Algorithmic Techniques

Peter Lammich
Greedy Algorithms: Example

- Change-Making Problem: How many coins are needed to make a change of a?
Greedy Algorithms: Example

- Change-Making Problem: How many coins are needed to make a change of \(a \)?
- Algorithm: Iteratively take highest fitting coin.
 - E.g. \(\text{£}11 = 5 + 5 + 1 \)
Greedy Algorithms: Example

- Change-Making Problem: How many coins are needed to make a change of \(a \)?
- Algorithm: Iteratively take highest fitting coin.
 - E.g. \(£11 = 5 + 5 + 1 \)
- Only works for \textit{canonical} coin systems (real ones are!)
Greedy Algorithms: Example

- Change-Making Problem: How many coins are needed to make a change of \(a \)?
- Algorithm: Iteratively take highest fitting coin.
 - E.g. \(£11 = 5 + 5 + 1 \)
- Only works for \textit{canonical} coin systems (real ones are!)
 - Consider coin system: 1-3-4, make change of 6
Greedy Algorithms: Example

- Change-Making Problem: How many coins are needed to make a change of a?
- Algorithm: Iteratively take highest fitting coin.
 - E.g. £11 = 5 + 5 + 1
- Only works for *canonical* coin systems (real ones are!)
 - Consider coin system: 1-3-4, make change of 6
 - Greedy: 6 = 4 + 1 + 1
Greedy Algorithms: Example

• Change-Making Problem: How many coins are needed to make a change of \(a \)?
• Algorithm: Iteratively take highest fitting coin.
 • E.g. \(£11 = 5 + 5 + 1 \)
• Only works for *canonical* coin systems (real ones are!)
 • Consider coin system: 1-3-4, make change of 6
 • Greedy: \(6 = 4 + 1 + 1 \) \(\) Optimal: \(6 = 3 + 3 \)
Properties required for Greedy Algorithms

• Optimal Substructure
 • problem can be solved by solving sub-problems
Properties required for Greedy Algorithms

- **Optimal Substructure**
 - problem can be solved by solving sub-problems
 - Change-Making: take highest fitting coin, then solve problem for remaining amount
Properties required for Greedy Algorithms

- Optimal Substructure
 - problem can be solved by solving sub-problems
 - Change-Making: take highest fitting coin, then solve problem for remaining amount
 - Dijkstra: shortest paths for increasing set of nodes
Properties required for Greedy Algorithms

• Optimal Substructure
 • problem can be solved by solving sub-problems
 • Change-Making: take highest fitting coin, then solve problem for remaining amount
 • Dijkstra: shortest paths for increasing set of nodes

• Greedy Choice: decision needs not be reconsidered
Properties required for Greedy Algorithms

• Optimal Substructure
 • problem can be solved by solving sub-problems
 • Change-Making: take highest fitting coin, then solve problem for remaining amount
 • Dijkstra: shortest paths for increasing set of nodes

• Greedy Choice: decision needs not be reconsidered
 • Change-Making: Never take back coins
Properties required for Greedy Algorithms

- **Optimal Substructure**
 - problem can be solved by solving sub-problems
 - Change-Making: take highest fitting coin, then solve problem for remaining amount
 - Dijkstra: shortest paths for increasing set of nodes

- **Greedy Choice**: decision needs not be reconsidered
 - Change-Making: Never take back coins
 - Dijkstra: relaxed node has precise estimate
Dynamic Programming: Example

- Consider (general) coin system. \(w_1 < \ldots < w_n, \ w_1 = 1 \)
Dynamic Programming: Example

- Consider (general) coin system. \(w_1 < \ldots < w_n, w_1 = 1 \)
- Generalize: \(\#(i, a) \) number of coins from \(w_1, \ldots, w_i \) required for amount \(a \)
Dynamic Programming: Example

- Consider (general) coin system. \(w_1 < \ldots < w_n, \ w_1 = 1 \)
- Generalize: \(#(i, a) \) number of coins from \(w_1, \ldots, w_i \) required for amount \(a \)
 - number of coins for amount \(a \): \(#(n, a) \)
Dynamic Programming: Example

- Consider (general) coin system. $w_1 < \ldots < w_n$, $w_1 = 1$
- Generalize: $\#(i, a)$ number of coins from w_1, \ldots, w_i required for amount a
 - number of coins for amount a: $\#(n, a)$
- Optimal substructure: to compute $\#(i, a)$:
Dynamic Programming: Example

• Consider (general) coin system. \(w_1 < \ldots < w_n, w_1 = 1 \)

• Generalize: \(\#(i, a) \) number of coins from \(w_1, \ldots, w_i \) required for amount \(a \)
 • number of coins for amount \(a \): \(\#(n, a) \)

• Optimal substructure: to compute \(\#(i, a) \):
 • either take another \(w_i \) coin: \(1 + \#(i, a - w_i) \)
Dynamic Programming: Example

- Consider (general) coin system. \(w_1 < \ldots < w_n, \ w_1 = 1 \)
- Generalize: \(\#(i, a) \) number of coins from \(w_1, \ldots, w_i \) required for amount \(a \)
 - number of coins for amount \(a \): \(\#(n, a) \)
- Optimal substructure: to compute \(\#(i, a) \):
 - either take another \(w_i \) coin: \(1 + \#(i, a - w_i) \)
 - or take no more \(w_i \) coins: \(\#(i - 1, a) \)
Dynamic Programming: Example

• Consider (general) coin system. \(w_1 < \ldots < w_n, \ w_1 = 1 \)

• Generalize: \(\#(i, a) \) number of coins from \(w_1, \ldots, w_i \) required for amount \(a \)
 • number of coins for amount \(a \): \(\#(n, a) \)

• Optimal substructure: to compute \(\#(i, a) \):
 • either take another \(w_i \) coin: \(1 + \#(i, a - w_i) \)
 • or take no more \(w_i \) coins: \(\#(i-1, a) \)
 • solution is the smaller of the two cases
Dynamic Programming: Example

- Consider (general) coin system. \(w_1 < \ldots < w_n, \ w_1 = 1 \)
- Generalize: \(\#(i, a) \) number of coins from \(w_1, \ldots, w_i \) required for amount \(a \)
 - number of coins for amount \(a \): \(\#(n, a) \)
- Optimal substructure: to compute \(\#(i, a) \):
 - either take another \(w_i \) coin: \(1 + \#(i, a - w_i) \)
 - or take no more \(w_i \) coins: \(\#(i - 1, a) \)
 - solution is the smaller of the two cases
 - edge cases: \(i = 1, \ a = w_i, \ a < w_i, \ a = 0 \)
Overlapping Subproblems

\[(i, a) = \min((i - 1, a), 1 + (i, a - w_i)) \quad \text{if } i > 1 \land a > w_i\]

- Overlapping subproblems: Eg make 6 in coin system 1-3-4

\[\begin{align*}
#(3, 6) & \\
#(2, 6) & \quad #(3, 2) \\
#(1, 6) & \quad #(2, 3) \quad #(2, 2) \\
#(1, 5) & \quad #(1, 3) \quad #(1, 2) \\
#(1, 4) & \quad #(1, 1)
\end{align*}\]
Overlapping Subproblems

\[#(i, a) = \min(#(i - 1, a), 1 + #(i, a - w_i)) \quad \text{if } i > 1 \land a > w_i \]

- Overlapping subproblems: Eg make 6 in coin system 1-3-4

\[
\begin{align*}
#(3, 6) & \\
#(2, 6) & \quad #(3, 2) \\
#(1, 6) & \quad #(2, 3) \quad #(2, 2) \\
#(1, 5) & \quad #(1, 3) \quad #(1, 2) \\
#(1, 4) & \quad #(1, 1)
\end{align*}
\]
Algorithm (Variant 1)

compute all subproblems in suitable order

procedure \texttt{NUM}(a)
 \begin{algorithmic}
 \State \textbf{if} \; a = 0 \; \textbf{then} \; \textbf{return} \; 0
 \State \; r \leftarrow \text{new array} \; n \times a
 \For {i = 1 \ldots n}
 \For {k = 1 \ldots a}
 \If {k = w_i}
 \State \; r[i, k] \leftarrow 1
 \ElseIf {k < w_i}
 \State \; r[i, k] \leftarrow r[i - 1, k]
 \ElseIf {i = 1}
 \State \; r[i, k] \leftarrow 1 + r[i, k - w_1]
 \Else
 \State \; r[i, k] \leftarrow \min(r[i - 1, k], 1 + r[i, k - w_1])
 \EndFor
 \EndFor
 \State \textbf{return} \; r[n, a]
 \end{algorithmic}
Algorithm (Variant 2)

memorize already computed subproblems

global map $r \leftarrow$ empty map

procedure NUM_AUX(i, k)
 if not defined $r[i, k]$ then
 if $k = w_i$ then
 $r[i, k] \leftarrow 1$
 else if $k < w_i$ then
 $r[i, k] \leftarrow$ NUM_AUX($i - 1, k$)
 else if $i = 1$ then
 $r[i, k] \leftarrow 1 +$ NUM_AUX($i, k - w_1$)
 else
 $r[i, k] \leftarrow \min($NUM_AUX($i - 1, k$), $1 +$ NUM_AUX($i, k - w_1$))
 return $r[i, k]$

procedure NUM(a)
 if $a = 0$ then return 0
 return NUM_AUX(n, a)
Properties Required for Dynamic Programming

- Optimal substructure
- Overlapping subproblems
 - otherwise, simple recursion would be sufficient!
Floyd-Warshall Algorithm

- Find shortest path between all pairs of nodes (APSP)

procedure floyd_warshall

\[
\text{dist}[u, v] \leftarrow w(u, v) \\
\text{for all nodes} \\
\text{dist}[v, v] \leftarrow 0 \text{ for all nodes} \\
\text{for } w \in V \\
\quad \text{// Compute } d(u, v, X) \text{ for increasing set } X \\
\quad \text{for } u \in V \\
\quad \quad \text{for } v \in V \\
\quad \quad \quad \text{dist}[u, v] \leftarrow \min(\text{dist}[u, v], \text{dist}[u, w] + \text{dist}[w, v])
\]
Floyd-Warshall Algorithm

- Find shortest path between all pairs of nodes (APSP)
- Let \(d(u, v, X) \) be distance between \(u \) and \(v \), but only over intermediate nodes from set \(X \)!

\[
\text{procedure floyd_warshall}
\]

\[
dist[u, v] \leftarrow w(u, v)
\]

for all nodes \(u, v \)

\[
dist[v, v] \leftarrow 0 \text{ for all nodes } v
\]

for \(w \in V \)

// Compute \(d(u, v, X) \) for increasing set \(X \)

for \(u \in V \)

for \(v \in V \)

\[
dist[u, v] \leftarrow \min(dist[u, v], dist[u, w] + dist[w, v])
\]
Floyd-Warshall Algorithm

- Find shortest path between all pairs of nodes (APSP)
- Let $d(u, v, X)$ be distance between u and v, but only over intermediate nodes from set X!
- If we add another node to X, a new shortest path either uses this node, or not:

$$d(u, v, \{w\} \cup X) = \min(d(u, w, X) + d(w, v, X), d(u, v, X))$$
Floyd-Warshall Algorithm

- Find shortest path between all pairs of nodes (APSP)
- Let $d(u, v, X)$ be distance between u and v, but only over intermediate nodes from set X!
- If we add another node to X, a new shortest path either uses this node, or not:

$$d(u, v, \{w\} \cup X) = \min(d(u, w, X) + d(w, v, X), d(u, v, X))$$

procedure FLOYD__WARSHALL

```
dist[u, v] ← w(u, v) for all nodes u, v
dist[v, v] ← 0 for all nodes v
for w ∈ V do  // Compute $d(u, v, X)$ for increasing set $X$
    for u ∈ V do
        for v ∈ V do
            dist[u, v] ← min(dist[u, v], dist[u, w] + dist[w, v])
```
Longest Common Subsequence

- Subsequence of word \(w \): erase letters from \(w \)
 - E.g.: "Hllo wrld" is subsequence of "Hello world"
Longest Common Subsequence

• Subsequence of word w: erase letters from w
 • E.g.: "Hllo wrld" is subsequence of "Hello world"
• Given two strings, find (a) longest common subsequence (LCS)
Longest Common Subsequence

- Subsequence of word \(w \): erase letters from \(w \)
 - E.g.: "Hllo wrld" is subsequence of "Hello world"
- Given two strings, find (a) longest common subsequence (LCS)
 - is LCS unique?
Longest Common Subsequence

• Subsequence of word \(w \): erase letters from \(w \)
 • E.g.: "Hllo wrld" is subsequence of "Hello world"
• Given two strings, find (a) longest common subsequence (LCS)
 • is LCS unique? No! "abc", "cba","
Longest Common Subsequence

• Subsequence of word w: erase letters from w
 • E.g.: "Hllo wrld" is subsequence of "Hello world"
• Given two strings, find (a) longest common subsequence (LCS)
 • is LCS unique? No! "abc", "cba", LCS: "a", also "b" and "c"
Longest Common Subsequence

- Subsequence of word w: erase letters from w
 - E.g.: "Hllo wrld" is subsequence of "Hello world"
- Given two strings, find (a) longest common subsequence (LCS)
 - is LCS unique? No! "abc", "cba", LCS: "a", also "b" and "c"
- Application: diff - tool

\[
\begin{align*}
&w_1 \quad \text{dist}[i,j] = \text{dist}[k,i] + \text{dist}[j,k] + 1 \\
&w_2 \quad \text{dist}[i,j] = \text{dist}[i,k] + \text{dist}[k,j] \\
&lcs(w_1, w_2) \quad \text{dist}[i,j] = \text{dist}[,] + \text{dist}[,]
\end{align*}
\]
Longest Common Subsequence

- Subsequence of word w: erase letters from w
 - E.g.: "Hllo wrld" is subsequence of "Hello world"
- Given two strings, find (a) longest common subsequence (LCS)
 - is LCS unique? No! "abc", "cba", LCS: "a", also "b" and "c"
- Application: diff - tool

\[
\begin{align*}
\text{dist}_{w_1}[i,j] &= \text{dist}_{w_1}[k,i] + \text{dist}_{w_1}[j,k] + 1 \\
\text{dist}_{w_2}[i,j] &= \text{dist}_{w_2}[i,k] + \text{dist}_{w_2}[k,j] \\
\text{lcs}(w_1, w_2) \quad \text{dist}[i,j] &= \text{dist}[,,] + \text{dist}[,,]
\end{align*}
\]

- letters in w_1 but not LCS: removed
Longest Common Subsequence

• Subsequence of word w: erase letters from w
 • E.g.: "Hllo wrld" is subsequence of "Hello world"

• Given two strings, find (a) longest common subsequence (LCS)
 • is LCS unique? No! "abc", "cba", LCS: "a", also "b" and "c"

• Application: diff - tool

 w_1 \[\text{dist}[i,j] = \text{dist}[k,i] + \text{dist}[j,k] + 1 \]

 w_2 \[\text{dist}[i,j] = \text{dist}[i,k] + \text{dist}[k,j] \]

 $lcs(w_1, w_2)$ \[\text{dist}[i,j] = \text{dist}[,,] + \text{dist}[,,] \]

 • letters in w_1 but not LCS: removed
 • letters in w_2 but not LCS: added
LCS with Dynamic Programming

Optimal substructure

\[
lcs(w_1x, w_2y) = lcs(w_1, w_2)x \quad \text{if } x = y
\]
\[
= \max(lcs(w_1x, w_2), lcs(w_1, w_2y)) \quad \text{otherwise}
\]

• **max** longer of the two sequences. Any if equal length.
• Idea: cases if last letter of each word is part of LCS
Cocke-Younger-Kasami Algorithm

- Recall: CF-Grammar in Chomsky Normal Form

- Problem: can word w be produced from nonterminal N ($N \rightarrow w[i \ldots i + l]$)?

- $P(N, i, 1)$ iff exists production $N \rightarrow w[i]$.

- For $l > 1$: $P(N, i, l)$ iff exists $l_1, l_2 \geq 1$ with $l = l_1 + l_2$ and productions $N \rightarrow AB$ such that $P(A, i, l_1)$ and $P(B, i + l_1, l_2)$.

- Compute P by iterating over lengths, start indices, splits, productions.

- Yields $O(|w|^3 \cdot n)$ algorithm, for grammar with n productions.

- Good for general CF-grammars.

- Much better algorithms for special grammars, like computer languages!
Cocke-Younger-Kasami Algorithm

- Recall: CF-Grammar in Chomsky Normal Form
 - productions of form: $A \rightarrow \alpha$, $A \rightarrow BC$

- Problem: can word w be produced from nonterminal N ($N \rightarrow \ast w$)

- $P(N, i, l)$ true iff $N \rightarrow w[i..i+l]$
 - $P(N, i, 1)$ iff exists production $N \rightarrow w[i]$
 - for $l > 1$: $P(N, i, l)$ iff exists $l_1, l_2 \geq 1$ with $l = l_1 + l_2$ and production $N \rightarrow AB$ such that:
 - $P(A, i, l_1)$
 - $P(B, i+l_1, l_2)$

- Compute P by iterating over lengths, start indices, splits, productions
 - yields $O(|w|^3 \times n)$ algorithm, for grammar with n productions
 - good for general CF-grammars
 - much better algorithms for special grammars, like computer languages!
Cocke-Younger-Kasami Algorithm

• Recall: CF-Grammar in Chomsky Normal Form
 • productions of form: \(A \rightarrow \alpha, A \rightarrow BC \)
 • every CF-grammar that does not accept \(\varepsilon \) has Chomsky-NF
Cocke-Younger-Kasami Algorithm

- Recall: CF-Grammar in Chomsky Normal Form
 - productions of form: $A \rightarrow \alpha, A \rightarrow BC$
 - every CF-grammar that does not accept ε has Chomsky-NF
- Problem: can word w be produced from nonterminal N ($N \rightarrow^* w$)
Cocke-Younger-Kasami Algorithm

• Recall: CF-Grammar in Chomsky Normal Form
 • productions of form: $A \rightarrow \alpha$, $A \rightarrow BC$
 • every CF-grammar that does not accept ε has Chomsky-NF
• Problem: can word w be produced from nonterminal N ($N \rightarrow^* w$)
 • $P(N, i, l)$ true iff $N \rightarrow w[i \ldots < i + l]$
Cocke-Younger-Kasami Algorithm

- Recall: CF-Grammar in Chomsky Normal Form
 - productions of form: $A \rightarrow \alpha$, $A \rightarrow BC$
 - every CF-grammar that does not accept ε has Chomsky-NF
- Problem: can word w be produced from nonterminal N ($N \rightarrow^* w$)
 - $P(N, i, l)$ true iff $N \rightarrow w[i \ldots < i + l]$
 - $P(N, i, 1)$ iff exists production $N \rightarrow w[i]$
Cocke-Younger-Kasami Algorithm

• Recall: CF-Grammar in Chomsky Normal Form
 • productions of form: \(A \rightarrow \alpha, A \rightarrow BC \)
 • every CF-grammar that does not accept \(\varepsilon \) has Chomsky-NF
• Problem: can word \(w \) be produced from nonterminal \(N \) (\(N \rightarrow^* w \))
 • \(P(N, i, l) \) true iff \(N \rightarrow w[i \ldots < i + l] \)
 • \(P(N, i, 1) \) iff exists production \(N \rightarrow w[i] \)
 • for \(l > 1 \): \(P(N, i, l) \) iff
 exists \(l_1, l_2 \geq 1 \) with \(l = l_1 + l_2 \) and production \(N \rightarrow AB \)
 such that: \(P(A, i, l_1) \) and \(P(B, i + l_1, l_2) \)
Cocke-Younger-Kasami Algorithm

- Recall: CF-Grammar in Chomsky Normal Form
 - productions of form: $A \rightarrow \alpha$, $A \rightarrow BC$
 - every CF-grammar that does not accept ε has Chomsky-NF
- Problem: can word w be produced from nonterminal N ($N \rightarrow^* w$)
 - $P(N, i, l)$ true iff $N \rightarrow w[i \ldots < i + l]$
 - $P(N, i, 1)$ iff exists production $N \rightarrow w[i]$
 - for $l > 1$: $P(N, i, l)$ iff
 exists $l_1, l_2 \geq 1$ with $l = l_1 + l_2$ and production $N \rightarrow AB$
 such that: $P(A, i, l_1)$ and $P(B, i + l_1, l_2)$
- Compute P by iterating over lengths, start indices, splits, productions
Cocke-Younger-Kasami Algorithm

- Recall: CF-Grammar in Chomsky Normal Form
 - productions of form: \(A \rightarrow \alpha, A \rightarrow BC \)
 - every CF-grammar that does not accept \(\epsilon \) has Chomsky-NF
- Problem: can word \(w \) be produced from nonterminal \(N \) \((N \rightarrow^* w) \)
 - \(P(N, i, l) \) true iff \(N \rightarrow w[i \ldots < i + l] \)
 - \(P(N, i, 1) \) iff exists production \(N \rightarrow w[i] \)
 - for \(l > 1 \): \(P(N, i, l) \) iff
 - exists \(l_1, l_2 \geq 1 \) with \(l = l_1 + l_2 \) and production \(N \rightarrow AB \)
 - such that: \(P(A, i, l_1) \) and \(P(B, i + l_1, l_2) \)
- Compute \(P \) by iterating over lengths, start indices, splits, productions
 - yields \(O(|w|^3 \times n) \) algorithm, for grammar with \(n \) productions
Cocke-Younger-Kasami Algorithm

• Recall: CF-Grammar in Chomsky Normal Form
 • productions of form: \(A \rightarrow \alpha, A \rightarrow BC \)
 • every CF-grammar that does not accept \(\varepsilon \) has Chomsky-NF

• Problem: can word \(w \) be produced from nonterminal \(N \) (\(N \rightarrow^* w \))
 • \(P(N, i, l) \) true iff \(N \rightarrow w[i \ldots < i + l] \)
 • \(P(N, i, 1) \) iff exists production \(N \rightarrow w[i] \)
 • for \(l > 1 \): \(P(N, i, l) \) iff
 exists \(l_1, l_2 \geq 1 \) with \(l = l_1 + l_2 \) and production \(N \rightarrow AB \)
 such that: \(P(A, i, l_1) \) and \(P(B, i + l_1, l_2) \)

• Compute \(P \) by iterating over lengths, start indices, splits, productions
 • yields \(O(|w|^3 \times n) \) algorithm, for grammar with \(n \) productions
 • good for general CF-grammars.
Cocke-Younger-Kasami Algorithm

- Recall: CF-Grammar in Chomsky Normal Form
 - productions of form: $A \rightarrow \alpha, A \rightarrow BC$
 - every CF-grammar that does not accept ε has Chomsky-NF
- Problem: can word w be produced from nonterminal N ($N \rightarrow^* w$)
 - $P(N, i, l)$ true iff $N \rightarrow w[i \ldots < i + l]$
 - $P(N, i, 1)$ iff exists production $N \rightarrow w[i]$
 - for $l > 1$: $P(N, i, l)$ iff
 exists $l_1, l_2 \geq 1$ with $l = l_1 + l_2$ and production $N \rightarrow AB$
 such that: $P(A, i, l_1)$ and $P(B, i + l_1, l_2)$
- Compute P by iterating over lengths, start indices, splits, productions
 - yields $O(|w|^3 \times n)$ algorithm, for grammar with n productions
 - good for general CF-grammars.
 - much better algorithms for special grammars, like computer languages!
Conclusion

• Optimal Substructure
 • solve larger instance by smaller instances
 • often requires generalization, e.g.
 • only use coins 1…i
 • only use paths over certain intermediate nodes

• Greedy Choice: distinct subproblems, no need to backtrack

• Overlapping Subproblems: memorize already computed solutions