• Basic graph algorithms
 • directed and undirected graphs
 • DFS (depth-first search)
 • reachability
 • connectedness
• Strongly connected components of directed graphs
 • finding a topological sort of a dag
 • Tarjan’s algorithm
• Connected components of undirected graphs
 • union-find
 • optimizations
 • running time
• Matching and flow optimization
 • Flow networks
 • The Min-cut-max-flow theorem
 • How to compute optimal flows
 • Application to the marriage problem
• Stable marriage problem
 • Gale-Shapley algorithm
 • running-time
 • correctness
 • optimality (for boys!)
• String matching (will not appear on the exam)
 • Rabin-Karp
 • Knuth-Morris-Pratt
• Turing machines and complexity
 • Definition of Turing machines
 • Definitions of recursive, recursively enumerable (r.e.)
 • The existence of a universal TM and simulations
 • Undecidability of the halting problem
 • Time and space complexity (deterministic, non-deterministic)
 • Complement classes
 • The time-bounded halting problem and $\text{PTIME} \neq \text{EXPTIME}$
 • Configuration graphs for Turing machines

• Satisfiability problems for (propositional) logics
 • The problem SAT (in NPTIME)
 • The problem Horn-SAT (in PTIME)
 • Krom-SAT (i.e. 2-SAT) (in Co-NLOGSPACE)
 • QBF-SAT (in PSPACE)
• Reductions, completeness and hardness
 • Many-one polynomial-time/log-space reductions
 • Transitivity of many-one log-space reductions
 • SAT is NPTime-hard (Cook’s Theorem/Cook-Levin Theorem)
 • 3-SAT is NPTime-hard
 • ILP-feasibility is NPTime-hard.
 (You will not be required to show membership in NPTime)

• Hard graph-theoretic problems
 • 3-colourability is NPTime-hard
 • Hamiltonian-circuit is NPTime-hard
 • The travelling salesman problem
• Hardness results for other complexity classes
 • Krom-SAT is NLogSpace-hard
 • QBF-SAT is PSPACE-hard
• Two important theorems
 • Savitch’s Theorem (both forms)
 • The Immerman-Szelepcsényi Theorem (both forms)
• The standard complexity hierarchy
• Reading:
 http://studentnet.cs.manchester.ac.uk/ugt/2019/COMP36111/syllabus/

• Course texts, as directed in the overheads.

• Past exam papers:
 I recommend the years 2016-17 and 2017-18. Note that the syllabus may vary slightly from year to year. In particular, linear programming (the simplex algorithm) is not on the syllabus this year.