COMP36111: Advanced Algorithms I
Lecture 10: For Completeness’ Sake!

Ian Pratt-Hartmann

Room KB2.38: email: ipratt@cs.man.ac.uk

2019–20
QBF is PSPACE-complete

REACHABILITY is NLOGSPACE-complete

Conclusion
Theorem

The problem QBF is \(PSPACE \)-complete.

Proof.

We have already shown (in Lecture 7) that QBF is in \(PSPACE \).

For \(PSPACE \)-completeness, suppose \(L \) is in \(PSPACE \), and let \(M \) be a deterministic Turing Machine recognizing \(L \) and running with space bound \(f(n) \), where \(f \) is a polynomial. Fix an input \(x \) for \(M \) of length \(n \), and let \(G \) be the configuration graph of \(L \) with input \(x \). The number of vertices in \(G \) is given by \(c^{f(n)} \) where \(c \) is a constant depending only on \(M \).

Let \(u_0 \) be the initial configuration with input \(x \) and \(v_0 \) the successful halting configuration. We want to know whether there is a path from \(u_0 \) to \(v_0 \) of length at most \(c^{f(n)} \). \(\square\)
Contd.
We encode each configuration with a sequence \bar{p} of proposition letters of length $f(n) + 2$, and we write a formulas of propositional logic $\psi_0(\bar{p}, \bar{q})$ stating that M can transition from the configuration encoded by \bar{p} to that encoded by \bar{q}. This is routine, and depends only on M.

It suffices to write, for each i ($1 \leq i \leq \log c^{f(n)} = f(n) \cdot \log c$), a QB-formula $\psi_i(\bar{p}, \bar{q})$ true if and only \bar{q} is reachable from \bar{p} in at most 2^i steps. Note that ψ_0 has already been defined.

Assume that ψ_i has been defined. Our first thought might be to write

$$\psi_{i+1}(\bar{p}, \bar{q}) := \exists \bar{r}(\psi_i(\bar{p}, \bar{r}) \land \psi_i(\bar{r}, \bar{q})).$$
Contd.

But this would mean that ψ_i doubles in size when we increment i; we need to construct all the ψ_i in polynomial time (actually, in logarithmic space).

So, instead and write

$$\psi_{i+1}(\bar{p}, \bar{q}) := \exists \bar{r} \forall \bar{a} \forall \bar{b}(((\bar{a} = \bar{p} \land \bar{b} = \bar{r}) \lor (\bar{a} = \bar{r} \land \bar{b} = \bar{q})) \rightarrow \psi_i(\bar{a}, \bar{b})).$$

This does the trick. It is then easy to map x to a QB-formula φ_x such that x is in accepted by M (i.e. $x \in L$) if and only if φ_x is true.

N.b. $\bar{a} = \bar{p}$ abbreviates $(a_1 \leftrightarrow p_1) \land (a_2 \leftrightarrow p_2) \land \cdots$.
Outline

QBF is PSPACE-complete

REACHABILITY is NLOGSPACE-complete

Conclusion
• Recall the problem of reachability in directed graphs:

REACHABILITY
Given: A directed graph $G = (V, E)$ and nodes $s, t \in V$
Return: Yes if t is reachable from s in G, No otherwise.
Theorem (Revision!)

REACHABILITY is in *NLogSpace*.

Proof.

Here is an obvious non-deterministic procedure:

begin reachND(G, u, v)
 n := number of vertices in G
 w := u
 c := 0
 while w ≠ v and c < n
 pick w' such that w = w' or there is an edge from w to w'
 w := w'
 increment c;
 if c < n
 return Y
 return N
Theorem

REACHABILITY is NLogSpace-complete.

Proof.

We showed above that REACHABILITY is in NLogSpace.

Suppose L is a language recognized by a non-deterministic TM, M, running in space $O(\log n)$. Given an input x, let G be the configuration graph for M with input x. Let u be the node representing the initial configuration. We may assume this graph has a single accepting node v. Now, $x \in L$ if and only if (G, u, v) is an instance of REACHABILITY. The mapping $x \mapsto (G, u, v)$ can easily be constructed in space bounded by $\log n$. •
Outline

QBF is $PSPACE$-complete

REACHABILITY is $NLOGSPACE$-complete

Conclusion
• In this lecture, we enlarged our repertoire of completeness results:
 • QBF-Sat is \(\text{PSPACE} \)-complete;
 • REACHABILITY is \(\text{NLOGSPACE} \)-complete.
• Reading for this lecture:
 • Sipser, Ch. 8 (Space Complexity). You need not read “Winning strategies for games” or “Generalized geography”.