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Implementing Synchronisation 

 Most shared memory parallel programming requires 

that we implement synchronisation to control how 

threads access shared resources 

 Several forms in use but they are all closely related and 

most can be built from the others 

 On shared memory multiprocessor systems, the 

implementation usually requires hardware support 

 Will consider one of the simplest constructs – a binary 

semaphore (first encountered in COMP25111) 

 Think of bus-based system with snoopy bus… 
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Example – Binary Semaphore 

 

 A single shared ‘boolean’ variable S to ‘protect’ a 

shared resource: 

• S == 1   →   resource is free 

• S == 0   →   resource is in use 

 Semaphore operations (both atomic) 

• wait(S) : wait until S!=0 then set S=0 

• signal(S) : set S=1 
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Use of Semaphore to Protect ‘Critical Sections’ 

 

thread 1                         thread 2 

 

wait(S)                          wait(S) 

    print                              print 

signal(S)                        signal(S) 

 

(initialise S = 1) 

(critical section → operating on some shared resource) 
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How to implement wait(S)? 

 

while (S == 0) ;           loop: ldr  r1,r2 

S=0;                                      cmp r1,#0 

                                              beq  loop 

                                              str #0, r2 

      

                                  (address of S in r2) 

 what if some other thread gets in here         and 
changes the state of S in the middle of our code? 

 ‘Atomic’ Action Needed 
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Atomic Action 

 Way to avoid this problem is to ensure that wait() is 

‘indivisible’ 

 But this requires special instructions to be supported in 

hardware 

 There exists a compromise, between complexity and 

performance 

 Note that variable S may be cached and the desired 

‘indivisible’ behaviour might require coherence 

operations in the cache 
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Test_and_Set Instruction 

 Simple solution in older processors – e.g. Motorola 
68000 – instruction level behaviour is atomic 

 tas r2 

 If memory location addressed by r2 is 0, set it to 1 and 
set the processor ‘zero’ flag – otherwise clear zero flag 

 

 loop : tas r2 

           bnz loop    // branch if [r2] != 0 

 

 Note: this is the logical inverse of the standard software 
definition of wait(S) 
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Caching the Shared Variable S 

 Operation of test_and_set (tas) is reasonably obvious if 
S is a single shared variable in memory 

 Just read and then write (if necessary) the single 
variable – although it should be noted that such an 
atomic ‘read-modify-write’ operation must lock the 
access to memory and is hence likely to be expensive 
(i.e. slow) 

 However, the variable S is naturally shared – this is the 
fundamental purpose of a semaphore 

 Processors are therefore likely to end up with a copy in 
their cache 
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Test_and_Set and the Cache 

 Assume shared variable is in cache 

 If a tas succeeds (reads 0) it must then write a 1 

 When it starts, it doesn’t know whether it needs to 

do a write – in which case it will need to send an 

invalidate message to other cores 

 Requires processor to ‘lock’ the snoopy bus for 

every multiprocessor tas operation – just in case – 

it cannot let any other core do a write 

 But if it reads a ‘1’ (busy), this locking of the bus 

is wasted 
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Test then Test_and_Set (1) 

 Assume one thread has the lock (S is busy) 

 Another wanting the semaphore will read this busy 

value and cache it 

 It will then sit in a loop continually executing a tas 

until S becomes free 

 All this time it will be wasting bus cycles  

 There is a simple re-formulation of the ‘wait’ operation 

that can avoid much of this … 
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Test then Test_and_Set (2) 

 In pseudo-code 

 

do { 

  while (test(S) == 1); 

  } while (test_and_set(S)) 

 

loop:  ldr r1,r2 

   cmp r1, #1 

  beq loop 

  tas r2 

          bnz loop    // branch if r2 != 0 
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Test and Test_and_Set (3) 

 The inner loop ‘spins’ while the S variable is seen to be 

busy 

 Once S is seen to be free, a tas instruction is attempted 

 Hopefully most times it will succeed – will only fail if 

another thread manages to get in between the cmp and 

tas instructions 

 But waiting loop is only executing a normal ldr most of 

the time – all internal to core and its cache – so no bus 

cycles wasted 
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Other Synchronisation Primitives 

 There are other machine level instructions which can 

be used, such as: 

• Fetch_and_Add – atomic instruction – returns the value of a 

memory location and increments it 

• Compare_and_Swap – again atomic – compare the value of 

a memory location with a value (in a register) and swap in 

another value (in a register) if they are equal 

 All these instructions are ‘read-modify-write’ (RMW) 

with the need to lock the snoopy bus during their 

execution 
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Synchronisation without RMW 

 All synchronisation operations have a read followed by 

a write 

 To make these atomic, previous instructions do this as 

a RMW primitive 

 But this is not really desirable: 

• Doesn’t fit well with modern pipelined and/or split 

transaction busses, where operations can be overlapped 

and/or interleaved 

• Doesn’t fit well with simple RISC pipelines, where RMW is 

really a CISC instruction requiring a read, a test and a write 
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Load_Linked – Store_Conditional 

 LL/SC is a synchronisation mechanism used in modern 

RISC processors (ARM, PowerPC) 

 It uses separate load_linked (ldl) and store_conditional 

(stc) instructions which, in terms of basic functionality, 

are very similar, but not identical, to ordinary loads and 

stores 

 However, they have additional effects on processor 

state which allow them, as a pair, to act atomically 

• While avoiding holding the bus until completion 
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Load_Linked 

     

 ldl r1,r2 

 

 Loads r1 with value addressed in memory by r2 

 When it is executed, it: 

• sets a special ‘load linked flag’ on the core which executes it 

• records the address (in r2) in a ‘locked address register’ on 

the core which executes it 

 That is, it keeps some state for the ldl 
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Store_Conditional 

        

 stc r1,r2 

 

 Tries to store the value in r1 into the location addressed 

in memory by r2 

• But only succeeds if the ‘load linked flag’ is set 

 The value of the ‘load linked flag’– i.e. whether-or-not 

the store was successful – is returned in r1 

 The ‘load linked flag’ is cleared 
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The ‘Load Linked Flag’  

 The state of the ‘load linked flag’ on a core which has 

it set is changed if a write (from another core) occurs to 

the locked address and, hence, an invalidate message is 

sent (or if the current thread exits the running state) 

 Detected by comparison with ‘locked address register’ 

– processor must monitor (snoop) the memory address 

bus to detect this 

 This will occur because a write has occurred to the 

shared variable and, hence, another core has probably 

got the semaphore 
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Semaphore wait() Code 

loop:  ldl r1,r2 

        cmp #0,r1           // S == 0 (busy) ? 

     beq loop             // if so, try again 

       mov #0,r1          // must be free 

        stc r1,r2             // S = 0 (busy) if load linked flag set 

         cmp #1,r1          // was load linked flag set? 

         bne loop            // if not, try again 

          …                      // otherwise in critical section 

                                    // a normal st of 1 will signal “free” 
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Why Does it Work? 

loop:  ldl r1,r2 

        cmp #0,r1 

     beq loop 

       mov #0,r1 

        stc r1,r2 

         cmp #1,r1 

         bne loop 

if any other core 

manages to write to 

[r2] here (or thread is 

descheduled), the stc 

will fail and loop will 

repeat 

 

otherwise everything 

between ldl and stc 

must have executed 

as if ‘atomically’ so 

the core has the “lock” 
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Power of LL/SC 

 In an instruction like tas, the load and store can be 

guaranteed to be atomic by RMW behaviour 

 When using LL/SC we know that anything between 

the ldl and the stc has executed atomically (with 

respect to the synchronisation variable) 

 This can be more powerful than tas for certain forms of 

usage 

• E.g. it is relatively easy and efficient to implement 

fetch_and_add etc. based on LL/SC, reducing the number of 

special instructions that need to be supported 
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Spin Lock 

 Note that wait(S) implemented as discussed may 

require waiting for a lock by sitting in a loop 

(sometimes called busy waiting or spinning) 

 More efficient use of resources may result (particularly 

in multiprocessors) if processor can switch to do useful 

work elsewhere 

 Various more sophisticated forms of locking address 

this – however, the basic hardware support is the same 
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Next Lecture 

 This lecture has introduced machine instructions that 

can implement locks and other synchronisation 

constructs 

 The next lecture investigates whether we can use such 

instructions, instead of locks, to implement so-called 

‘lock-free data structures’ 


