In this lecture, we outline the Turing model of computation and show that there exist non-computable functions. We present a framework for studying the intrinsic complexity of a problem (abstracted from any particular algorithm for solving it) in terms of minimal time- and space-resources required for deterministic and non-deterministic Turing machines to solve it. We present some basic results on the relationships between these complexity classes. The lecture three parts:

- Turing machines;
- time- and space-bounds;
- a separation result.
Outline

Turing machines

Time and space

A separation result

Summary
Turing machines

Alan Turing

Time and space

Alonzo Church

A separation result

Kurt Gödel

Summary
From the point of view of the rest of this course, an *algorithm* is a *multi-tape Turing Machine*:

- We think of Tape 1 as the *input*, Tape K as the *output*, and Tapes 2–($K - 1$) as *work tapes*.
• Formally, a Turing Machine is a quintuple

\[M = \langle K, \Sigma, Q, q_0, T \rangle, \]

where

- \(K \geq 2 \) (number of tapes)
- \(\Sigma \) is a non-empty, finite set (alphabet)
- \(Q \) is a non-empty, finite set (set of states)
- \(q_0 \in Q \) (initial state)
- \(T \) is a set of transitions (for \(K \), \(\Sigma \) and \(Q \))—see below.

• A symbol is an element of \(\Sigma \cup \{\square, \triangleright\} \)
 - We pronounce \(\square \) as blank and \(\triangleright \) as start.
• A transition (for \(K \), \(\Sigma \) and \(Q \)) is a quintuple

\[
\langle p, \bar{s}, q, \bar{t}, \bar{d} \rangle
\]

where

• \(p \in Q \) and \(q \in Q \)
• \(\bar{s} \) and \(\bar{t} \) are \(K \)-tuples of symbols
• \(\bar{d} \) is a \(K \)-tuple whose elements from \{left, right, stay\}

• It has the informal meaning:

If you are in state \(p \), and the symbols written on the squares currently being scanned on the \(K \) tapes are given by \(\bar{s} \), then set the new state to be \(q \), write the symbols of \(\bar{t} \) on the \(K \) tapes and move the heads as directed by \(\bar{d} \).
• We insist that
 • the tape never moves left past \triangleright,
 • Tape 1 is read-only (input) and Tape K write-only (output) . . .
• M is deterministic if, for every p and every \bar{s}, there is at most one transition $\langle p, \bar{s}, q, \bar{t}, d \rangle$.
• **A configuration** of M: a K-tuple of strings

$\triangleright, S_1, 1, \ldots, S_k, i-1, q, S_k, i, \ldots, S_k, n(k)$.

representing the situation in which the kth tape of M reads $\triangleright, s_k, 1, \ldots, s_k, n(k)$, the head is over square i, and the current state is q (same for all K strings).

• **A run** of machine M on input x is a sequence of configurations (finite or infinite) in which successive configurations conform to some transition in T.

• Just to be clear: M must make some transition if one is available.

• The run is **terminating** if it is finite. In this case, and for deterministic M, we write $M \downarrow x$; otherwise $M \uparrow x$.
Definition
Let M be a deterministic Turing machine over alphabet Σ, and let $x \in \Sigma^*$. If $M \downarrow x$, then the output tape of M will contain a definite string $y \in \Sigma^*$; and we can define the partial function $f_M : \Sigma^* \rightarrow \Sigma^*$ as follows.

$$f_M(x) = \begin{cases}
 y & \text{if } M \downarrow x \\
 \text{undefined} & \text{otherwise}
\end{cases}$$

We say that M computes the function f_M. A partial function $f : \Sigma^* \rightarrow \Sigma^*$ is computable if it is computed by some (deterministic) Turing machine.
An important feature of Turing machines is that they are \textit{finite} objects of the form $\langle K, \Sigma, Q, q_0, T \rangle$.

As such, they can be encoded in some (actually: in any) alphabet.

The code of a TM can then be used as input to another TM.

There exists a \textit{universal} Turing machine:

\textbf{Theorem}

\textit{Fix some alphabet Σ. There exists a Turing machine U with the following property. For any Turing Machine M with alphabet Σ, and any strings $x, y \in \Sigma^*$, U has a terminating run on input $(M; x)$ leaving y on the output tape if and only if M has a terminating run on input x leaving y on the output tape; moreover, U has a non-terminating run on input $(M; x)$ if and only if M has a non-terminating run on input x.}
Definition (Acceptance and recognition)

Let M be a Turing machine over alphabet Σ, and let $x \in \Sigma^*$. We say M accepts x if M has a halting run on input x, with the first head over the leftmost square.

(Alert: texts differ on the precise definitions here.)

The set of strings accepted by M is called the language recognized by M.

Theorem

If a language is recognized by some Turing machine M, then it is recognized by some deterministic Turing Machine M'.
• A language is recursively enumerable (r.e.) if there is a (deterministic) Turing Machine which recognizes it.
• A language L over alphabet Σ is co-recursively enumerable (co-r.e.) if $\Sigma^* \setminus L$ is r.e.
• A language is recursive if there is a deterministic Turing Machine M recognizing it, such that M always halts.
• As an exercise, prove the following:

 A language is recursive if and only if it is both r.e. and co-r.e.

• Sometimes, we use the vocabulary of problems and decidability
 • language \leftrightarrow problem
 • recursive \leftrightarrow decidable
• Example: the problem of determining whether an integer is prime is the language
\(\{ x \in \{0, 1\}^* \mid x \text{ denotes a prime number} \} \).

• Consider the problem of determining whether a formula of propositional logic is satisfiable

\[
p_0 \land (p_1 \rightarrow p_{10})
\]

\[
\neg((p_0 \land p_1) \lor (p_0 \land \neg p_1) \lor (\neg p_0 \land p_1) \lor (\neg p_0 \land \neg p_1))
\]

This problem is the language language
\(\{ x \in \{ p, 0, 1, \land, (,), \lor, \neg, \rightarrow \}^* \mid x \text{ is a wff and satisfiable} \} \).

• Both these problems are decidable.
• It is easy to see from the above that a problem $\mathcal{P} \subseteq \Sigma^*$ is decidable if and only if the total function

$$f_P : \Sigma^* \to \{\text{Yes, No}\}$$

$$f_P(x) = \begin{cases}
\text{Yes} & \text{if } x \in \mathcal{P}; \\
\text{No} & \text{otherwise.}
\end{cases}$$

is computable by a deterministic Turing machine.

• Typically, we present problems in the form

PROBLEM NAME
Given: a string x (coding some object we are interested in);
Return: Yes if x has some property \mathcal{P}, and No otherwise.
Definition

The *Halting problem* is the following problem:

HALTING

Given: a pair of strings \(m, \ x \);
Return: Yes if \(m \) is the code of a deterministic Turing Machine, \(M \), and \(x \) a string in the alphabet of \(M \), such that \(M \downarrow x \);
No otherwise.

Theorem (Turing, 1936)

The Halting problem is not decidable.
Proof.

Suppose H is a deterministic TM such that, for every deterministic TM M with code m, and every string x in the alphabet of M, H outputs Yes on input $(m; x)$ if $M \downarrow x$, and No otherwise. Let be H^* as below, with code h^*.

![Diagram](image)

What happens if H^* is given input h^*? The embedded H receives input $h^*; h^*$. Hence:

$$H^* \downarrow h^* \Rightarrow H^* \uparrow h^*$$

$$H^* \uparrow h^* \Rightarrow H^* \downarrow h^*$$
Outline

Turing machines

Time and space

A separation result

Summary
• In these lectures, we are interested in the resources required by Turing machines to recognize languages (= decide problems).
• There are two main types of machine:
 • deterministic
 • non-deterministic
• There are two main types of resource:
 • time
 • space
• Warning: this four-way classification is not meant to exhaust the possible types of complexity analysis!
• There now follow some rather dreary definitions . . .
Definition
Let M be a Turing machine with alphabet Σ, and let $g : \mathbb{N} \to \mathbb{N}$. We say M **runs in time** g if, for all but finitely many strings $x \in \Sigma^*$, any run of M on input x halts within at most $g(|x|)$ steps. Similarly, M **runs in space** g if M always terminates and, for all but finitely many strings $x \in \Sigma^*$, any run of M on input x uses at most $g(|x|)$ squares on any of its work-tapes.
• Thus, it makes sense to say, for example, that a given Turing machine runs in time (or space) n^2, or $3n^3 - 13n + 42$.

• Usually, however, we are not interested in the exact running times of this or that TM, since these measures tell us little about the problem at hand.

• Suppose M is a Turing machine running in time/space g, and let $c > 0$.

• Provided g is moderately fast-growing, there exists a TM M', running in time $c \cdot g$, halting exactly when M does, and writing the same results on its output tape. (“Linear speed-up”.)

• A similar result holds for space bounds.
• This allows us to define the intrinsic complexity of a given language (problem) L in terms of the time- and space bounds of any Turing machine that recognizes (decides) it.

• We begin with non-deterministic TMs:

Definition
Let L be a language over some alphabet, and let G be a set of functions from \mathbb{N} to \mathbb{N}. We say that L is in $\text{NTime}(G)$ (or $\text{NSpace}(G)$) if there exists a Turing machine M recognizing L and a function $g \in G$, such that M runs in time (respectively, space) g.

If $G = \{g\}$, we write $\text{NTime}(g)$ instead of $\text{NTime}(\{g\})$, and similarly for space.
• When talking about the complexity of problems, we typically consider fairly large classes of functions:

\[
\begin{align*}
P & = \{n^c \mid c > 0\} \\
E & = \{2^{n^c} \mid c > 0\} \\
E_2 & = \{2^{2^{n^c}} \mid c > 0\} \\
E_k & = \left\{2^{2^{\cdots^{n^c}}} \right\}^k \text{ times} | c > 0
\end{align*}
\]

• A function \(g : \mathbb{N} \to \mathbb{N} \) which is in \(E_k \) for some \(k \) is said to be elementary. (We know all about these from an earlier lecture.)
• Thus we have the following non-deterministic complexity classes.

• The usual names are on the left-hand sides of the equations, their meanings on the right-hand sides.

\[
\begin{align*}
\text{NPTIME} & = \text{NTIME}(P) \\
\text{NExpTime} & = \text{NTIME}(E) \\
k-\text{NExpTime} & = \text{NTIME}(E_k) \\
\text{NLogSpace} & = \text{NSpace}(\log n) \\
\text{NPSPACE} & = \text{NSpace}(P) \\
\text{NExpSpace} & = \text{NSpace}(E) \\
k-\text{NExpSpace} & = \text{NSpace}(E_k).
\end{align*}
\]
• We can also restrict attention to deterministic TMs:

Definition

Let L be a language over some alphabet, and let G be a set of functions from \mathbb{N} to \mathbb{N}. We say that L is in $\text{TIME}(G)$ (or $\text{SPACE}(G)$) if there exists a deterministic Turing machine M recognizing L and a function $g \in G$, such that M runs in time (respectively, space) g.

If $G = \{g\}$, we write $\text{TIME}(g)$ instead of $\text{TIME}(\{g\})$, and similarly for space.
This yields the deterministic complexity classes:

- $\text{PTime} = \text{Time}(P)$
- $\text{ExpTime} = \text{Time}(E)$
- $k-$\text{ExpTime} = $\text{Time}(E_k)$
- $\text{LogSpace} = \text{Space}(\log n)$
- $\text{PSPACE} = \text{Space}(P)$
- $\text{ExpSpace} = \text{Space}(E)$
- $k-$\text{ExpSpace} = $\text{Space}(E_k)$.
Thus, we showed in earlier lectures that
- DIRECTED GRAPH CYCLICITY
- GRAPH CONNECTEDNESS
- PERFECT MATCHING

are all in P_{Time}. (Recall that the last of these is not so obvious: the naïve algorithm takes exponential time.)

Two famous problems that are in P_{Time}, but not obviously so, are
- LINEAR PROGRAMMING FEASIBILITY (Khachiyan, 1979)
- PRIMES (M. Agrawal, N. Kayal, and N. Saxena, 2002)
• This problem should be pretty familiar to you

REACHABILITY
Given: a directed graph G and vertices u, v of G
Return: Y if v is reachable from u in G; N otherwise.

• Obviously, REACHABILITY is in PTime. But what about the space-bound?
Theorem

REACHABILITY is in NLogSpace.

Proof.
Here is an ‘algorithm’:

```
begin reachND(G, u, v)
    n := number of vertices in G
    w := u
    c := 0
    while w ≠ v and c < n
        pick v such that w = v or there is an edge from w to v
        w := v
        increment c;
    if c < n
        return Y
    return N
end reachND
```
Exercise: try writing out definitions of the above problems in the standard form:

PROBLEM NAME
Given: ... ;
Return: ...

We will encounter many examples of problems in other complexity classes in the coming lectures.
• Complexity classes fit inside one another in some obvious ways:

\[
\begin{align*}
\text{TIME}(G) & \subseteq \text{NTIME}(G) & \text{SPACE}(G) & \subseteq \text{NSPACE}(G) \\
\text{TIME}(G) & \subseteq \text{SPACE}(G) & \text{NTIME}(G) & \subseteq \text{NSPACE}(G)
\end{align*}
\]

• Also, if \(G \subseteq H \), then \(\text{TIME}(G) \subseteq \text{TIME}(H) \), and similarly for \(\text{NTIME}, \text{SPACE} \) and \(\text{NSPACE} \).

• Some slightly less obvious inclusions can be established using the notion of a configuration graph for a TM \(M \) on input \(x \).
• A configuration is possible state of \(M \), describing the contents of the tapes, the head positions and the state.

• A tape with symbols \(a_1, \ldots a_p \) with the head at position \(i \) (\(1 \leq i \leq p \)) and \(M \) in state \(s \) can be conveniently encoded as a string

\[
\sigma = a_1 \cdots a_{i-1}sa_i \cdots a_p.
\]

Hence a configuration of a \(k \)-tape TM can be conveniently described by \(k \) such strings (with separators):

\[
c = \sigma_1 ; \sigma_2 ; \cdots ; \sigma_k.
\]

• If there is a bound on the space used—say \(s(n) \), where \(n \) is the length of the input \(x \), then there are at most \(2^{O(s(n))} \) configurations to be considered.

• The set of these configurations, say \(V \), forms a graph \(G = (V, E) \) where \((c, d) \in E\) just in case \(M \) has a transition taking \(c \) to \(d \).

• We can identify a start configuration \(c_0 \) (with input \(x \)) and a success configuration \(c_* \).
Theorem
\(\text{NSPACE}(g) \subseteq \text{TIME}(2^{O(g)}) \)

Proof.
Let \(M \) be in \(\text{NSPACE}(g) \). We must show it is in \(\text{TIME}(2^{O(g)}) \).

Take any input \(x \) with \(|x| = n \). We can easily (write a deterministic TM to) construct the configuration graph, of \(M \) with space bound \(n \). But \(|G| < 2^{O(g)} \), and we may search for a path from the start configuration (with input \(x \)) to the(!) success configuration in time linear in the size of \(G \).

Corollary
\(\text{NLogSpace} \subseteq \text{PTime}, \text{NPSpace} \subseteq \text{ExpTime}, \text{NExpSpace} \subseteq 2^{-\text{ExpTime}}, \text{etc.} \)
• We observed above that $\text{TIME}(g) \subseteq \text{SPACE}(g)$ and $\text{NTIME}(g) \subseteq \text{NSPACE}(g)$.

• These inclusions can be strengthened with a simple trick.

• If M is a (non-deterministic) TM running time g, then it makes, on input x with $|x| = n$, a series of at most $g(n)$ choices as to which transition to take; each of these choices is made from a fixed list of (say) q choices.

• We can represent any run as a sequence of symbols $k_1, \ldots, k_{g(n)}$ (chosen from a fixed alphabet of size k).
Theorem
\(\text{NTime}(g) \subseteq \text{Space}(g) \).

Sketch proof.
Let \(M \) be in \(\text{NTime}(g) \). We must show it is in \(\text{Space}(g) \).

We can write a deterministic TM \(M^* \) running in space \(g \) (just as \(M \) does) but using an extra work-tape to record the non-deterministic choices in a run of \(M \), expressed as a string \(k_1, \ldots, k_g(n) \). With only marginal space overhead, \(M^* \) can easily be made to cycle through all possible sequences \(k_1, \ldots, k_g(n) \), terminating if \(M \) would have.

Corollary
\[\text{LogSpace} \subseteq \text{NLogSpace} \subseteq \text{PTime} \subseteq \text{NPTime} \subseteq \text{PSPACE} \subseteq \text{NPSPACE} \subseteq \text{ExpTime} \subseteq \text{NExpTime} \subseteq \text{EXPSPACE} \subseteq \text{NEXPSPACE} \subseteq 2^{-\text{ExpTime}} \cdots \]
Theorem
\(\text{NTIME}(g) \subseteq \text{SPACE}(g) \).

Sketch proof.
Let \(M \) be in \(\text{NTIME}(g) \). We must show it is in \(\text{SPACE}(g) \).

We can write a deterministic TM \(M^* \) running in space \(g \) (just as \(M \) does) but using an extra work-tape to record the non-deterministic choices in a run of \(M \), expressed as a string \(k_1, \ldots, k_{g(n)} \). With only marginal space overhead, \(M^* \) can easily be made to cycle through all possible sequences \(k_1, \ldots, k_{g(n)} \), terminating if \(M \) would have.

Corollary
\[\text{LogSPACE} \subseteq \text{NLogSPACE} \subseteq \text{PSPACE} \subseteq \text{NPSPACE} \subseteq \text{ExpSPACE} \subseteq \text{NExpSPACE} \subseteq 2^{\text{-ExpTime}} \cdots \]
Outline

Turing machines

Time and space

A separation result

Summary
Definition
Let \(f : \mathbb{N} \to \mathbb{N} \) be ‘proper’. (There exists a TM, which given \(n \), computes \(f(n) \) symbols \(\star \) on its output tape.) The \(f \)-bounded Halting problem is the following problem:

\[
\text{HALTING}_f
\]
Given: the code, \(m \), of a deterministic Turing Machine, \(M \), and a string, \(x \), in the alphabet of \(M \);
Return: Yes if \(M \) terminates on input \(x \) in time at most \(f(|x|) \), and No otherwise.

Theorem
\(\text{HALTING}_f \notin \text{TIME}(f(\lfloor n/2 \rfloor)) \).
Proof.
Suppose HALTING$_f$ is recognized by a Turing machine H_f, guaranteed to terminate in time $f(\lfloor n/2 \rfloor)$. Consider the Turing machine, say H_f^*, with code h_f^*:

What happens if H_f^* is given as input h_f^*—i.e. a description of itself as input? The embedded H receives input h_f^*; h_f^*, and terminates (if at all) in time $f(|h_f^*|)$. Hence:

$$H_f^* \downarrow h_f^* \Rightarrow H_f^* \uparrow h_f^*$$
$$H_f^* \uparrow h_f^* \Rightarrow H_f^* \downarrow h_f^*$$
• However, if \(f(n) \) is a ‘proper’ complexity function, we can decide the problem \(H_f \) in time \((f(n))^3 \) using a version, \(U_f \) of the universal Turing machine, \(U \).

• The machine \(U_f \) works as follows given input \((M, x) \).
 - writes \(f(|x|) \) symbols \(\star \) on an ‘alarm-clock’ (work)tape;
 - simulate the steps of \(M \) in the usual way, advancing a counter on the alarm clock tape by 1 for each step;
 - abandon the computation if the alarm clock rings, and just output No.

• This machine can be made to run in time \(O(f(n)^3) \), and so can be sped-up to run in time \(f(n)^3 \).
Define $f'(n) = f(\lfloor n/2 \rfloor)$. Now, M_f decides HALTING_f, and runs in time $f(n^3) = f'(2n+1)^3$. On the other hand, HALTING_f, is not computable in time $f(\lfloor n/2 \rfloor) = f'(n)$. Moreover, if f' is ‘proper’, so is f. Hence:

Theorem

For all ‘proper’ functions f, $\text{TIME}(f(n)) \subsetneq \text{TIME}((f(2n + 1)^3))$.

Using similar reasoning:

Theorem

*For all ‘proper’ functions f, $\text{SPACE}(f(n)) \subsetneq \text{SPACE}(f(n) \log f(n))$.***
This yields a very important corollary:

Theorem

\[\text{PTime} \subsetneq \text{ExpTime}. \]

Proof.

Since any polynomial is dominated by \(2^n\),

\[
\begin{align*}
\text{PTime} & \subseteq \text{Time}(2^n) \\
& \subsetneq \text{Time}(2^{3(2^n+1)}) \\
& \subseteq \text{ExpTime}.
\end{align*}
\]

Similarly

Theorem

\[\text{NPTime} \subsetneq \text{NExpTime}, \text{ and } \text{PSpace} \subsetneq \text{ExpSpace}. \]
• Going back to our earlier result that

\[
\text{PTime} \subseteq \text{NPTime} \subseteq \text{PSpace} \subseteq \text{ExpTime}
\]

we know that at least one of these inclusions is strict.

• If you could say which, a great many people would like to know, especially if it turned out to be \(\text{PTime} \subset \text{NPTime}\).

• It is suspected that all of these inclusions are strict, but no one really has any idea.
• Notice the asymmetry involved in the notion of (non-deterministic) computation:

\[M \text{ recognizes } L \subseteq \Sigma^*, \text{ just in case, for each string } x \in \Sigma^*, \]
\[x \in L \text{ if and only if there exists a terminating run of } M \text{ on input } x. \]

• This asymmetry prompts us to define the complement classes as follows.

\[\text{If } C \text{ is a class of languages, then } Co-C \text{ is the class of languages } L \text{ such that } \Sigma^* \setminus L \text{ is in } C, \text{ where } \Sigma \text{ is the alphabet of } L. \]
• Trivially,

\[\text{TIME}(G) = \text{CO-TIME}(G) \]
\[\text{SPACE}(G) = \text{CO-SPACE}(G). \]

• For non-deterministic classes, some of these equations are not known to hold:

\[\text{NPTIME} \ ? = \text{CO-NPTIME} \]

• But there are some surprises to come . . .
Outline

Turing machines

Time and space

A separation result

Summary
Summary

• In this lecture we have
 • defined multi-tape Turing machines
 • defined the basic complexity classes based on the Turing model of computation;
 • presented some simple inclusions involving these complexity classes;
 • shown that some of these inclusions are strict.

• Reading for this lecture:
 • Sipser Ch. 3 (TMs)
 • Sipser Ch. 4 (Halting problem)
 • Sipser Ch. 7.1 (Time complexity)
 • Sipser Ch. 9.1 (Hierarchy theorem)