
Graphs and directed graphs DFS Tarjan’s SCC

COMP36111: Advanced Algorithms I

Lecture 1a:

Some Basic Graph Algorithms

Ian Pratt-Hartmann

Room KB2.38: email: ipratt@cs.man.ac.uk

2017–18

Graphs and directed graphs DFS Tarjan’s SCC

• In this lecture, we consider algorithms for determining very
simple properties of (directed and undirected) graphs.

• The lecture is divided into three parts. The first establishes
notation and terminology; the second introduces some very
basic algorithms based on depth-first search; the third
presents a generalization—Tarjan’s algorithm for strongly
connected components.

Graphs and directed graphs DFS Tarjan’s SCC

Outline

Graphs and directed graphs

Depth-first search and other simple algorithms

Tarjan’s algorithm for strongly connected components

Graphs and directed graphs DFS Tarjan’s SCC

• A graph is a pair G = (V ,E), where V is a finite set and E a
set of subsets of V of cardinality 2.

• We call the elements of V vertices, and the elements of E
edges.

• If {u, v} ∈ E , we say that u and v are neighbours.

• If v ∈ V , e ∈ E and v ∈ e, we say v and e are adjacent.

• Graphs are typically displayed pictorially:

Graphs and directed graphs DFS Tarjan’s SCC

• The following are not pictures of graphs:

• Self-loops:

• Multiple edges

• Directions on edges

Graphs and directed graphs DFS Tarjan’s SCC

• A directed graph is a pair G = (V ,E), where V is a set and E
a set of ordered pairs of distinct elements of V .

• Vertices, edges neighbours and adjacency are defined as with
graphs.

• Directed graphs are again often depicted pictorially (notice
the arrows on the edges):

Graphs and directed graphs DFS Tarjan’s SCC

• (Directed) graphs may be stored using adjacency lists,
interpreted in the obvious way. Here is an example of an
undirected graph:

v0

v1

v2

v3

0: 1, 3

1: 0, 2, 3

2: 1, 3

3: 0, 1, 2

• From any vertex, the adjacent edges can be accessed
efficiently.

• From any edge, the adjacent vertices can be accessed
efficiently.

Graphs and directed graphs DFS Tarjan’s SCC

• Alternatively, graphs can be stored using using (symmetric)
matrices.

v0

v1

v2

v3


∗ 1 0 1
1 ∗ 1 1
0 1 ∗ 1
1 1 1 ∗


• Note that we do not care about the diagonal elements.

• This method is wasteful in terms of memory, but often more
convenient than adjacency lists.

• In these lectures, we will employ adjacency lists by default.

Graphs and directed graphs DFS Tarjan’s SCC

• If G = (V ,E) is a (directed) graph, and u, v ∈ V , we say that
v is reachable from u if there exists a sequence
u = u0, . . . , um = v from V with m ≥ 0 such that, for each i
(0 ≤ i < m) (ui , ui+1) ∈ E .

• In the following directed graph, v6 is reachable from v0
v0

v1
v2

v3

v4
v5

v6 v7

since we have the sequence v0 → v1 → v3 → v6.

• However, v7 is not reachable from v0.

Graphs and directed graphs DFS Tarjan’s SCC

• A graph is connected if every node is reachable from every
other.

• A directed graph is strongly connected if every vertex is
reachable from every other.

• These notions give rise to the following two problems:

CONNECTIVITY
Given: A graph G = (V ,E).
Return: Yes if G is connected, No otherwise.

STRONG CONNECTIVITY
Given: A directed graph G = (V ,E).
Return: Yes if G is strongly connected, No otherwise.

Graphs and directed graphs DFS Tarjan’s SCC

• The following are natural generalizations of the notions of
connectedness and strong connectedness.

• A connected component of a graph is a maximal set of
vertices each of which is reachable from any other.

• A strongly connected component of a directed graph is a
maximal set of vertices each of which is reachable (in the
directed graph sense) from any other.

• It is easy to see that the connected components of a graph
G = (V ,E) form a partition of V . Similarly for the strongly
connected components of a directed graph.

Graphs and directed graphs DFS Tarjan’s SCC

• A graph is connected just in case it has exactly one connected
component.

• A directed graph is strongly connected just in case it has
exactly one strongly connected component.

• These notions give rise to the following two computational
tasks:

CONNECTED COMPONENTS
Given: A graph G = (V ,E).
Return: The connected components of G .

STRONGLY CONNECTED COMPONENTS
Given: A directed graph G = (V ,E).
Return: The strongly connected components of G .

Graphs and directed graphs DFS Tarjan’s SCC

• The following example illustrates the problem of finding the
connected components of a graph.

Graphs and directed graphs DFS Tarjan’s SCC

• The following example illustrates the problem of finding the
connected components of a graph.

Graphs and directed graphs DFS Tarjan’s SCC

• The following example illustrates the problem of finding the
strongly connected components of a directed graph.

Graphs and directed graphs DFS Tarjan’s SCC

• The following example illustrates the problem of finding the
strongly connected components of a directed graph.

Graphs and directed graphs DFS Tarjan’s SCC

• A cycle in a directed graph G is a sequence of vertices
v0, . . . , vk = v0 (k ≥ 2) such that, for all i (0 ≤ i < k),
(vi , vi+1) is an edge. We call G cyclic if it has a cycle,
otherwise acyclic.

• The following directed graph is . . .
u0

u1
u2

u3

u4
u5

u6 u7

• This notion gives rise to the following problem:

CYCLICITY
Given: A directed graph G = (V ,E).
Return: Yes if G is cyclic, No otherwise.

Graphs and directed graphs DFS Tarjan’s SCC

• A cycle in a directed graph G is a sequence of vertices
v0, . . . , vk = v0 (k ≥ 2) such that, for all i (0 ≤ i < k),
(vi , vi+1) is an edge. We call G cyclic if it has a cycle,
otherwise acyclic.

• The following directed graph is acyclic.
u0

u1
u2

u3

u4
u5

u6 u7

• This notion gives rise to the following problem:

CYCLICITY
Given: A directed graph G = (V ,E).
Return: Yes if G is cyclic, No otherwise.

Graphs and directed graphs DFS Tarjan’s SCC

Outline

Graphs and directed graphs

Depth-first search and other simple algorithms

Tarjan’s algorithm for strongly connected components

Graphs and directed graphs DFS Tarjan’s SCC

• Here is a simple algorithm to reverse all the links in a directed
graph, G .

begin reverse(G)
G ′.vertices = G .vertices
for each u ∈ G ′.vertices do

G ′.edges(u) = ∅
for each u ∈ G .vertices do

for each v ∈ G .edges(u) do
add u to G ′.edges(v)

return G ′

end reverse

• If G has n vertices and m edges, running time is:

Graphs and directed graphs DFS Tarjan’s SCC

• Here is a simple algorithm to reverse all the links in a directed
graph, G .

begin reverse(G)
G ′.vertices = G .vertices
for each u ∈ G ′.vertices do

G ′.edges(u) = ∅
for each u ∈ G .vertices do

for each v ∈ G .edges(u) do
add u to G ′.edges(v)

return G ′

end reverse

• If G has n vertices and m edges, running time is: O(m + n).

Graphs and directed graphs DFS Tarjan’s SCC

• Here is a simple algorithm to compute the in-degree of all
vertices in a directed graph

begin inDegCompute(G)
for each u ∈ G .vertices do

G .inDeg(u) = 0
for each u ∈ G .vertices do

for each v ∈ G .edges(u) do
increment G .inDeg(v)

end inDegCompute

• If G has n vertices and m edges, running time is: .

Graphs and directed graphs DFS Tarjan’s SCC

• Here is a simple algorithm to compute the in-degree of all
vertices in a directed graph

begin inDegCompute(G)
for each u ∈ G .vertices do

G .inDeg(u) = 0
for each u ∈ G .vertices do

for each v ∈ G .edges(u) do
increment G .inDeg(v)

end inDegCompute

• If G has n vertices and m edges, running time is: O(m + n).

Graphs and directed graphs DFS Tarjan’s SCC

• Here is a simple algorithm, depth-first search, that computes
the vertices of a (directed or undirected) graph G reachable
from a given vertex v .

begin DFS(G , v)
mark v

for each w ∈ G .edges(v) do
if w unmarked do
DFS(G , w)

end DFS

• This algorithm marks all vertices reachable from v .

• It works for with directed and undirected graphs.

• DFS((V ,E), v) runs in time O(m + n) where n = |V | and
m = |E |.

Graphs and directed graphs DFS Tarjan’s SCC

• Here is an animation:
v0

v1

v2

v3

v4

Graphs and directed graphs DFS Tarjan’s SCC

• Here is an animation:
v0

v1

v2

v3

v4

v0

Graphs and directed graphs DFS Tarjan’s SCC

• Here is an animation:
v0

v1

v2

v3

v4

v0

Graphs and directed graphs DFS Tarjan’s SCC

• Here is an animation:
v0

v1

v2

v3

v4

v0

v1

Graphs and directed graphs DFS Tarjan’s SCC

• Here is an animation:
v0

v1

v2

v3

v4

v0

v1

Graphs and directed graphs DFS Tarjan’s SCC

• Here is an animation:
v0

v1

v2

v3

v4

v0

v1v3

Graphs and directed graphs DFS Tarjan’s SCC

• Here is an animation:
v0

v1

v2

v3

v4

v0

v1v3

Graphs and directed graphs DFS Tarjan’s SCC

• Here is an animation:
v0

v1

v2

v3

v4

v0

v1v3

Graphs and directed graphs DFS Tarjan’s SCC

• Here is an animation:
v0

v1

v2

v3

v4

v0

v1v3

v4

Graphs and directed graphs DFS Tarjan’s SCC

• Here is an animation:
v0

v1

v2

v3

v4

v0

v1v3

v4

Graphs and directed graphs DFS Tarjan’s SCC

• Here is an animation:
v0

v1

v2

v3

v4

v0

v1v3

v4

Graphs and directed graphs DFS Tarjan’s SCC

• Here is an animation:
v0

v1

v2

v3

v4

v0

v1v3

v4v2

Graphs and directed graphs DFS Tarjan’s SCC

• Here is an animation:
v0

v1

v2

v3

v4

v0

v1v3

v4v2

Graphs and directed graphs DFS Tarjan’s SCC

• Here is an animation:

v0

v1

v2

v3

v4

v0

v1v3

v4v2

v0

v1

v3

v4

v2

Graphs and directed graphs DFS Tarjan’s SCC

Theorem
CONNECTIVITY of a graph (V ,E) can be determined in time
O(|V |+ |E |).

Proof.
Pick any vertex v , run DFS on v , and check that all vertices have
been marked.

Theorem
STRONG CONNECTIVITY of a directed graph G = (V ,E) can be
determined in time O(|V |+ |E |).

Proof.
If V is empty, G is strongly connected. Otherwise, pick any
v0 ∈ V . Let G← be the reversal of G . Then G is strongly
connected if and only if every vertex v ∈ V is reachable from v0 in
both G and G←.

Graphs and directed graphs DFS Tarjan’s SCC

• Recall the definition of cycle and cyclicity for directed graphs,
given above.

• A topological sort(ing) of a directed graph G is an ordering of
its vertices as v0, . . . , vn−1 such that, for all edges (vi , vj) we
have i < j .

u0

u1
u2

u3

u4
u5

u6 u7

• It is simple to show that a graph is acyclic if and only if it
admits a topological sorting.

• The following algorithm takes a directed graph and finds a
topological sorting, or outputs “cyclic”.

Graphs and directed graphs DFS Tarjan’s SCC

• Recall the definition of cycle and cyclicity for directed graphs,
given above.

• A topological sort(ing) of a directed graph G is an ordering of
its vertices as v0, . . . , vn−1 such that, for all edges (vi , vj) we
have i < j .

u1
u2

u3

u4
u5

u6

• It is simple to show that a graph is acyclic if and only if it
admits a topological sorting.

• The following algorithm takes a directed graph and finds a
topological sorting, or outputs “cyclic”.

Graphs and directed graphs DFS Tarjan’s SCC

• Recall the definition of cycle and cyclicity for directed graphs,
given above.

• A topological sort(ing) of a directed graph G is an ordering of
its vertices as v0, . . . , vn−1 such that, for all edges (vi , vj) we
have i < j .

u1

u3

u4
u5

u6

• It is simple to show that a graph is acyclic if and only if it
admits a topological sorting.

• The following algorithm takes a directed graph and finds a
topological sorting, or outputs “cyclic”.

Graphs and directed graphs DFS Tarjan’s SCC

• Recall the definition of cycle and cyclicity for directed graphs,
given above.

• A topological sort(ing) of a directed graph G is an ordering of
its vertices as v0, . . . , vn−1 such that, for all edges (vi , vj) we
have i < j .

u1

u3

u4

u6

• It is simple to show that a graph is acyclic if and only if it
admits a topological sorting.

• The following algorithm takes a directed graph and finds a
topological sorting, or outputs “cyclic”.

Graphs and directed graphs DFS Tarjan’s SCC

• Recall the definition of cycle and cyclicity for directed graphs,
given above.

• A topological sort(ing) of a directed graph G is an ordering of
its vertices as v0, . . . , vn−1 such that, for all edges (vi , vj) we
have i < j .

u3

u4

u6

• It is simple to show that a graph is acyclic if and only if it
admits a topological sorting.

• The following algorithm takes a directed graph and finds a
topological sorting, or outputs “cyclic”.

Graphs and directed graphs DFS Tarjan’s SCC

• Recall the definition of cycle and cyclicity for directed graphs,
given above.

• A topological sort(ing) of a directed graph G is an ordering of
its vertices as v0, . . . , vn−1 such that, for all edges (vi , vj) we
have i < j .

u6

• It is simple to show that a graph is acyclic if and only if it
admits a topological sorting.

• The following algorithm takes a directed graph and finds a
topological sorting, or outputs “cyclic”.

Graphs and directed graphs DFS Tarjan’s SCC

• Here is the pseudocode for topological sorting G = (V ,E)

begin topSort(G)
compute all in-degrees and store in G .inDeg
let S = ∅ be a stack and let i = 0
for each v ∈ G .vertices

if G .inDeg(v) = 0 then push v on S
while S is non-empty

u = pop(S)
let sort(i) = u
increment i
for each v ∈ G .edges(u) do

decrement G .inDeg
if G .inDeg(v) = 0

push v on S
if i = n then output sort(0), . . . , sort(n − 1)
output “cyclic”

end DFS

• Running time is O(m + n) where n = |V | and m = |E |.

Graphs and directed graphs DFS Tarjan’s SCC

Outline

Graphs and directed graphs

Depth-first search and other simple algorithms

Tarjan’s algorithm for strongly connected components

Graphs and directed graphs DFS Tarjan’s SCC

• Recall the definition of strongly connected component (SCC)
for a directed graph, given above.

• The following algorithm, known as Tarjan’s algorithm, allows
us to determine the strongly connected components of a
directed graph.

• There is a very good presentation on

https://en.wikipedia.org/wiki/Tarjan’s strongly connected components algorithm

• We reproduce the core of this algorithm (more or less
verbatim from Wikipedia), and illustrate with an example.

Graphs and directed graphs DFS Tarjan’s SCC

• The algorithm has the following features:
• It can be seen as a version of depth-first search.
• It maintains a stack of vertices in contention to be in an SCC.
• Each vertex is given an index and a lowlink value, which is the

earliest node encountered so far and known to be in the same
SCC as that vertex.

• The core of Tarjan’s algorithm is the function
strongConnect(v), which we call repeatedly on some vertex
v until all vertices have been assigned to an SCC.

• This function uses a global variable index, initially set to
zero, and a global stack of vertices, initially set to empty.

Graphs and directed graphs DFS Tarjan’s SCC

strongConnect(v)
v .index := index
v .lowlink := index
increment index
push v on stack
for each w in G .successors(v)

if w .index undefined
strongConnect(w)
v .lowlink := min(v .lowlink,w .lowlink)

if w is on stack
v .lowlink := min(v .lowlink,w .index)

if v .lowlink = v .index
repeat

pop w off stack
add w to current strongly connected component

while w ! = v
output the current strongly connected component

end strongConnect

Graphs and directed graphs DFS Tarjan’s SCC

• The graph

v0

v1
v8

v2 v3

v4 v7

v5 v6

has strongly connected components:

Graphs and directed graphs DFS Tarjan’s SCC

• The graph

v0v0

v1v1
v8v8

v2v2 v3v3

v4v4 v7v7

v5v5 v6v6

has strongly connected components:
{v0, v1, v2}, {v3, v4, v5}, {v6}, {v7}, {v8}.

Graphs and directed graphs DFS Tarjan’s SCC

• Notice that the strongly connected components naturally form
an acyclic directed graph. Indeed, Tarjan’s algorithm
computes a topological ordering for this graph.

v0

v1
v8

v2 v3

v4 v7

v5 v6

s0

s8

s3

s7

s6

• In particular, if given an acyclic graph as input, this algorithm
will compute a topological ordering—in fact, it is just the
algorithm we encountered above for topological sorting.

	Graphs and directed graphs
	Depth-first search and other simple algorithms
	Tarjan's algorithm for strongly connected components

