but using an extra work-tape to record the non-deterministic choices in a run of \(M \), expressed as a string \(k_1, \ldots k_{g(n)} \). With only marginal space overhead, \(M^* \) can easily be made to cycle through all possible sequences \(k_1, \ldots k_{g(n)} \), terminating if \(M \) would have.

Corollary
\[
\text{LogSPACE} \subseteq \text{NLogSPACE} \subseteq \text{PTime} \subseteq \text{NPTime} \subseteq \\
\text{PSPACE} \subseteq \text{NPSPACE} \subseteq \text{ExpTime} \subseteq \text{NEExpTime} \subseteq \\
\text{ExpSpace} \subseteq \text{NExpSpace} \subseteq 2\text{-ExpTime} \cdots
\]
Theorem
\[\text{NTime}(g) \subseteq \text{Space}(g). \]

Sketch proof.
Let \(M \) be in \(\text{NTime}(g) \). We must show it is in \(\text{Space}(g) \).

We can write a deterministic TM \(M^* \) running in space \(g \) (just as \(M \) does) but using an extra work-tape to record the non-deterministic choices in a run of \(M \), expressed as a string \(k_1, \ldots k_{g(n)} \). With only marginal space overhead, \(M^* \) can easily be made to cycle through all possible sequences \(k_1, \ldots k_{g(n)} \), terminating if \(M \) would have.

Corollary
\[\text{LogSpace} \subseteq \text{NLogSpace} \subseteq \text{PTime} \subseteq \text{NPTime} \subseteq \text{PSPACE} \subseteq \text{NPSPACE} \subseteq \text{ExpTime} \subseteq \text{NExpTime} \subseteq \text{ExpSpace} \subseteq \text{NExpSpace} \subseteq 2\cdot\text{ExpTime} \cdots \]
Outline

Turing machines

Time and space

A separation result

Summary
Definition
Let $f : \mathbb{N} \to \mathbb{N}$ be ‘proper’. (There exists a TM, which given n, computes $f(n)$ symbols \star on its output tape.) The f-bounded Halting problem is the following problem:

HALTING$_f$
Given: the code, m, of a deterministic Turing Machine, M, and a string, x, in the alphabet of M;
Return: Yes if M terminates on input x in time at most $f(|x|)$, and No otherwise.

Theorem
$HALTING_f \not\in \text{TIME}(f([n/2]))$.
Proof.
Suppose \text{HALTING}_f is recognized by a Turing machine \(H_f \), guaranteed to terminate in time \(f(\lfloor n/2 \rfloor) \).
Consider the Turing machine, say \(H_f^* \), with code \(h_f^* \):

\[
\begin{array}{c}
H_f^* \\
\downarrow \\
\text{Duplicate input} \\
\downarrow \\
H_f \\
\downarrow \\
\text{Success?} \\
\bigtriangleup \\
\text{Y} \\
\downarrow \\
\text{Loop} \\
\downarrow \\
\text{N} \\
\downarrow \\
\text{Write Y} \\
\end{array}
\]

What happens if \(H_f^* \) is given as input \(h_f^* \)—i.e. a description of itself as input? The embedded \(H \) receives input \(h_f^*; h_f^* \), and terminates (if at all) in time \(f(|h_f^*|) \). Hence:

\[
\begin{align*}
H_f^* \downarrow h_f^* & \Rightarrow H_f^* \uparrow h_f^* \\
H_f^* \uparrow h_f^* & \Rightarrow H_f^* \downarrow h_f^*
\end{align*}
\]
• However, if $f(n)$ is a ‘proper’ complexity function, we can decide the problem H_f in time $(f(n))^3$ using a version, U_f of the universal Turing machine, U.

• The machine U_f works as follows given input (M, x).
 • writes $f(|x|)$ symbols \star on an ‘alarm-clock’ (work)tape;
 • simulate the steps of M in the usual way, advancing a counter on the alarm clock tape by 1 for each step;
 • abandon the computation if the alarm clock rings, and just output No.

• This machine can be made to run in time $O(f(n)^3)$, and so can be sped-up to run in time $f(n)^3$.
Define $f'(n) = f(\lfloor n/2 \rfloor)$. Now, M_f decides HALTING$_f$, and runs in time $f(n^3) = f'(2n + 1)^3$. On the other hand, HALTING$_f$, is not computable in time $f(\lfloor n/2 \rfloor) = f'(n)$. Moreover, if f' is ‘proper’, so is f. Hence:

Theorem

For all ‘proper’ functions f, $T_{\text{IME}}(f(n)) \subsetneq T_{\text{IME}}((f(2n + 1)^3)$.

Using similar reasoning:

Theorem

*For all ‘proper’ functions f, $S_{\text{PACE}}(f(n)) \subsetneq S_{\text{PACE}}(f(n) \log f(n))$.***
This yields a very important corollary:

Theorem

\(\text{PTime} \nsubseteq \text{ExpTime} \).

Proof.

Since any polynomial is dominated by \(2^n \),

\[
\begin{align*}
\text{PTime} & \subseteq \text{Time}(2^n) \\
& \nsubseteq \text{Time}(2^{3(2n+1)}) \\
& \subseteq \text{ExpTime}.
\end{align*}
\]

Similarly

Theorem

\(\text{NPTime} \nsubseteq \text{NExpTime} \), \textit{and} \(\text{PSpace} \nsubseteq \text{ExpSpace} \).
• Going back to our earlier result that

\[\text{PTime} \subseteq \text{NPTime} \subseteq \text{PSpace} \subseteq \text{ExpTime} \]

we know that at least one of these inclusions is strict.

• If you could say which, a great many people would like to know, especially if it turned out to be \(\text{PTime} \subsetneq \text{NPTime} \).

• It is suspected that all of these inclusions are strict, but no one really has any idea.
• Notice the asymmetry involved in the notion of (non-deterministic) computation:

\[M \text{ recognizes } L \subseteq \Sigma^* \text{ just in case, for each string } x \in \Sigma^*,\]
\[x \in L \text{ if and only if there exists a terminating run of } M \text{ on input } x. \]

• This asymmetry prompts us to define the complement classes as follows.

\[\text{If } \mathcal{C} \text{ is a class of languages, then } \mathcal{C}_\text{co} \text{ is the class of languages } L \text{ such that } \Sigma^* \setminus L \text{ is in } \mathcal{C}, \text{ where } \Sigma \text{ is the alphabet of } L. \]
• Trivially,

\[\text{TIME}(G) = \text{CO-TIME}(G) \]
\[\text{SPACE}(G) = \text{CO-SPACE}(G). \]

• For non-deterministic classes, some of these equations are not known to hold:

\[\text{NPTIME} \ ? = \text{CO-NPTIME} \]

• But there are some surprises to come . . .
Outline

Turing machines

Time and space

A separation result

Summary
Summary

• In this lecture we have
 • defined multi-tape Turing machines
 • defined the basic complexity classes based on the Turing model of computation;
 • presented some simple inclusions involving these complexity classes;
 • shown that some of these inclusions are strict.

• Reading for this lecture:
 • Sipser Ch. 3 (TMs)
 • Sipser Ch. 4 (Halting problem)
 • Sipser Ch. 7.1 (Time complexity)
 • Sipser Ch. 9.1 (Hierarchy theorem)