
14 February 2018 1

Chip Multiprocessors

COMP35112

Lecture 7 - Hardware Support for

 Synchronisation

Graham Riley

14 February 2018 COMP35112 Lecture 7 2

Implementing Synchronisation

 Most shared memory parallel programming requires

that we implement synchronisation to control how

threads access shared resources

 Several forms in use but they are all closely related and

most can be built from the others

 On shared memory multiprocessor systems, the

implementation usually requires hardware support

 Will consider one of the simplest constructs – a binary

semaphore (first encountered in COMP25111)

 Think of bus-based system with snoopy bus…

14 February 2018 COMP35112 Lecture 7 3

Example – Binary Semaphore

 A single shared ‘boolean’ variable S to ‘protect’ a

shared resource:

• S == 1 → resource is free

• S == 0 → resource is in use

 Semaphore operations (both atomic)

• wait(S) : wait until S!=0 then set S=0

• signal(S) : set S=1

14 February 2018 COMP35112 Lecture 7 4

Use of Semaphore to Protect ‘Critical Sections’

thread 1 thread 2

wait(S) wait(S)

 print print

signal(S) signal(S)

(initialise S = 1)

(critical section → operating on some shared resource)

14 February 2018 COMP35112 Lecture 7 5

How to implement wait(S)?

while (S == 0) ; loop: ldr r1,r2

S=0; cmp r1,#0

 beq loop

 str #0, r2

 (address of S in r2)

 what if some other thread gets in here and
changes the state of S in the middle of our code?

 ‘Atomic’ Action Needed

14 February 2018 COMP35112 Lecture 7 6

Atomic Action

 Way to avoid this problem is to ensure that wait() is

‘indivisible’

 But this requires special instructions to be supported in

hardware

 There exists a compromise, between complexity and

performance

 Note that variable S may be cached and the desired

‘indivisible’ behaviour might require coherence

operations in the cache

14 February 2018 COMP35112 Lecture 7 7

Test_and_Set Instruction

 Simple solution in older processors – e.g. Motorola
68000 – instruction level behaviour is atomic

 tas r2

 If memory location addressed by r2 is 0, set it to 1 and
set the processor ‘zero’ flag – otherwise clear zero flag

 loop : tas r2

 bnz loop // branch if [r2] != 0

 Note: this is the logical inverse of the standard software
definition of wait(S)

14 February 2018 COMP35112 Lecture 7 8

Caching the Shared Variable S

 Operation of test_and_set (tas) is reasonably obvious if
S is a single shared variable in memory

 Just read and then write (if necessary) the single
variable – although it should be noted that such an
atomic ‘read-modify-write’ operation must lock the
access to memory and is hence likely to be expensive
(i.e. slow)

 However, the variable S is naturally shared – this is the
fundamental purpose of a semaphore

 Processors are therefore likely to end up with a copy in
their cache

14 February 2018 COMP35112 Lecture 7 9

Test_and_Set and the Cache

 Assume shared variable is in cache

 If a tas succeeds (reads 0) it must then write a 1

 When it starts, it doesn’t know whether it needs to

do a write – in which case it will need to send an

invalidate message to other cores

 Requires processor to ‘lock’ the snoopy bus for

every multiprocessor tas operation – just in case –

it cannot let any other core do a write

 But if it reads a ‘1’ (busy), this locking of the bus

is wasted

14 February 2018 COMP35112 Lecture 7 10

Test then Test_and_Set (1)

 Assume one thread has the lock (S is busy)

 Another wanting the semaphore will read this busy

value and cache it

 It will then sit in a loop continually executing a tas

until S becomes free

 All this time it will be wasting bus cycles

 There is a simple re-formulation of the ‘wait’ operation

that can avoid much of this …

14 February 2018 COMP35112 Lecture 7 11

Test then Test_and_Set (2)

 In pseudo-code

do {

 while (test(S) == 1);

 } while (test_and_set(S))

loop: ldr r1,r2

 cmp r1, #1

 beq loop

 tas r2

 bnz loop // branch if r2 != 0

14 February 2018 COMP35112 Lecture 7 12

Test and Test_and_Set (3)

 The inner loop ‘spins’ while the S variable is seen to be

busy

 Once S is seen to be free, a tas instruction is attempted

 Hopefully most times it will succeed – will only fail if

another thread manages to get in between the cmp and

tas instructions

 But waiting loop is only executing a normal ldr most of

the time – all internal to core and its cache – so no bus

cycles wasted

14 February 2018 COMP35112 Lecture 7 13

Other Synchronisation Primitives

 There are other machine level instructions which can

be used, such as:

• Fetch_and_Add – atomic instruction – returns the value of a

memory location and increments it

• Compare_and_Swap – again atomic – compare the value of

a memory location with a value (in a register) and swap in

another value (in a register) if they are equal

 All these instructions are ‘read-modify-write’ (RMW)

with the need to lock the snoopy bus during their

execution

14 February 2018 COMP35112 Lecture 7 14

Synchronisation without RMW

 All synchronisation operations have a read followed by

a write

 To make these atomic, previous instructions do this as

a RMW primitive

 But this is not really desirable:

• Doesn’t fit well with modern pipelined and/or split

transaction busses, where operations can be overlapped

and/or interleaved

• Doesn’t fit well with simple RISC pipelines, where RMW is

really a CISC instruction requiring a read, a test and a write

14 February 2018 COMP35112 Lecture 7 15

Load_Linked – Store_Conditional

 LL/SC is a synchronisation mechanism used in modern

RISC processors (ARM, PowerPC)

 It uses separate load_linked (ldl) and store_conditional

(stc) instructions which, in terms of basic functionality,

are very similar, but not identical, to ordinary loads and

stores

 However, they have additional effects on processor

state which allow them, as a pair, to act atomically

• While avoiding holding the bus until completion

14 February 2018 COMP35112 Lecture 7 16

Load_Linked

 ldl r1,r2

 Loads r1 with value addressed in memory by r2

 When it is executed, it:

• sets a special ‘load linked flag’ on the core which executes it

• records the address (in r2) in a ‘locked address register’ on

the core which executes it

 That is, it keeps some state for the ldl

14 February 2018 COMP35112 Lecture 7 17

Store_Conditional

 stc r1,r2

 Tries to store the value in r1 into the location addressed

in memory by r2

• But only succeeds if the ‘load linked flag’ is set

 The value of the ‘load linked flag’– i.e. whether-or-not

the store was successful – is returned in r1

 The ‘load linked flag’ is cleared

14 February 2018 COMP35112 Lecture 7 18

The ‘Load Linked Flag’

 The state of the ‘load linked flag’ on a core which has

it set is changed if a write (from another core) occurs to

the locked address and, hence, an invalidate message is

sent (or if the current thread exits the running state)

 Detected by comparison with ‘locked address register’

– processor must monitor (snoop) the memory address

bus to detect this

 This will occur because a write has occurred to the

shared variable and, hence, another core has probably

got the semaphore

14 February 2018 COMP35112 Lecture 7 19

Semaphore wait() Code

loop: ldl r1,r2

 cmp #0,r1 // S == 0 (busy) ?

 beq loop // if so, try again

 mov #0,r1 // must be free

 stc r1,r2 // S = 0 (busy) if load linked flag set

 cmp #1,r1 // was load linked flag set?

 bne loop // if not, try again

 … // otherwise in critical section

 // a normal st of 1 will signal “free”

14 February 2018 COMP35112 Lecture 7 20

Why Does it Work?

loop: ldl r1,r2

 cmp #0,r1

 beq loop

 mov #0,r1

 stc r1,r2

 cmp #1,r1

 bne loop

if any other core

manages to write to

[r2] here (or thread is

descheduled), the stc

will fail and loop will

repeat

otherwise everything

between ldl and stc

must have executed

as if ‘atomically’ so

the core has the “lock”

14 February 2018 COMP35112 Lecture 7 21

Power of LL/SC

 In an instruction like tas, the load and store can be

guaranteed to be atomic by RMW behaviour

 When using LL/SC we know that anything between

the ldl and the stc has executed atomically (with

respect to the synchronisation variable)

 This can be more powerful than tas for certain forms of

usage

• E.g. it is relatively easy and efficient to implement

fetch_and_add etc. based on LL/SC, reducing the number of

special instructions that need to be supported

14 February 2018 COMP35112 Lecture 7 22

Spin Lock

 Note that wait(S) implemented as discussed may

require waiting for a lock by sitting in a loop

(sometimes called busy waiting or spinning)

 More efficient use of resources may result (particularly

in multiprocessors) if processor can switch to do useful

work elsewhere

 Various more sophisticated forms of locking address

this – however, the basic hardware support is the same

14 February 2018 COMP35112 Lecture 7 23

Next Lecture

 This lecture has introduced machine instructions that

can implement locks and other synchronisation

constructs

 The next lecture investigates whether we can use such

instructions, instead of locks, to implement so-called

‘lock-free data structures’

