1. To show membership in NP-time, let an instance (U, x, y) of 3D-MATCH be given. Guess a set T of $n = |U| = |x| = |y|$ triples (u, x, y) and check that each element of $U \cup x \cup y$ occurs in exactly one triple. This check can clearly be performed in polynomial time, and thus yields a nondeterministic polynomial time procedure for 3D-MATCH.

2. Write $a_{ij} = a_{i+1}$. Then $T_i = \sum_{i=1}^{m} t_{ij}$, $\overline{T_i} = \sum_{i=1}^{m} \overline{t_{ij}}$.

Then $Z^+ = \sum_{i=1}^{m} T_i \text{ satisfies (i)}$

$Z^- = \sum_{i=1}^{m} \overline{T_i} \text{ satisfies (ii)}$
For (iii), suppose \(Z \) is such that each \(a_{ij} \) and each \(b_{ij} \) occur in exactly one \(t \in Z \).

Let \(t_i \) be the triple of \(Z \) containing \(a_{ii} \). Then \(t_i \) is either \(t_{ii} \) or \(t_{in} \). If the former, \(t_{ii} \in Z \) and hence \(b_{iz} \in Z \) and hence \(t_{iz} \in Z \) and so on, whence \(Z = \{ \overline{t}_{ii}, \ldots, \overline{t}_{im} \} \). If the latter \(t_i = \{ \overline{t}_{ii}, \ldots, \overline{t}_{im} \} \) by an identical argument.

3. Suppose \(Z \) has the advertised properties. We construct a satisfying assignment \(\Theta \) for \(\Pi \).

Fix \(i \) \((1 \leq i \leq n)\). Let \(Z_i = Z \cap T_i \), i.e. the set of triples of \(Z \) involving the element \(a_{ij} \) or \(b_{ij} \). Thus, \(Z_i \) satisfies the conditions of \(\Pi Z(iii) \) and so is either \(Z_i^+ \) or \(Z_i^- \).

Let \(\Theta(p_i) = \{ T \text{ if } Z_i = Z_i^+ \} \)

This defines \(\Theta \). We claim \(\Theta \) is a satisfying assignment for \(\Pi \). Fix \(j \) \((1 \leq j \leq m)\). Then \(c_{j}d_{j} \) must be in one of the triples of \(Z \) and this can only be either \(\{ a_{ij}, c_{j}, d_{j} \} \) or \(\{ b_{ij}, c_{j}, d_{j} \} \).

If the former, \(Z_i \) cannot contain \(a_{ij} \) (since \(\{ a_{ij}, c_{j}, d_{j} \} \in Z \) hence \(Z_i = Z_i^- \) whence \(\Theta(p_i) = T \), whence \(\Theta(s_{ij}) = T \) (since \(p_i \) occurs in \(s_{ij} \)).

If the latter, \(Z_i = Z_i^+ \) by a symmetric argument, and \(\Theta(s_{ij}) = T \) (since \(p_i \) occurs in \(s_{ij} \)).
Some each \(c_{i,j}\) occur only in \(S_{j}\).

\(\forall S_{j}\) is a singleton and the triple it contains contains exactly one element \(u_{i,j}\) or \(\overline{u}_{i,j}\) for some \(i\). Thus, \(\nu_{i,j}\) total (over all \(j\)).

Each \(\forall S_{j}\) contains exactly \(m\) triples (by Q2), accounting for exactly \(m\) objects \(u_{i,j}\) or \(\overline{u}_{i,j}\) for \(j\). Thus: \(\mu_{i,j}\) total (over all \(j\)).

The total number of elements \(u_{i,j}\) or \(\overline{u}_{i,j}\) accounted for by \(Z\) is thus \(n.m + m\). Hence the number unaccounted for is

\[
2mn - (n.m + m) = m(n-1).
\]

4. Let \(R = \{ (u_{i,j}, g_{k}, h_{k}) \mid 1 \leq i \leq n, 1 \leq j \leq m, 1 \leq k \leq m(n-1) \} \cup \{ (\overline{u}_{i,j}, g_{k}, h_{k}) \mid 1 \leq i \leq n, 1 \leq j \leq m, 1 \leq k \leq m(n-1) \}\). (Think of \(R\) as a "rubbish dump") Suppose \(\Theta\) is a satisfying assignment for \(R\).

Let \(Z' = \{ (u_{i,j}, a_{i,j}, b_{i,j}) \mid 1 \leq i \leq n, 1 \leq j \leq m, \Theta(p_{i}) = F \} \cup \{ (\overline{u}_{i,j}, a_{i,j}, b_{i,j}) \mid 1 \leq i \leq n, 1 \leq j \leq m, \Theta(p_{i}) = T \} \).

Now, for each \(j\) (\(1 \leq j \leq m\)) pick some literal \(L_{j}\) from \(S_{j}\) such that \(\Theta(L_{j}) = T\), and let

\[
Z'' = \{ (u_{i,j}, c_{i,j}, d_{i}) \mid 1 \leq i \leq n, 1 \leq j \leq m, L_{j} = p_{i} \} \cup \{ (\overline{u}_{i,j}, c_{i,j}, d_{i}) \mid 1 \leq i \leq n, 1 \leq j \leq m, L_{j} = \overline{p}_{i} \}.
\]
This basis exactly $m(n-1)$ objects $u_{i,j}$ unaccounted for. For each such $u_{i,j}$ (not contained in any triple of Z' or of Z'') define a new triple $r_k = (u_{i,j}, b_k, h_k)$, with k running from 1 to $m(n-1)$. Let
\[Z'' = \{ r_1, \ldots, r_{m(n-1)} \}. \]

Then $Z = Z' \cup Z'' \cup Z'''$ has the desired property.

5. Membership of 3D-MATCH in PTime is QL.
For NP-hardness, we proceed by reduction from SAT. Let an instance of SAT (collection of clauses) Γ be given over propositional letters p_1, \ldots, p_n. Write $\Gamma = \{ \psi_1, \ldots, \psi_m \}$. Define two sets
\[U_\psi = U_1 \cup \cdots \cup U_m, \]
\[X_\psi = \{ (a_{i,j}, c_{i,j}, b_k) \mid 1 \leq i \leq n, 1 \leq j \leq n, 1 \leq k \leq m(n-1) \}, \]
\[Y_\psi = \{ (b_{i,j}, d_{i,j}, h_k) \mid 1 \leq i \leq n, 1 \leq j \leq n, 1 \leq k \leq m(n-1) \}. \]

where the $U_i, a_{i,j}, b_k, c_{i,j}, d_{i,j}, g_k, h_k$ are as in question 2-4. Thus, (U_ψ, X_ψ, Y_ψ) is an instance of 3D-MATCH, and can evidently be constructed using only logarithmic space. We claim Γ is satisfiable if and only if (U_ψ, X_ψ, Y_ψ) is a positive instance of 3D-MATCH. For the \Rightarrow-direction, let Z^* be a witnessing set of triples. Then $Z = Z^* \setminus R$ satisfying the conditions of Q3 and so Γ is satisfiable. The only-\Leftarrow direction is Q4.