COMP36111: Advanced Algorithms I
Lecture 11: His Last Bow

Ian Pratt-Hartmann

Room KB2.38: email: ipratt@cs.man.ac.uk

2019–20
Outline

Motivation

Savitch’s theorem

The Immerman-Szelepcsényi Theorem

The big picture

Summary
• What we know so far:
 1. We have the following hierarchy of complexity classes

\[
\text{LogSpace} \subseteq \text{NLogSpace} \subseteq \text{PTime} \subseteq \text{NPTime} \subseteq \\
\text{PSpace} \subseteq \text{NPSpace} \subseteq \text{ExpTime} \subseteq \text{NExpTime} \subseteq \\
\text{ExpSpace} \subseteq \text{NExpSpace} \subseteq 2\text{-ExpTime} \cdots
\]

It would be nice to simplify this a bit.
 2. We have examples of complete problems for many of these:

• Horn-SAT (PTime)
• SAT (NPTime)
• QBF-SAT (PSPACE)

Moreover, we know that Krom-SAT is NLogSpace-hard and that it is in Co-NLogSpace. Can we simplify this a bit? Could it be that Krom-SAT is NLogSpace-complete?
What we know so far:

1. We have the following hierarchy of complexity classes

 \[
 \text{LogSpace} \subseteq \text{NLogSpace} \subseteq \text{PTime} \subseteq \text{NPTime} \subseteq \text{PSpace} \subseteq \text{NPSPACE} \subseteq \text{ExpTime} \subseteq \text{NExpTime} \subseteq \text{ExpSpace} \subseteq \text{NExpSpace} \subseteq 2^{\text{-ExpTime}} \ldots
 \]

 It would be nice to simplify this a bit.

2. We have examples of complete problems for many of these:

 - Horn-SAT (PTime)
 - SAT (NPTime)
 - QBF-SAT (PSPACE)

 Moreover, we know that Krom-SAT is NLogSpace-hard and that it is in Co-NLogSpace. Can we simplify this a bit? Could it be that Krom-SAT is NLogSpace-complete?
Outline

Motivation

Savitch’s theorem

The Immerman-Szelepcsényi Theorem

The big picture

Summary
• We then have the problem:

REACHABILITY

Given: A directed graph $G = (V, E)$ and nodes $s, t \in V$

Return: Yes if t is reachable from s in G, No otherwise.

• In an earlier lecture, we gave an algorithm showing that REACHABILITY is in $\text{TIME}(O(n))$.

• In another earlier lecture, we gave a non-deterministic procedure showing that REACHABILITY is in NLogSPACE.
• The following deterministic algorithm outputs YES iff v is reachable from u in $G = (V, E)$ in at most 2^h steps:

begin isReachableNum(u, v, G, h)
 if $h = 0$
 if $u = v$ or $(u, v) \in E$ return Yes
 else return No
 for $w \in V$
 if (isReachableNum(u, w, G, $h - 1$) and isReachableNum(w, v, G, $h - 1$)) return Yes
 return No
end

• Thus, we can then solve the reachability problem by calling isReachableNum(u, v, G, $\lceil \log |V| \rceil$)
• To see how this works, we note that any path from u to v of length $\leq 2^h$ must have a midpoint w

![Diagram](attachment:image.png)

• Hence, there is a path from u to w of length $\leq 2^{h-1}$ and a path from w to v of length $\leq 2^{h-1}$
• How do we implement this on a Turing machine?
• Answer: by keeping the triples $\langle u, v, h \rangle$ on a work-tape:

$$\langle u, v, h \rangle$$

\[
\text{begin isReachableNum}(u,v,G,h) \\
\quad \text{if } h = 0 \\
\quad \quad \text{if } u = v \text{ or } (u, v) \in E \text{ return Yes} \\
\quad \quad \text{else return No} \\
\quad \text{for } w \in V \\
\quad \quad \text{if } (\text{isReachableNum}(u,w,G,h-1) \text{ and } \text{isReachableNum}(w,v,G,h-1)) \text{ return Yes} \\
\quad \quad \text{return No} \\
\]

• We see that this algorithm requires at most $O(h \cdot \log |V|)$ space.
• How do we implement this on a Turing machine?
• Answer: by keeping the triples $\langle u, v, h \rangle$ on a work-tape:

$$\langle u, v, h \rangle \langle u, w_1, h - 1 \rangle$$

begin isReachableNum(u, v, G, h)
 if $h = 0$
 if $u = v$ or $(u, v) \in E$ return Yes
 else return No
 for $w \in V$
 if (isReachableNum($u, w, G, h - 1$) and
 isReachableNum($w, v, G, h - 1$)) return Yes
 return No

• We see that this algorithm requires at most $O(h \cdot \log |V|)$ space.
• How do we implement this on a Turing machine?
• Answer: by keeping the triples $\langle u, v, h \rangle$ on a work-tape:

$$\langle u, v, h \rangle \langle u, w_1, h - 1 \rangle \langle u, w_2, h - 2 \rangle$$

begin isReachableNum(u,v,G,h)
 if $h = 0$
 if $u = v$ or $(u, v) \in E$ return Yes
 else return No
 for $w \in V$
 if (isReachableNum($u,w,G,h - 1$) and
 isReachableNum($w,v,G,h - 1$)) return Yes
 return No

• We see that this algorithm requires at most $O(h \cdot \log |V|)$ space.
• How do we implement this on a Turing machine?
• Answer: by keeping the triples $\langle u, v, h \rangle$ on a work-tape:

$$\langle u, v, h \rangle \langle u, w_1, h - 1 \rangle \langle u, w_2, h - 2 \rangle \cdots \langle u, w_\ell, h - \ell \rangle$$

begin isReachableNum(u, v, G, h)
 if $h = 0$
 if $u = v$ or $(u, v) \in E$ return Yes
 else return No
 for $w \in V$
 if (isReachableNum($u, w, G, h - 1$) and
 isReachableNum($w, v, G, h - 1$)) return Yes
 return No

• We see that this algorithm requires at most $O(h \cdot \log |V|)$ space.
How do we implement this on a Turing machine?

Answer: by keeping the triples $⟨u, v, h⟩$ on a work-tape:

$$⟨u, v, h⟩⟨u, w_1, h − 1⟩⟨u, w_2, h − 2⟩ \cdots ⟨w_ℓ, v, h − ℓ⟩$$

begin $\text{isReachableNum}(u,v,G,h)$
 if $h = 0$
 if $u = v$ or $(u, v) \in E$ return Yes
 else return No
 for $w \in V$
 if ($\text{isReachableNum}(u,w,G,h − 1)$ and $\text{isReachableNum}(w,v,G,h − 1)$) return Yes
 return No

We see that this algorithm requires at most $O(h \cdot \log |V|)$ space.
• Hence the call \texttt{isReachableNum}(u,v,G,\lceil\log|V|\rceil) requires \(O(\log^2 |V|)\) space.

• This proves:

\textbf{Theorem (Savitch, first form)}

\textit{REACHABILITY is in SPACE}(\log^2 n).
• Suppose we have a Turing machine M over an alphabet with c symbols, having just one tape, and running in space $f(n)$.

• By a configuration of M we mean a triple $\langle s, w, i \rangle$, where:
 • s is a state of M;
 • w is a word over the alphabet of M (tape contents);
 • $1 \leq i \leq |w|$ (head position).

• Writing $w = a_1 \ldots a_\ell$, we can conveniently encode this configuration on a second (work-) tape as

$$a_1 \ldots a_{h-1}sa_h \ldots a_\ell$$

• We can think of this as the label of a node in a graph, G.
• Consider again the configuration

\[a_1 \ldots a_{h-1} s a_h \ldots a_\ell \]

and suppose \(s, a_h \rightarrow b, \text{right}, t \) is a transition of \(M \), where \(a = a_h \).

• Then we can easily compute the subsequent configuration

\[a_1 \ldots a_{h-1} b t a_{h+1} \ldots a_\ell \]

(on another tape if you like).

• We can think of any pair of such configurations as an edge in \(G \)
• Determining whether M has an accepting run (in space $f(n)$) now amounts to determining whether there is a path from the initial state of M to any accepting state of M

\[s^* Y \]

• The number of nodes of G is bounded by $S \cdot f(n) \cdot c^{f(n)}$, where S is the number of states and c the size of the alphabet;

• Note that we can compute the edges of the G on the fly: we often do not need the whole graph.
Theorem (Savitch (second form))

If f is a proper complexity function and $f(n) \geq \log n$, then $\text{NSpace}(f) \subseteq \text{Space}(f^2)$.

Proof.
Suppose P is a problem in $\text{NSpace}(f)$. Let M be a nondeterministic TM running in $\text{Space}(f)$, and accepting P. To determine whether $x \in P$, determine whether configuration graph of M has a path of length at most $2^{O(f(|x|))}$ from the initial node to an accepting node. This can be done in $\text{Space}(O(f(n))^2) = \text{Space}(O(f(n)^2))$.

Corollary

$\text{NPSPACE} = \text{PSPACE}; \text{NEXPSPACE} = \text{EXPSPACE}, \ldots$

Corollary

$\text{NPSPACE} = \text{Co-NPSPACE}; \text{NEXPSPACE} = \text{Co-NEXPSPACE}, \ldots$
Outline

Motivation

Savitch’s theorem

The Immerman-Szelepcsényi Theorem

The big picture

Summary
• The obvious non-deterministic procedure for REACHABILITY shows that this problem is in $\text{NSpace}(\log n)$.

• Applying Savitch’s theorem, we have that REACHABILITY is in $\text{Space}((\log n)^2)$.

• We now present a very simple algorithm to show that, with non-determinism, we can get the space requirements down still further.
• It was very easy to see that REACHABILITY is in NLogSpace.
• However, let us now consider its converse:

UNREACHABILITY
Given: A directed graph \(G = (V, E) \) and nodes \(s, t \in V \)
Return: Yes if \(t \) is **not** reachable from \(s \) in \(G \), No otherwise.

• We shall now show that UNREACHABILITY is in NLogSpace too.
• Fix a directed graph \(G = (V, E) \), and a node \(u \in V \).
• The trick is to use a very simple non-deterministic subroutine:

\[
\text{begin reachableLossy}(u,v,k) \\
\text{set } u' := u \\
\text{until } k = 0 \\
\text{guess any node } v' \\
\text{if } u' \neq v' \text{ and } (u', v') \notin E \text{ return No} \\
\text{set } u' := v' \\
\text{decrement } k \\
\text{if } u' = v \text{ return Yes} \\
\text{return No}
\]

• \(\text{reachableLossy}(u,v,k) \) has a run returning Yes iff \(v \) is reachable from \(u \) in \(k \) or fewer steps.
• Nothing is said about runs of \(\text{reachableLossy}(u,v,k) \) returning No.
Assume we have an algorithm `isReachableFail(u, v, k)` which, for $1 \leq k < n$, either returns `⊥`, Yes or No:

- `isReachableFail` has a run returning Yes, iff v is reachable from u in at most k steps;
- `isReachableFail` has a run returning No, iff v is not reachable from u in at most k steps;

Then the following algorithm returns the number of nodes reachable from u in k steps or fewer, or just returns `⊥`:

```plaintext
numReachableFail(u, k)

begin
    if $k = 0$ return 1
    set $m = 0$
    for $i = 0, \ldots, n - 1$
        let $Q = isReachableFail(u, u_i, k)$
        if $Q = ⊥$, then return ⊥
        if $Q = Yes$, then increment $m$
    return $m$
end
```
Now for the definition of isReachableFail (assume $1 \leq k < n$):

begin $\text{isReachableFail}(u, v, k)$
 let $s = \text{numReachableFail}(u, k - 1)$
 if $s = \bot$ then return \bot
 let $m = 0$
 for $i = 0, \ldots, n - 1$
 if $\text{reachableLossy}(u, u_i, k - 1) = \text{Yes}$
 if $u_i = v$ or $(u_i, v) \in E$ then return Yes
 increment m
 if $m < s$ then return \bot
return No
Now for the our non-deterministic algorithm accepting UNREACHABILITY:

\[
\begin{align*}
\text{begin isUnreachable}(u, v, (V, E)) & \\
& \quad \text{if isReachableFail}(u, v, |V| - 1) = \text{No} \text{ then return Yes} \\
& \quad \text{return No}
\end{align*}
\]

It is easy to see that this algorithm requires only logarithmic space, and has a run returning Yes if and only if \(v\) is not reachable from \(u\) in \(G = (V, E)\).
Theorem (Immerman-Szelepcsényi, first form)

UNREACHABILITY \textit{is in} \textsf{NLogSpace}.
Theorem (Immerman-Szelepcsényi (second form))

If \(f \) is a proper complexity function and \(f(n) \geq \log(n) \), then
\[
\text{NSpace}(f) = \text{Co-NSpace}(f).
\]

Proof.
Suppose \(P \) is a problem in \(\text{NSpace}(f) \), and let \(\overline{P} \) be its complement problem. Let \(M \) be a nondeterministic TM running in \(\text{Space}(f) \), and accepting \(P \), and let \(x \) be an input string. Denote by \(G \) be the configuration graph of \(M \) with input \(x \). Then \(x \) is a positive instance of \(\overline{P} \) if and only if the node of \(G \) representing a successful run is unreachable from the start node of \(G \).

\(\square \)

Corollary

\(\text{NLogSpace} = \text{Co-NLogSpace} \).
Corollary

KROM-SAT is NLogSpace-complete.

Proof.
We showed above that KROM-SAT is in Co-NLogSpace and is NLogSpace-complete.

But the Immerman-Szelepcsényi Theorem tells us that Co-NLogSpace and NLogSpace are the same thing.
Outline

Motivation

Savitch’s theorem

The Immerman-Szelepcsényi Theorem

The big picture

Summary
• We already knew that we have the following hierarchy of complexity classes:

\[
\text{LogSpace} \subseteq \text{NLogSpace} \subseteq \text{PTime} \subseteq \text{NPTime} \subseteq \text{PSpace} \subseteq \text{NPSpace} \subseteq \text{ExpTime} \subseteq \text{NExpTime} \subseteq \text{ExpSpace} \subseteq \text{NExpSpace} \subseteq 2^{-\text{ExpTime}} \cdots
\]

• Savitch’s theorem simplifies this to:

\[
\text{LogSpace} \subseteq \text{NLogSpace} \subseteq \text{PTime} \subseteq \text{NPTime} \subseteq \text{PSpace} \subseteq \text{ExpTime} \subseteq \text{NExpTime} \subseteq \text{ExpSpace} \subseteq 2^{-\text{ExpTime}} \cdots
\]

• We mentioned earlier that \text{NLogSpace} \subsetneq \text{NPSPACE}, whence by Savitch’s Theorem, \text{NLogSpace} \subsetneq \text{PSPACE}.

• Hence at least one of the inequalities

\[
\text{NLogSpace} \subseteq \text{PTime} \subseteq \text{NPTime} \subseteq \text{PSpace}.
\]

is strict; but it is not known which.
• How do the complements of these classes fit into the picture?
• We have already established the following:
 • deterministic classes (time or space) are always equal to their complement classes;
 • non-deterministic space classes from NPSpace upwards are equal to their deterministic variants (Savitch) and hence to their complement classes;
 • \textsc{NLogSpace} is equal to its complement class (Immerman-Szelepcsenyi).
• We do not know whether common non-deterministic time classes, such as \textsc{NPTIME}, \textsc{NExpTime} etc., are equal to their complements.
Outline

Motivation

Savitch’s theorem

The Immerman-Szelepcsényi Theorem

The big picture

Summary
Summary

- In this lecture, we have proved:
 - Savitch's theorem
 - the Immerman-Szelepcsény theorem.

- The former implies that $\text{NSPACE}(g) = \text{SPACE}G$ for ‘large’ G, allowing us to ignore most non-deterministic space classes.

- It follows that these classes are closed under complementation.

- The latter tells us that even the ‘small’ class NLogSPACE is closed under complementation.

- Reading for this lecture:
 - Sipser, Ch. 8 (Space Complexity). You need not read “Winning strategies for games” or “Generalized geography”.