
Reductions and hardness Cook’s theorem Reductions

COMP36111: Advanced Algorithms I

Lecture 7: Hardness and Reductions

Ian Pratt-Hartmann

Room KB2.38: email: ipratt@cs.man.ac.uk

2017–18



Reductions and hardness Cook’s theorem Reductions

• Reading for this lecture:
• Sipser: Chapter 7.



Reductions and hardness Cook’s theorem Reductions

Outline

Reductions and hardness
Reductions
Transitivity of reductions
Hardness and completeness

Cook’s theorem
Cook’s theorem

Some easy reductions
3-SAT
Integer linear programming



Reductions and hardness Cook’s theorem Reductions

Reductions

• Recall the problems SAT and k-SAT

SAT
Given: A set of clauses Γ
Return: Y if Γ is satisfiable, and N otherwise

k-SAT
Given: A set of clauses Γ each of which has at most k literals.
Return: Y if Γ is satisfiable, and N otherwise.

• Prima facie, SAT looks harder than k-SAT. But is it?



Reductions and hardness Cook’s theorem Reductions

• Let P1, P2 be problems over alphabets Σ1, Σ2, respectively.

• We say P1 is (many-one logspace) reducible to P2 if there is a
function f : Σ∗1 → Σ∗2 such that: (i) f can be computed by a
deterministic TM using at most log n space on any work tape;
and (ii) for all x ∈ Σ∗1, x ∈ P1 if and only if f (x) ∈ P2.

• In this case, we write

P1 ≤log
m P2

• We think of P1 ≤log
m P2 as stating any of the following:

• P2 is at least as hard as P1;
• P1 is no harder than P2;
• if anyone shows me an easy way of solving P2, I have an easy

way of solving P1.



Reductions and hardness Cook’s theorem Reductions

• Such reductions provide a way of showing that a problem is in
a complexity class, because (sensible) complexity classes, such
as

LogSpace,NLogSpace,PTime,NPTime, . . .

are closed under many-one logspace reductions.

• Warning: Classes such as Time(n), Time(n2) etc. are not
closed under many-one logspace reductions.



Reductions and hardness Cook’s theorem Reductions

Outline

Reductions and hardness
Reductions
Transitivity of reductions
Hardness and completeness

Cook’s theorem
Cook’s theorem

Some easy reductions
3-SAT
Integer linear programming



Reductions and hardness Cook’s theorem Reductions

Furthermore, reducibility is a transitive relation, as the next
theorem shows.

Theorem
If f1 : Σ∗1 → Σ∗2 and f2 : Σ∗2 → Σ∗3 are both computable in
logaithmic space, then so is f2 ◦ f1 : Σ∗1 → Σ∗3.

The following picture is not a proof!

x

f1(x)

f2(f1(x))

Worktapes for f1

Worktapes for f2



Reductions and hardness Cook’s theorem Reductions

• Here is a Turing machine that will compute f2 ◦ f1 in
logarithmic space:

calculate the first bit of f1(x)
keep a counter to say which bit this is—initially 1
start a simulation of f2(f1(x)), using the calculated bit
if the simulation of f2 asks to move the read head to the right

calculate next bit of f1(x)
write it on top of the current bit
update the output bit counter

if the simulation of f2 asks to move the read head to the left
restart the calculation of f1(x)
continue until the required output bit is calculated
write it on top of the current bit
update the output bit counter



Reductions and hardness Cook’s theorem Reductions

• A weaker notion of reduction is commonly encountered in
textbooks (e.g. Sipser).

• Denote by P the set of functions {nc | c > 0}.
• Let P1, P2 be problems over alphabets Σ1, Σ2, respectively.

• We say P1 is (many-one polytime) reducible to P2 if there is a
function f : Σ∗1 → Σ∗2, in Time(P) such that, for all x ∈ Σ∗1,
x ∈ P1 if and only if f (x) ∈ P2.

• In this case, we write
P1 ≤p

m P2



Reductions and hardness Cook’s theorem Reductions

• Many-one logspace reducibility is at least as strong as
many-one polytime reducibility.

• Many-one polytime reducibility is obviously transitive. (Ask if
you do not understand this.)

• However, many-one logspace reducibility is theoretically a bit
more useful.

• In practice, most encountered instances of many-one polytime
reducibility are in fact instances of many-one logspace
reducibility.

• We shall always use many-one logspace reducibility unless
explicitly stated otherwise.



Reductions and hardness Cook’s theorem Reductions

Outline

Reductions and hardness
Reductions
Transitivity of reductions
Hardness and completeness

Cook’s theorem
Cook’s theorem

Some easy reductions
3-SAT
Integer linear programming



Reductions and hardness Cook’s theorem Reductions

• It turns out that, for certain complexity classes C, and certain
problems P, every problem P ′ ∈ C is reducible to P.

• That is, P is at least as hard as every problem in C.

• Of particular interest is where the problem P is itself a
member of C.

• Much of the attraction of complexity theory arises from the
existence of such problems.



Reductions and hardness Cook’s theorem Reductions

Definition
Let C be a complexity class and P a problem. We say that P is
C-hard (under many-one logspace reducibility) if, for all P ′ ∈ C,

P ′ ≤log
m P.

We say that P is C-complete (umolsr) if, P ∈ C and P is C-hard
(umolsr).



Reductions and hardness Cook’s theorem Reductions

Outline

Reductions and hardness
Reductions
Transitivity of reductions
Hardness and completeness

Cook’s theorem
Cook’s theorem

Some easy reductions
3-SAT
Integer linear programming



Reductions and hardness Cook’s theorem Reductions

Theorem (Cook)

SAT is NPTime-complete.



Reductions and hardness Cook’s theorem Reductions

Proof.
Suppose P is any problem in NPTime. Let M be a TM accepting
P, with running time bounded by p(n). For simplicity, let us
assume M has just one tape. Thus, M has the form

〈Σ,Q, s∗,T 〉,

where Σ is the alphabet of P, Q is the set of states, s∗ the halting
state and T the set of transitions.

Each transition τ ∈ T has the form

τ = 〈s, a, t, b, δ〉,

where s, t ∈ Q are states, a, b ∈ Σ ∪ {xy, .}, and δ ∈ {−1, 0, 1}
indicating ‘left’, ‘stay’ or ‘right’.



Reductions and hardness Cook’s theorem Reductions

Proof.
We picture the operation of M as

p(n)

n

x

p(n)

pki ,j

si ,j

and encode any run using the proposition letters

pai ,j : tape square i contains symbol a at time j

hi ,j : the head is over tape square i at time j
qsj : the state is s at time j .

tτi ,j : transition τ is executed at time j with head on tape square i .



Reductions and hardness Cook’s theorem Reductions

Proof.
We write clauses saying that, at each time, the head is somewhere

{h1,j ∨ · · · ∨ hp(n),j | 1 ≤ j ≤ p(n)}

and is not in two places at once

{¬hi ,j ∨ ¬hi ′,j | 1 ≤ i < i ′ ≤ p(n), 1 ≤ j ≤ p(n)}

and so on. We write clauses saying that the input is x [1], . . . , x [n]
(remember t is the blank symbol):

{px[i ]
i ,1 | 1 ≤ i ≤ n}

{pti ,1 | n + 1 ≤ i ≤ p(n)}

and so on. (proof TBC . . . )



Reductions and hardness Cook’s theorem Reductions

Proof.
Further, we write clauses specifying when a transition of M may be
executed. For all i , j (1 ≤ i , j ≤ p(n)), and for all a ∈ Σ ∪ {xy, .},
we take Γx to contain the (big) clause

¬qsj ∨ ¬hi ,j ∨ ¬pai ,j ∨
∨
{tτi ,j | τ = 〈s, a, t, b, δ〉 ∈ T}

listing the allowed transitions M may make. Note that M is a
non-deterministic TM!



Reductions and hardness Cook’s theorem Reductions

Proof.
And we write clauses specifying the effects of transitions:

{¬tτi ,j ∨ pbi ,j+1 | 1 ≤ i , j ≤ p(n), τ = 〈s, a, t, b, δ〉}
{¬tτi ,j ∨ qtj+1 | 1 ≤ i , j ≤ p(n), τ = 〈s, a, t, b, δ〉}
{¬tτi ,j ∨ hi+δ,j+1 | 1 ≤ i , j ≤ p(n), τ = 〈s, a, t, b, δ〉}.

Actually, there are some complications here when the tape head is
over the leftmost square. Can you fix this formula?



Reductions and hardness Cook’s theorem Reductions

Proof.
And we write clauses saying that M accepts the input:

{qs∗p(n), p
Y

1,p(n)} ∪ {p
xy
i ,p(n) | 2 ≤ i ≤ p(n)},

where s∗ is the halting state.

Call the resulting set of clauses Γx .
There are a few additional clauses in Γx that I have not mentioned;
but it is routine to fill them in. (proof TBC . . . )



Reductions and hardness Cook’s theorem Reductions

Proof.
It is easy to see that Γx is satisfiable iff M accepts x ; hence Γx is
satisfiable iff x ∈ P.

It is also ‘easy’ to see that, from a description of x , we can
compute the set of clauses ΓM using at most log n amount of
workspace, where n = |x |. (Remember: the parameters of M are
constant here; the only variable input is x .)

Thus, the function x 7→ Γx shows that P ≤log
m SAT, as

required.



Reductions and hardness Cook’s theorem Reductions

• It is completely trivial that 3-SAT is no harder than SAT.

• Slightly surprising is that the reverse condition holds: SAT is
no harder than 3-SAT!

• Notice that this means that 3-SAT is NPTime-complete.

• For suppose P is a problem in NPTime. We have

P ≤log
m SAT ≤log

m 3-SAT

and the result follows by the transitivity of ≤log
m .



Reductions and hardness Cook’s theorem Reductions

Outline

Reductions and hardness
Reductions
Transitivity of reductions
Hardness and completeness

Cook’s theorem
Cook’s theorem

Some easy reductions
3-SAT
Integer linear programming



Reductions and hardness Cook’s theorem Reductions

Theorem
3-SAT is NPTime-complete

Proof.
We show that SAT ≤log

m 3-SAT.

Suppose we are given a set of clauses Γ. We show how to compute
a set of 3-literal clauses Γ′ such that Γ is satisfiable iff Γ′ is
satisfiable.

Pick any (`1 ∨ · · · ∨ `m) ∈ Γ with m ≥ 4. (proof TBC . . . )



Reductions and hardness Cook’s theorem Reductions

Proof.
Let p be a new proposition letter, and let Γ′′ be the result of
replacing γ in Γ with the pair of clauses:

p ∨ `3 ∨ · · · ∨ `m
¬p ∨ `1 ∨ `2

These clauses entail γ, so if Γ′′ is satisfiable, Γ certainly is. On the
other hand, if the assignment θ satisfies Γ, then setting
θ(p) = θ(`1 ∨ `2) clearly satisfies Γ′′.

Proceeding in this way, we eventually obtain the required Γ′.



Reductions and hardness Cook’s theorem Reductions

Outline

Reductions and hardness
Reductions
Transitivity of reductions
Hardness and completeness

Cook’s theorem
Cook’s theorem

Some easy reductions
3-SAT
Integer linear programming



Reductions and hardness Cook’s theorem Reductions

• Integer linear programming (ILP) is the problem of
determining the existence of a solution (over N) to a system
of linear Diophantine equations.

ILP
Given: a system of l.d. equations E : Ax = b.
Return: Yes if E has a solution over N, and No otherwise.

• We are also interested in the special case where the solutions
are limited to values 0 and 1

• For k ≥ 2, we have the problem

ILP(0/1)

Given: a system of l.d. equations E : Ax = b.
Return: Yes if E has a solution over {0, 1}, and No otherwise.



Reductions and hardness Cook’s theorem Reductions

Theorem
ILP(0/1) is NPTime-complete

Proof.
We show that 3-SAT ≤log

m ILP(0/1).

Suppose we are given a set of 3-literal clauses Γ. We show how to
compute system of linear Diophantine equations E such that E has
a solution over {0, 1} iff Γ is satisfiable.

For every proposition letter p mentioned in Γ, let xp and x¬p be
variables and write the equation

xp + x¬p = 1.

.



Reductions and hardness Cook’s theorem Reductions

Proof.
For every clause γ := (`1 ∨ `2 ∨ `3) ∈ Γ, let yγ1 , yγ2 be variables,
and write the equation

x`1 + x`2 + x`3 + yγ1 + yγ2 = 3.

Call the resulting system of equations EΓ.

Suppose θ is a truth-value assignment for the proposition letters in
Γ. Now define

xp =

{
1 if θ(p) = >
0 otherwise.

and define x¬p = 1− xp.



Reductions and hardness Cook’s theorem Reductions

Proof.
If θ makes γ := (`1 ∨ `2 ∨ `3) true, then we can certainly find yγ1 ,
yγ2 satisfying.

x`1 + x`2 + x`3 + yγ1 + yγ2 = 3.

So all the equations in EΓ are satisfied.

Conversely, given any assignment of values in {0, 1} to the
variables x` and yγj , define the truth-value assignment

θ(p) =

{
> if xp = 1

⊥ otherwise.

If the various equations xp + x¬p = 1 hold, then, for all literals `,
θ(p) = > iff x` = 1. Hence, if the remaining equations in EΓ hold,
every clause in Γ is made true by θ.


	Reductions and hardness
	Reductions
	Transitivity of reductions
	Hardness and completeness

	Cook's theorem
	Cook's theorem

	Some easy reductions
	3-SAT
	Integer linear programming


