# COMP24412: Symbolic Artificial Intelligence

This course is being delived by Giles Reger, Andre Freitas, and Joe Razavi.
Please see the
School syllabus page for other information.
## Aims and objectives

The aim of this course is to provide the conceptual and practical
(systems building) foundations for knowledge representation and
reasoning in Artificial Intelligence.
A student completing this course unit should be able to:

- Describe, differentiate and apply different knowledge
representation formalisms for modelling knowledge bases.
- Explain how these formalisms affect the reasoning process.
- Write Prolog programs to solve automated reasoning tasks and
explain how they will execute
- Apply, demonstrate and program knowledge-based learning
methods.
- Apply, demonstrate and program formal models for natural
language processing in the context of semantic parsing and
natural logic inference.
- Describe the syntax and semantics of first-order logic and use
it to model problems
- Apply reasoning techniques (transformation to clausal form,
resolution, saturation) to establish properties of first-order
problems
- Explain the theoretical limitations of automated theorem
provers

## Structure

Lecture and Lab notes and materials will be available from Blackboard for the first half of the course and from here for the second half.
As per School policy, we will not be providing hard copies of
notes.

### Lectures

- Weeks 1-2 (Andre) - Knowledge Representation
- Weeks 3-4 (Joe) - Prolog
- Weeks 5-6 (Andre) - Parsing
- Weeks 7-10 (Giles) - Automated Reasoning
- Lecture 13: Reasoning Tasks
- Lecture 14: Revising First-Order Logic
- Lecture 15: Working with Clauses
- Lecture 16: Forward and Backward Chaining
- Lecture 17: Unification and Resolution
- Lecture 18: Proof Search
- Lecture 19: More Proof Search
- Lecture 20: Reasoning with Arithmetic (and beyond)

- Week 11 (Andre) - Abduction and ILP
- Week 12 - Revision

### Labs

There are 5 lab exercises grouped into three assessments.
- 1A - Natural Language and Representation
- 2 - Prolog
- 1B - Parsing
- 3A - Reasoning with Prolog
- 3B - Reasoning with FOL

Labs are assessed offline (there is no face-to-face marking).
There are three Blackboard quizzes in weeks 5, 7, and 10.
## Suggested Reading

- Stuart Russell and Peter Norvig, Artificial Intelligence: A
Modern Approach, Global Edition, 2016.
- Patrick Blackburn, Johan Bos and Kristina Striegnitz: Learn Prolog Now!,
College Publications, 2006.
- Sebastian Loebner, Understanding Semantics, Second Edition,
2013.
- Dennis Merritt, Building Expert Systems in Prolog.

## Exams

**Please note that the course has changed considerably this in
2018/19 and previous exams should be treated with care - they
are not indicative of content or style. **

Check out the following sites: