""\.}:

The Universit
of Mancheste

MANCHESTER

.24

Chip Multiprocessors
COMP35112

ecture 7 - Hardware Support for
Synchronisation

Graham Riley

14 February 2018

MANCH E ! ER

Implementing Synchronisation

= Most shared memory parallel programming requires
that we implement synchronisation to control how
threads access shared resources

= Several forms in use but they are all closely related and
most can be built from the others

= On shared memory multiprocessor systems, the
Implementation usually requires hardware support

= Will consider one of the simplest constructs — a binary
semaphore (first encountered in COMP25111)

= Think of bus-based system with snoopy bus...

14 February 2018 COMP35112 Lecture 7

MANCH E ! ER

Example — Binary Semaphore

= A single shared ‘boolean’ variable S to ‘protect’ a
shared resource:

« S==1 — resource is free
« S==0 — resource isin use

= Semaphore operations (both atomic)
« wait (S) : wait until S!=0 then set S=0
 signal(S) :setS=1

14 February 2018 COMP35112 Lecture 7

MANCH E ! ER

Use of Semaphore to Protect ‘Critical Sections’

thread 1 thread 2

wait(S) wait(S)
print print

signal(S) signal(S)

(initialise S =1)
(critical section — operating on some shared resource)

14 February 2018 COMP35112 Lecture 7

MANCH E ! ER

‘Atomic’ Action Needed

How to implement wait (S) ?

while (S==0) ; loop: Idr r1,r2 -
S=0; cmp rl,#0
beq loop _
str #0, r2 _

(address of Sin r2)

what iIf some other thread gets in here «—— and
changes the state of S in the middle of our code?

14 February 2018 COMP35112 Lecture 7

MANCH E ! ER

Atomic Action

= Way to avoid this problem is to ensure that wait () IS
‘indivisible’

= But this requires special instructions to be supported in
hardware

= There exists a compromise, between complexity and
performance

= Note that variable S may be cached and the desired
‘indivisible’ behaviour might require coherence
operations in the cache

14 February 2018 COMP35112 Lecture 7

MANCH E ! ER

Test_and_Set Instruction

= Simple solution in older processors — e.g. Motorola
68000 — instruction level behaviour is atomic

tas r2

If memory location addressed by r2 is 0, set it to 1 and
set the processor ‘zero’ flag — otherwise clear zero flag

loop : tas r2
bnz loop //branchif [r2] =0

= Note: this is the logical inverse of the standard software
definition of wait (S)

14 February 2018 COMP35112 Lecture 7 7

MANCH E ! ER

Caching the Shared Variable S

= Operation of test_and_set (tas) Is reasonably obvious if
S is a single shared variable in memory

= Just read and then write (if necessary) the single
variable — although it should be noted that such an
atomic ‘read-modify-write’ operation must lock the
access to memory and is hence likely to be expensive
(i.e. slow)

= However, the variable S is naturally shared — this is the
fundamental purpose of a semaphore

= Processors are therefore likely to end up with a copy in
their cache

14 February 2018 COMP35112 Lecture 7

MANCH E ! ER

Test and Set and the Cache

= Assume shared variable is in cache
= |f atas succeeds (reads 0) it must then write a 1

= When 1t starts, 1t doesn’t know whether it needs to
do a write — in which case 1t will need to send an
Invalidate message to other cores

= Requires processor to ‘lock’ the snoopy bus for
every multiprocessor tas operation — just in case —
It cannot let any other core do a write

= Butifitreadsa ‘1’ (busy), this locking of the bus
IS wasted

14 February 2018 COMP35112 Lecture 7

MANCH E ! ER

Test then Test_and_Set (1)

= Assume one thread has the lock (S is busy)

= Another wanting the semaphore will read this busy
value and cache it

= |t will then sit in a loop continually executing a tas
until S becomes free

= All this time it will be wasting bus cycles

= There iIs a simple re-formulation of the ‘wait’ operation
that can avoid much of this ...

14 February 2018 COMP35112 Lecture 7 10

MANCHESER

Test then Test_and_Set (2)

= In pseudo-code

do {
while (test(S) == 1);
} while (test_and_set(S))

loop: Idrrl,r2
cmprl, #1
beq loop
tas r2
bnz loop //branchifr2!=0

14 February 2018 COMP35112 Lecture 7

11

MANCH E ! ER

Test and Test_and_Set (3)

= The inner loop ‘spins’ while the S variable Is seen to be
busy

= Once S Is seen to be free, a tas instruction is attempted

= Hopefully most times it will succeed — will only fail if
another thread manages to get in between the cmp and
tas instructions

= But waiting loop is only executing a normal Idr most of
the time — all internal to core and its cache — so no bus
cycles wasted

14 February 2018 COMP35112 Lecture 7 12

MANCH E ! ER

Other Synchronisation Primitives

= There are other machine level instructions which can
be used, such as:

« Fetch_and_Add — atomic instruction — returns the value of a
memory location and increments it

« Compare_and_Swap — again atomic — compare the value of
a memory location with a value (in a register) and swap in
another value (in a register) if they are equal

= All these instructions are ‘read-modify-write’ (RMW)
with the need to lock the snoopy bus during their
execution

14 February 2018 COMP35112 Lecture 7 13

MANCH E ! ER

Synchronisation without RMW

= All synchronisation operations have a read followed by
a write

= To make these atomic, previous instructions do this as
a RMW primitive
= But this is not really desirable:

* Doesn’t fit well with modern pipelined and/or split
transaction busses, where operations can be overlapped
and/or interleaved

* Doesn’t fit well with simple RISC pipelines, where RMW 1s
really a CISC instruction requiring a read, a test and a write

14 February 2018 COMP35112 Lecture 7 14

MANCH E ! ER

Load Linked — Store_Conditional

= LL/SC is a synchronisation mechanism used in modern
RISC processors (ARM, PowerPC)
= |t uses separate load_linked (ldl) and store _conditional

(stc) instructions which, in terms of basic functionality,
are very similar, but not identical, to ordinary loads and

stores

= However, they have additional effects on processor
state which allow them, as a pair, to act atomically

« While avoiding holding the bus until completion

14 February 2018 COMP35112 Lecture 7 15

MANCH E ! ER

Load Linked

Idl r1,r2

= Loads rl with value addressed in memory by r2
= When it is executed, It:

* sets a special ‘load linked flag’ on the core which executes it

* records the address (in r2) 1n a ‘locked address register’ on
the core which executes it

= That Is, It keeps some state for the Idl

14 February 2018 COMP35112 Lecture 7 16

MANCH E ! ER

Store_Conditional

stc rl,r2

= Tries to store the value in rl into the location addressed
In memory by r2
* But only succeeds if the ‘load linked flag’ 1s set

= The value of the ‘load linked flag’— I.e. whether-or-not
the store was successful — i1s returned in rl

* The ‘load linked flag’ 1s cleared

14 February 2018 COMP35112 Lecture 7 17

MANCH E ! ER

The ‘Load Linked Flag’

= The state of the ‘load linked flag’ on a core which has
It set Is changed If a write (from another core) occurs to
the locked address and, hence, an invalidate message Is
sent (or If the current thread exits the running state)

= Detected by comparison with ‘locked address register’
— processor must monitor (snoop) the memory address
bus to detect this

= This will occur because a write has occurred to the
shared variable and, hence, another core has probably
got the semaphore

14 February 2018 COMP35112 Lecture 7 18

MANCH E ! ER

Semaphore wait () Code

loop: Idlrl,r2
cmp #0,rl /'S ==0 (busy) ?
beq loop /] 1f so, try again
mov #0,rl // must be free
stc rl,r2 //'S =0 (busy) If load linked flag set
cmp #1,rl // was load linked flag set?
bne loop /[1f not, try again

// otherwise 1n critical section
// a normal st of 1 will signal “free”

14 February 2018 COMP35112 Lecture 7 19

MANCH E ! ER

Why Does it Work?

loop: ldlrlr2 i any other core

cmp #0,rl manages to write to

beq loop [r2] here (or thread Is

mov #0.r1 ‘ dgsch_eduled), the _stc
<— will fail and loop will

stc rl,r2 repeat

cmp #1,rl

bne loop otherwise everything

between |dl and stc
must have executed
as if ‘atomically’ so
14 February 2018 comprssiiz Lecudn@ core has the “lock” 20

MANCH E ! ER

Power of LL/SC

= |n an Instruction like tas, the load and store can be
guaranteed to be atomic by RMW behaviour

= When using LL/SC we know that anything between
the Idl and the stc has executed atomically (with
respect to the synchronisation variable)

= This can be more powerful than tas for certain forms of
usage

« E.g. itis relatively easy and efficient to implement
fetch_and_add etc. based on LL/SC, reducing the number of
special instructions that need to be supported

14 February 2018 COMP35112 Lecture 7 21

MANCH E ! ER

Spin Lock

= Note that wait (S) implemented as discussed may
require waiting for a lock by sitting in a loop
(sometimes called busy waiting or spinning)

= More efficient use of resources may result (particularly
In multiprocessors) if processor can switch to do useful
work elsewhere

= Various more sophisticated forms of locking address
this — however, the basic hardware support is the same

14 February 2018 COMP35112 Lecture 7 22

MANCH E ! ER

Next Lecture

= This lecture has introduced machine instructions that

can implement locks and other synchronisation
constructs

= The next lecture investigates whether we can use such

Instructions, instead of locks, to implement so-called
‘lock-free data structures’

14 February 2018 COMP35112 Lecture 7

23

