COMP30112: Concurrency
Topics 4.2: Modelling and Analyzing Interference in FSP

Howard Barringer

Room KB2.20: email: Howard.Barringer@manchester.ac.uk

March 2009
Outline

Topic 4.2: Modelling and Analyzing Interference in FSP
 Interference
 A GUI Example
 FSP Modelling of the Garden
 Modelling Locks in FSP
Outline

Topic 4.2: Modelling and Analyzing Interference in FSP

Interference
A GUI Example
FSP Modelling of the Garden
Modelling Locks in FSP
Interference - summary

- When 2 or more threads have access to the same object, there is potential for interference between the actions on the object.
Interference - summary

- When 2 or more threads have access to the same object, there is potential for interference between the actions on the object.
- Destructive update caused by arbitrary interleaving of read and write actions is interference.
Interference - summary

- When 2 or more threads have access to the same object, there is potential for interference between the actions on the object.
- Destructive update caused by arbitrary interleaving of read and write actions is interference.
- Interference leads to unexpected and undesirable behaviour.
Interference - summary

• When 2 or more threads have access to the same object, there is potential for interference between the actions on the object
• Destructive update caused by arbitrary interleaving of read and write actions is interference
• Interference leads to unexpected and undesirable behaviour
• The Ornamental Garden (from Magee and Kramer) example is a good demonstration
Interference - summary

- When 2 or more threads have access to the same object, there is potential for interference between the actions on the object.
- Destructive update caused by arbitrary interleaving of read and write actions is interference.
- Interference leads to unexpected and undesirable behaviour.
- The Ornamental Garden (from Magee and Kramer) example is a good demonstration.
- We will model and analyze the problem in FSP.
Outline

Topic 4.2: Modelling and Analyzing Interference in FSP

- Interference
- A GUI Example
- FSP Modelling of the Garden
- Modelling Locks in FSP
GUI Example: Ornamental Garden

How Many Visitors are in The Garden??
Desired Behaviour

- Again, two processes reading and updating a common object
Desired Behaviour

- Again, two processes reading and updating a common object
- Complexity due to GUI...
Desired Behaviour

- Again, two processes reading and updating a common object
- Complexity due to GUI...
- ...and persuading the code/scheduler to Do The Wrong Thing!!!
Oh Dear!! ... It's Gone Wrong
Ornamental Garden: Class Structure

Applet

Garden
init()
go()

Thread

Turnstile
run()
east, west
eastD,
westD,
counterD
display

Counter
increment()
people
display

NumberCanvas
setvalue()
eastD,
westD,
counterD
display

people
public class Garden extends Applet {

 private void go() {
 counter = new Counter(counterD);
 west= new Turnstile(westD,counter);
 east= new Turnstile(eastD,counter);
 west.start();
 east.start();
 }
}
The Counter Class

class Counter {

 int value=0;
 NumberCanvas display;

 Counter(NumberCanvas n) {
 display=n;
 display.setvalue(value);
 }

 void increment() {
 int temp = value; //read[v]
 Simulate.HWinterrupt();
 value=temp+1; //write[v+1]
 display.setvalue(value);
 }

}
The Turnstile Class

class Turnstile extends Thread {
 NumberCanvas display; Counter people;

 Turnstile(NumberCanvas n, Counter c)
 { display = n; people = c; }

 public void run() {
 try{
 display.setvalue(0);
 for (int i=1; i<=Garden.MAX; i++){
 Thread.sleep(500); // 0.5 second
 display.setvalue(i);
 people.increment();
 }
 } catch (InterruptedException e) {}}
}
class Simulate {
 public static void HWinterrupt() {
 if (Math.random() < 0.5) {
 try {
 Thread.sleep(200);
 } catch (InterruptedException e) {};
 }
 }
}
Outline

Topic 4.2: Modelling and Analyzing Interference in FSP

Interference
A GUI Example
FSP Modelling of the Garden
Modelling Locks in FSP
Ornamental Garden: FSP Model

\[
\begin{align*}
\text{const } N &= 4 \quad \text{range } T = 0..N \\
\text{set } \text{VarAlpha} &= \{\text{value.}\{\text{read}[T], \text{write}[T]\}\}\}
\end{align*}
\]

\[
\begin{align*}
\text{VAR} &= \text{VAR}[0], \\
\text{VAR}[u : T] &= (\text{read}[u] \rightarrow \text{VAR}[u] \mid \text{write}[v : T] \rightarrow \text{VAR}[v]).
\end{align*}
\]

\[
\begin{align*}
\text{TURNSTILE} &= (\text{go} \rightarrow \text{RUN}), \\
\text{RUN} &= (\text{arrive} \rightarrow \text{INCREMENT} \mid \text{end} \rightarrow \text{TURNSTILE}), \\
\text{INCREMENT} &= (\text{value.read}[x : T] \rightarrow \text{value.write}[x + 1] \rightarrow \text{RUN}) + \text{VarAlpha}.
\end{align*}
\]

\[
\begin{align*}
\|\text{GARDEN} &= (\text{east} : \text{TURNSTILE} \parallel \text{west} : \text{TURNSTILE} \\
&\parallel \{\text{east, west, display}::\text{value} : \text{VAR}\} \\
&/\{\text{go} / \{\text{east, west}\}.\text{go}, \text{end} / \{\text{east, west}\}.\text{end}\}.
\end{align*}
\]
Exhaustive Analysis

\[
\begin{align*}
\text{TEST} & \quad = \text{TEST}[0], \\
\text{TEST}[v:T] & \quad = (\text{when } (v<N)\{\text{east.arrive,west.arrive}\} \rightarrow \text{TEST}[v+1] \\
& \quad \quad \quad \quad | \text{end} \rightarrow \text{CHECK}[v] \\
& \quad \quad \quad \quad), \\
\text{CHECK}[v:T] & \quad = (\text{display.value.read}[u:T] \rightarrow \\
& \quad \quad \quad \quad (\text{when } (u==v) \text{ right } \rightarrow \text{TEST}[v] \\
& \quad \quad \quad \quad \quad | \text{when } (u!=v) \text{ wrong } \rightarrow \text{ERROR}) \\
& \quad \quad \quad \quad)+\{\text{display.\{}\text{VarAlpha}\}\}. \\
\end{align*}
\]

Now compose TEST in parallel with the GARDEN process

\[
\text{||TESTGARDEN} = (\text{GARDEN} \ || \ \text{TEST}).
\]

The act of building the above composition will check all possible runs of the GARDEN.
And we see it fails.
Outline

Topic 4.2: Modelling and Analyzing Interference in FSP

- Interference
- A GUI Example
- FSP Modelling of the Garden
- Modelling Locks in FSP
An FSP Model for Locks

\[
\text{LOCK} = (\text{acquire} \rightarrow \text{release} \rightarrow \text{LOCK}).
\]

\[
\text{||LOCKVAR} = (\text{LOCK} \mid| \text{VAR}) .
\]

\[
\text{set VarAlpha} = \{ \text{value.\{read[T],write[T], acquire,release\}} \}
\]

\[
\text{INCREMENT} = (\text{value.acquire}
\rightarrow \text{value.read[x:T]} \rightarrow \text{value.write[x+1]} \rightarrow
\text{value.release} \rightarrow \text{RUN}
)
+ \text{VarAlpha}.
\]
Include in the FSP GARDEN model and ..

||GARDEN = (east:TURNSTILE || west:TURNSTILE
 || east,west,display::value:LOCKVAR)
/{go /{east,west}.go,
 end/{east,west}.end}.

and re-test

||TESTGARDEN = (GARDEN || TEST).

And the composition occurs without ERRORs.
Synchronized Counter

For the Java version, create an extension of the Counter that has a synchronised increment() method.
Synchronized Counter

For the Java version, create an extension of the Counter that has a synchronised increment() method.

class SynchronizedCounter extends Counter {

 SynchronizedCounter(NumberCanvas n) {
 super(n);

 synchronized void increment() {
 super.increment();
 }
 }
}
Synchronized Counter

For the Java version, create an extension of the Counter that has a synchronised increment() method.

class SynchronizedCounter extends Counter {

 SynchronizedCounter(NumberCanvas n)
 super(n);

 synchronized void increment() {
 super.increment();
 }
}

and use SynchronizedCounter in place of Counter.
Synchronized Counter

For the Java version, create an extension of the Counter that has a synchronised increment() method.

class SynchronizedCounter extends Counter {

 SynchronizedCounter(NumberCanvas n)
 super(n);

 synchronized void increment() {
 super.increment();
 }
}

and use SynchronizedCounter in place of Counter. (This is used in the applet when the “fix it” checkbox is checked)