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1 Introduction 

MATLAB is being used as a platform for laboratory exercises and the problems classes in the Image 

Processing half of the Computer Graphics and Image Processing course unit. This handout describes 

the MATLAB development environment you will be using, you are expected to have read it and be 

familiar with it before attempting the Laboratory and Coursework Assignments. 

MATLAB is a data analysis and visualisation tool designed to make matrix manipulation as simple as 

possible. In addition, it has powerful graphics capabilities and its own programming language. The 

basic MATLAB distribution can be expanded by adding a range of toolboxes, the one relevant to this 

course is the image-processing toolbox (IPT). The basic distribution and all of the currently available 

toolboxes are available in the labs. The basic distribution plus any installed toolboxes will provide a 

large selection of functions, invoked via a command line interface. 

MATLAB’s basic data structure is the matrix
1
. In MATLAB a single variable is a 1 x 1 matrix, a string 

is a 1 x n matrix of chars. An image is a n x m matrix of pixels. Pixels are explained in more detail 

below. Matrix operations are discussed in the appendix. 

The handout summarises how the image processing operations discussed in lectures may be achieved in 

MATLAB, it summarises the MATLAB programming environment. Further help is available online, 

by either clicking on the “Help” menu item, or typing helpbrowser at the command prompt. 

 

                                                 
1
 A matrix is a rectangular array of objects of the same type. The matrix will have r rows and c 

columns, a matrix element is referenced as M[r,c], Mr,c Mrc etc. Operations involving matrices are 

introduced as needed and summarised in the appendix. 
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2 MATLAB’s Development Environment 

MATLAB is started from within the Windows environment by clicking the icon that should be on the 

desktop. (MATLAB is also available for Linux and MacOS, but these environments are not supported 

in the laboratories, and these versions have their own licensing arrangements which are not covered by 

the University’s licence.) 
 

MATLAB’s IDE has five components: the Command Window, the Workspace Browser, the Current 

Directory Window, the Command History Window and zero or more Figure Windows that are active 

only to display graphical objects. 

The Command window is where commands and expressions are typed, and results are presented as 

appropriate. 

The workspace is the set of variables that have been created during a session. They are displayed in the 

Workspace Browser. Additional information about a variable is available there, some variables can also 

be edited. 

The current directory window displays the contents of the current working directory and the paths of 

previous working directories. The working directory may be altered. MATLAB uses a search path to 

find files. The search path includes the current directory, all of the installed toolboxes plus any other 

paths that the user has added – via the Set Path dialogue accessed from the File menu. 

The command history window gives a historical view of the current and previous sessions. Commands 

appearing here can be reexecuted. 

MATLAB provides an editor for writing scripts. It is invoked by typing edit in the command window. 

Scripts are stored with the extension .m and are therefore also known as m-files. Some of the syntax is 

described in Appendix C 

Figure windows are generated by MATLAB to display graphical objects. 
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Help on any MATLB command can be found in the Help Browser which is entered via the menu bar or 

by typing helpbrowser in the command window. 
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3 Image Representation 

3.1 Image Format 

An image is a rectangular array of values (pixels). Each pixel represents the measurement of some 

property of a scene measured over a finite area. The property could be many things, but we usually 

measure either the average brightness (one value) or the brightnesses of the image filtered through red, 

green and blue filters (three values). The values are normally represented by an eight bit integer, giving 

a range of 256 levels of brightness. 

We talk about the resolution of an image: this is defined by the number of pixels and number of 

brightness values. 

A raw image will take up a lot of storage space. Methods have been defined to compress the image by 

coding redundant data in a more efficient fashion, or by discarding the perceptually less significant 

information. MATLAB supports reading all of the common image formats. Image coding is not 

addressed in this course unit. 

 

3.2 Image Loading and Displaying and Saving 

An image is loaded into working memory using the command 

>> f = imread(‘image file name’); 

The semicolon at the end of the command suppresses MATLAB output. Without it, MATLAB will 

execute the command and echo the results to the screen. We assign the image to the array f. If no path 

is specified, MATLAB will look for the image file in the current directory. 

The image can be displayed using 

>> imshow(f, G) 

f is the image to be displayed, G defines the range of intensity levels used to display it. If it is omitted, 

the default value 256 is used. If the syntax [low, high] is used instead of G, values less than low are 

displayed as black, and ones greater than high are displayed as white. Finally, if low and high are left 

out, i.e. use [ ], low is set to the minimum value in the image and high to the maximum one, which is 

useful for automatically fixing the range of the image if it is very small or vary large. 

Images are usually displayed in a figure window. If a second image is displayed it will overwrite the 

first, unless the figure function is used: 

>> figure, imshow(f) 

will generate a new figure window and display the image in it. Note that multiple functions may be 

called in a single line, provided they are separated by commas. 

An image array may be written to file using: 

>> imwrite(array name, ‘file name’) 

The format of the file can be inferred from the file extension, or can be specified by a third argument. 

Certain file formats have additional arguments. 

 

3.3 Image Information 

Information about an image file may be found by 

>> imfinfo filename 
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4 Quantisation 

4.1 Grey Level Ranges 

Images are normally captured with pixels in each channel being represented by eight bit integers. (This 

is partly for historical reasons – it has the convenience of being a basic memory unit, it allows for a 

suitable range of values to be represented, and many cameras could not capture data to any greater 

accuracy. Further, most displays are limited to eight bits per red, green and blue channel.) But there is 

no reason why pixels should be so limited, indeed, there are devices and applications that deliver and 

require higher resolution data. MATLAB supports the following data types. 

 

Type Interpretation Range 

 uint8 unsigned 8-bit integer [0, 255] 

 uint16 unsigned 16-bit integer [0, 65535] 

 uint32 unsigned 32-bit integer [0, 4294967295] 

 int8 signed 8-bit integer [-128, 127] 

 int16 signed 16-bit integer [-32768, 32767] 

 int32 signed 32-bit integer [-2147483648, 2147483647] 

 single single precision floating point number [-10
38

, 10
38

] 

 double double precision floating point number [-10
308

, 10
308

] 

 char character (2 bytes per element) 

 logical values are 0 or 1 1 byte per element 

 

An image is usually interpreted as being one of: intensity, binary, indexed or RGB. 

An intensity image’s values represent brightnesses. A binary image’s pixels have just two possible 

values. Indexed image’s pixel values are treated as the index of a look-up table from which the “true” 

value is read. RGB images have three channels, representing intensities in ranges of wavelengths 

corresponding to red, green and blue illumination (other wavelength ranges and more of them are 

possible). 

MATLAB provides functions for changing images from one type to another. The syntax is 

>> B = data_class_name(A) 

where data_class_name is one of the data types in the above table, e.g.  

>> B = uint8(A) 

will convert image A (of some type) into image B of unsigned 8-bit integers, with possible loss of 

resolution (values less than zero are fixed at zero, values greater than 255 are truncated to 255.) 

Functions are provided for converting between image types, in which case the data is scaled to fit the 

new data type’s range. These are defined to be: 

 

Function Input Type Output Type 

 im2uint8 Logical, uint8, uint16, double Unint8 

 im2uint16 Logical, uint8, uint16, double Uint16 

 mat2gray double Double in range [0, 1] 

 im2double Logical, uint8, uint16, double Double 

 im2bw Uint8, uint16, double logical 
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4.2 Number of Pixels 

Images come in all sizes, but are (almost) always rectangular. MATLAB gives several methods of 

accessing the elements of an array, i.e. the pixels of an image. 

An element can be accessed directly: typing the array name at the prompt will return all the array 

elements (which could take a while), typing the array name followed by element indices in round 

brackets, will return that value.  

Ranges of array elements can be accessed using colons.  

>> A(first:last) 

Will return the first to last elements inclusive of the one dimensional array A. Note that the indices 

start at one. 

>> A(first : step : last) 

Will return every step elements starting from first and finishing when last is reached or exceeded. 

Step could be negative, in which case you’d have to ensure that first was greater than last. 

Naturally, this notation can be extended to access portions of an image. An image, f, could be flipped 

using 

>> fp = f(end : -1 : 1, :); 

The keyword end is used to signify the last index. Using the colon alone implies that all index values 

are traversed. This also indicates how multi-dimensional arrays are accessed. 

Or a section of an image could be abstracted using 

>> fc = f(top : bottom, left : right); 

Or the image could be subsampled using 

>> fs = f(1 : 2 : end, 1 : 2 : end); 

 

4.2.1 A note on colour images. 

If the input image is colour, these operations will return greyscale results. A colour image has three 

values per pixel, which are accessed using a third index. 

>> A(x, y, 1:3) 

Would return all three colour values of the pixel at (x,y). A colour plane could be abstracted using 

>> R = A(x, y, 1); 

And similarly for G (last index = 2) and B. 
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5 Point Processing 

Point processing operations manipulate individual pixel values, without regard to any neighbouring 

values. Two types of transforms can be identified, manipulating the two properties of a pixel: its value 

and position. 

 

5.1 Value Manipulation 

The fundamental value of a pixel is its brightness (in a monochrome image) or colour (in a 

multichannel image).  

 

5.1.1 Pixel Scaling 

Scaling of pixel values is achieved by multiplying by a constant. MATLAB provides a single function 

that achieves several effects 

>> R = imadjust(A, [low_in, high_in], [low_out, high_out], gamma); 

This takes the input range of values as specified and maps them to the output range that’s specified. 

Values outside of the input range are clamped to the extremes of the output range (values below low_in 

are all mapped to low_out). The range values are expected to be in the interval [0, 1]. The function 

scales them to values appropriate to the image type before applying the scaling operation. Whilst 

low_in is expected to be less than high_in, the same is not true for low_out and high_out. The image 

can therefore be inverted. 

The value of gamma specifies the shape of the mapped curve. Gamma = 1 gives a linear scaling, a 

smaller gamma gives a mapping that expands the scale at lower values, a larger gamma expands the 

upper range of the scale. This can make the contrast between darker or brighter tones more visible, 

respectively. 

Omitting any of the parameters results in default values being assumed. The extremes of the ranges are 

used (0 and 1), or gamma = 1. 

 

5.1.2 Histogram 

The histogram of an image measures the number of pixels with a given grey or colour value. 

Histograms of colour images are not normally used, so will not be discussed here. The histogram of an 

image with L distinct intensity levels in the range [0, G] is defined as the function 

h(rk) = nk 

 rk is the k
th

 intensity level in the image, and nk will be the number of pixels with grey value rk. G will 

be 255 for a uint8 image, 65536 for uint16 and 1.0 for a double image. Since the lower index of 

MATLAB arrays is one, never zero, r1 will correspond to intensity level 0, etc. For the integer valued 

images, G = L-1. 

We often work with normalised histograms. A normalised histogram is obtained by dividing each 

element of h(rk) by the total number of pixels in the image (equal to the sum of histogram elements). 

Such a histogram is called the probability density function (pdf) and reflects the probability of a given 

intensity level occurring. 

p(rk) = nk/n 

MATLAB functions for computing and displaying the histogram and normalised histogram are: 

>> h = imhist(A, b); 

>> p = imhist(A, b)/numel(A); 

b is the number of bins in the histogram. If it is omitted, 256 is assumed. The function numel(A) 
returns the number of elements in the argument, in this case the number of pixels in A. 

Additional functions are defined for displaying the data in different forms: notably as a bar graph and 

for adding axes. 
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5.1.3 Histogram Equalisation 

It is possible to manipulate the grey scale to achieve different effects. One of these effects to known as 

histogram equalisation. The aim is to transform the grey scale such that the pdf of the output image is 

uniform. Some authors claim that this improves the appearance of the image. The transformation is 

achieved using: 

>> h = histeq(A, nlev); 

Where nlev is the number of levels in the output image, h. Its default value is 64. 

 

5.1.4 Thresholding 

This is a simple method of differentiating between an object and the background, which works 

provided they are of different intensities. A threshold value is defined. Intensities greater than this are 

set to one value, intensities less than to another (1 or max, and 0 or min are often used). Whilst a 

threshold can be decided manually, it is better to use the image data to compute one.  

Gonzalez and Woods suggested this method: 

1. Choose a threshold arbitrarily. 

2. Threshold the image using it. 

3. Compute the mean grey value of the pixels with intensities above and below the threshold, and 

then compute the average of these two values. 

4. Use the new value to rethreshold the image. 

5. Repeat steps 3 and 4 until the threshold changes by an insignificant amount. 

Otsu suggested a method than minimised the between class variance. This is the method provided by 

the MATLAB toolbox: 

>> T = graythresh(A); 

T is a normalised value between 0.0 and 1.0; it should be scaled to the proper range before using it. The 

conversion function im2bw will then return the thresholded image. 

 

5.1.5 Colour Transforms 

Multiple methods of representing colour data exist. Whilst RGB is most widely used for capture and 

display, it is not always the best for image processing, since it is a perceptually non-uniform 

representation. This means that if we change the RGB values by a fixed amount, the observed 

difference depends on the original RGB values. One way of observing this is to mix the output of 

standardised coloured lights to generate a colour, then alter the brightness of the input until an observer 

just notices a change in the light’s colour. The original colour and the colour of the just noticeable 

difference can be plotted. By making measurements systematically over the whole colour space, we can 

generate a MacAdam diagram. The points represent the original colour, the ellipses the just noticeable 

difference contours. 

It is also possible to categorise colour spaces as being device dependent or device independent. Device 

dependent spaces are used in the broadcast and printing industry, largely for convenience. The most 

widely used spaces are YIQ, YCrCb and HSV. Conversion between the spaces is by using simple 

functions. E.g. 

>> YIQ = rgb2ntsc(RGB); 

Device independent spaces are used because the device dependent spaces include subjective 

definitions. The CIE defined a standardised colour space in 1931. It specifies three colour sources, 

called X, Y and Z. All visible colours can be generated by a linear combination of these. The X, Y and 

Z values can be normalised, to sum to 1. The colours represented by the normalised x and y values can 

be plotted – as in the MacAdam diagram. Conversion of data between colour spaces is a two stage 

process. A colour transformation structure is first defined, e.g. to convert from RGB to XYZ: 

>> C = makecform(‘srgb2xyz’); 

And then perform the conversion 
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>> Ixyz = applycform(Irgb, C); 

The data types used to represent the data may alter. Other colour spaces have been defined, each 

attempting to make the colour space more perceptually uniform. 

 

MacAdam Diagram 

The horizontal and vertical axes represent the normalised x and y values (obviously the third 

component is unnecessary as z = 1 – x – y). Colours can only exist below the x + y = 1 line, and only 

some of these points represent visible colours. The colours of the rainbow appear around the outside, 

the blue figures are the wavelengths of the equivalent pure illumination. 

 

5.2 Co-ordinate Manipulation 

The result of co-ordinate manipulation is to distort an image. For example, in creating panoramic 

images, or correcting images for lens distortion in order to make measurements. Manipulation has two 

stages – computing the pixels’ new co-ordinates and resampling, or interpolation. 

 

5.2.1 Transform 

There are two classes of transform: affine and non-linear. Affine transforms are achieved by inserting 

suitable values into a transform matrix: 
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One or other axis can be scaled, the image may be rotated or sheared, depending on the values of a to i. 

The transform is realised in MATLAB via a tform structure. A tform structure is created by the 

function: 

>> tform = maketform(transform_type, transform_parameters); 

transform_type will be one of affine, projective, box, composite or custom. The 

transform_parameters will be dependent on the transform type, in this section we are just interested 

in the affine transforms for which the parameters are the nine elements of the matrix. So we could set 

up a non-uniform scaling transform by 

>> T = [2 0 0; 0 3 0; 0 0 1]; 

>> tform = maketform(‘affine’, T); 

Non-linear transforms are usually used to distort the image to correct for the distortions introduced by 

the imaging system. 
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5.2.2 Interpolation 

It would seem natural to take a pixel in the input image and compute its location in the distorted image. 

But, the values of the affine transform parameters, or the distortion equations are generally non-integer. 

So the computed co-ordinates may be non-integer. Rounding errors can result in some output pixels not 

being populated. Therefore, the distortion is performed in reverse. We use the inverse of the 

transformation to compute the source of each pixel in the distorted image. The source pixel may well 

have non-integer co-ordinates, but we can estimate its value by taking the nearest pixel, or interpolating 

over the nearest pixels. 

Forward transforms (the type we do not wish to do) are achieved by using tformfwd. tforminv or 

imtransform (a better choice) compute the inverse: 

>> res = tforminv(src, tform, interp); 

interp is a simple flag that specifies how the interpolation is to be performed. 

Nearest uses the nearest neighbour pixel. 

Bilinear (the default) uses a weighted average of the nearest 2 by 2 pixel neighbourhood. 

Bicubic uses a weighted average of the nearest 4 by 4 pixel neighbourhood. 
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6 Region Processing 

Region processing operations compute the value of an output pixel using a set of the pixel’s 

neighbours. Various sizes and shapes of neighbourhoods are used, ranging in complexity from the 

simplest 8 nearest neighbours upwards. The methods used to combine pixels’ values also vary: some 

operations using weighted sums of pixels, others select the output using more complex logical 

operations. 

Whilst it is possible to categorise the operations on the type of input, how the output is computed, etc, it 

is more instructive to look at what can be achieved using these methods. Two objectives can be 

achieved by manipulating pixels in a region: smoothing the data and sharpening it. Both can use a 

technique called convolution. 

Convolution is defined mathematically by 

[ ] [ ] [ ]∑ ∑
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Where t[k,l] is a template, alternatively known as a kernel, and d[i,j] is the input data. Conceptually, 

we place the template onto the image, multiply the overlapping values and sum them. This is done for 

all possible location in the image, obviously the edges where the temple extends outside the image 

deserve special attention. We often use a square template (m = n).  

A similar operation to convolution is correlation, defined as: 
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Conceptually, the two operations are the same if we rotate the template by 180°. In fact, all of the 

templates we will be looking at are either symmetrical or anti-symmetrical under this rotation. This 

means that correlation and convolution will either give the same result or the same magnitude result 

(but different sign). 

A simple method of understanding the effect of convolution/correlation with a given kernel, is that it 

measures the similarity between the image and the kernel. This will become more obvious when we 

look at specific kernels. 

MATLAB provides a simple syntax for filtering: 

>> dst = imfilter(src, mask, filtering_mode, boundary_options, size_options); 

Where dst and src are the output and input images respectively. mask is the filtering mask aka kernel, 

template etc. filtering_mode specifies whether convolution (‘conv’) or correlation (‘corr’) is to be 

used. boundary_options specifies how the data near the image border is to be treated:  

 

P the boundary is padded with a value. The is the default mode, padding with 0 

‘replicate’ the image is expanded by copying the values in the outermost pixels 

‘symmetric’ the image is expanded by mirror-reflecting across a border 

‘circular’ the image is treated as a periodic 2-D function, values wraparound 

 

size_options specifies how the destination image’s size is affected by the padding: ‘full’ implies the 

output will be the same size as the expanded image; ‘same’ implies the image will be the size of the 

input image, this implies that the border pixels (the pixels at which the kernel has some points that fall 

outside the source image) are not processed. 

A final point about convolution/correlation with a square kernel is that the same effect can be generated 

by two convolutions with two appropriately defined one-dimensional kernels. A 2-D convolution is 

replaced by two 1-D convolutions. This has a saving in processing, since the 2-D convolution requires 

about n
2
 multiplications and additions, the 1-D case requires about 2n such operations. 
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6.1 High Pass - Edge Detection 

An edge is defined as a significant, local change in image intensity. The simplest (ideal) edge is a line 

(the edge) separating uniform regions of different intensity. In practice, this is never observed as noise 

superimposes random fluctuations on the image data, and imperfect optics and digitisation blur the 

image. The ideal edge is therefore corrupted and we see a rather more gradual change in intensity from 

one region to the other. The problem of edge detection is to locate the edge in this data (if it is possible, 

and if it makes sense). 

If an edge is a discontinuity in intensity, there must be a region around it where the intensity changes 

by large amounts over small distances, i.e. the gradient is high. The gradient can be estimated by 

measuring the differences in intensity over small distances and dividing by the distance – this is the 

digital equivalent of differentiation. Rather than take differences between individual pixels, local 

averages are computed and compared as this is less susceptible to the noise that is present.  

An edge can take any orientation within an image. Differentiation can only be performed in directions 

parallel to the two axes. The edge strength and orientation can be estimated as described in Appendix 

B. 

Once the convolution has been performed and edge strengths estimated, we obtain a grey scale image 

whose intensity is proportional to the likelihood of a pixel being on an edge. But if the edge has been 

smeared out, where is the “true” edge?  Non-maximal suppression is used to remove pixels that are not 

located on the position of maximum slope: we can track across an edge using the edge orientation 

information and locate the pixel with the greatest edge strength. 

 

6.1.1 Prewitt 

Computes the edge strength components using 
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6.1.2 Sobel 

Computes the edge strength components using 
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This operator provides greater resilience to noise and is the best estimator of edge orientation and 

strength of all the “small” kernels. 

 

6.1.3 Canny 

Canny took an information theoretic approach to edge detection, stating that an edge detector should 

1. Detect an edge 

2. Should give a response in the correct location 

3. Have a single response to an edge 

He assumed that he was searching for an ideal step edge in the presence of Gaussian noise and defined 

a matched filter that could be approximated by the difference of a Gaussian. Although this gives the 

optimal edge detector for images with only this type of noise corruption, it responds adequately for 

other noise distributions. 

The operator first convolves the image with a Gaussian kernel to perform the noise reduction (just as 

the Prewitt operator has the regions of 1s to perform averaging). It then differentiates the image in the 

two orientations. Rather than perform one convolution for smoothing and a further two for 
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differentiation, the smoothing and differentiation kernels are combined and the whole operation is 

performed using two convolutions. (this works because convolution is associative: 

( ) ( ) IGIG ••∇=••∇ .) 

The amount of noise reduction may be controlled by varying the standard deviation, σ, in the Gaussian 

function. Larger values of σ imply more smoothing: more noise reduction and also more blurring of the 

edge information. 

 

6.1.4 Marr-Hildreth 

The major disadvantage of using differentiation for edge detection is in locating the edge accurately. 

This problem is avoided by double differentiating the data. Consider the cross section through an ideal 

step edge that has been blurred. Differentiating once will result in a spike output whose width is 

proportional to the degree of blurring. Single differential operators discussed so far will have to locate 

the maximum in this cross section. But if it is differentiated again we will obtain a profile that is zero in 

the uniform region either side of the edge and has positive and negative going excursions either side of 

the edge: the profile crosses the zero axis at the edge. This is the principle of the double differentiation 

operators. 

The Marr-Hildreth is currently the most favoured of these operators. It uses Gaussian smoothing to 

reduce noise followed by convolution with the Laplacian operator. Again, the Laplacian can be 

convolved with the Gaussian beforehand and the LoG convolved with the image. 

By varying the value of σ, we can control the size of the smoothing element and hence control the size 

of the objects that are selected by the filter. 

 

6.1.5 MATLAB Code 

MATLAB’s Image Processing Toolbox provides a generic edge detection function 

>> BW = edge(src, 'sobel', thresh, direction); 

>> BW = edge(src, 'prewitt', thresh, direction); 

>> BW = edge(src, 'log', thresh, sigma); 

>> BW = edge(src, 'canny', thresh, sigma); 

The log filter is an alternative name for the Marr-Hildreth. The image returned is the same size as the 

source, but binary: a value of 1 indicates that a pixel is flagged as being on an edge. The source image 

must be greyscale. In all cases, the third and fourth arguments are optional. 

For the Prewitt and Sobel detectors, the optional thresh argument can be used to specify an edge 

strength threshold, if it is omitted, the threshold is computed automatically. direction is used to specify 

which orientation of edge detector is to be used, the default is to use both. There are other arguments, 

but they should not be needed. 

For the Marr-Hildreth detector (log), thresh is an edge strength threshold, sigma defines the width of 

the smoothing function, its default value is 2. 

Canny requires two threshold values, so thresh can be a vector, or a scalar in which case the two 

thresholds will be thresh and 0.4*thresh. Again, sigma defines the width of the smoothing function, 

but the default value is 1. 

 

6.2 Low Pass – Smoothing 

The aim of smoothing algorithms is to reduce the small scale, small amplitude fluctuations in the data, 

usually associated with noise. (Noise is due to a multitude of causes, too many to list, it is observed in 

one of two ways: salt and pepper noise where isolated individual pixels have very different values to 

their neighbours’, and random noise where all pixels’ values may differ from the correct value – the 

statistics of the differences can be described.)  
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6.2.1 Averaging 

The simplest approach to reducing noise is to replace each pixel’s value with the average computed 

over some neighbourhood around it. The noise amplitude is reduced by a factor equal to the square root 

of the number of pixels involved in the smoothing. Any shape neighbourhood can be used, but for 

simplicity of computation, square regions are usually chosen, having an odd number of pixels on the 

side. 

Whilst the algorithms are simple, they do have the disadvantage of smoothing everything in the image, 

this includes image detail that we might want to preserve. A solution to this is to compute the smoothed 

value and compare it with the value that is to be replaced. Only if the two are reasonably similar is the 

smoothing is performed. If there is a significant difference we assume that the neighbourhood spans a 

significant edge in the image: the central pixel is on one side of the edge, there are sufficient pixels in 

the neighbourhood from the other side of the edge to influence the average. 

Averaging is achieved by convolving the image with a simple template: 
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where n is the number of template elements. 

 

6.2.2 Weighted Averaging 

Weighted averaging is a generalisation of the simple averaging. Instead of giving equal weight to all 

pixels in the neighbourhood, we vary the contribution made by each pixel, commonly giving larger 

weight to the pixels closest to the centre of the neighbourhood. The smoothed image will resemble the 

original more closely than was the case with simple averaging. 

 

6.2.3 Gaussian Smoothing 

Gaussian smoothing is a special case of weighted smoothing, where the coefficients of the smoothing 

kernel are derived from a Gaussian distribution. The amount of smoothing can be controlled by varying 

the values of the two standard deviations (the distribution has a σ value for the x and y orientations). 

We can therefore control the size and, to a certain extent, the shape of the feature to be smoothed. 

Gaussian smoothing has several mathematical advantages, the most important of which is that the 

effects of using a large kernel can be approximated by repeated use of smaller kernels. 

 

6.2.4 Rank-Order Filters 

The one significant disadvantage to the smoothing operators discussed above is the difficulty they have 

in differentiating between features that should be retained from noise that should be removed. Rank 

order filters can do this, at the expense of significantly greater amounts of processing. 

Consider the example of a profile through a real edge (a step edge that is blurred and noise corrupted). 

The aim of smoothing is to reduce the noise fluctuations but retain the underlying structure. Simple 

smoothing will reduce the noise but also blur the structure. Rank order filters can reduce noise and 

retain structure. 

A rank order filter will take the set of pixels within some neighbourhood, rank them in order of 

increasing intensity and select, for example, the one value in the middle of the list (if the list has an odd 

length, this is simple, if the list length is even, the average of the two central values would be chosen). 

The filter that chooses the central value is known as the median filter. Naturally, different effects can 

be achieved by choosing other values. 

MATLAB provides tools for performing rank-order filtering (in the past it was known as order-statistic 

filtering): 
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>> dst = ordfilt2(src, order, domain); 

The filter gives the order-th element  in the neighbourhood specified by domain. (And domain can be 

specified by the MATLAB function to generate a matrix filled with ones: ones(m, n).)  So the median 

filter could be realised by (with m and n suitably intitialised): 

>> dst = ordfilt2(src, m*n/2, ones(m, n)); 

Or by a call to the specific median filter: 

>> dst = medfilt2(src, [m, n], padopt); 

The optional argument padopt specifies how the border pixels are treated: ‘zeros’ (the default) pads 

the border with zeroes, ‘symmetric’ pads the border with a mirror image of the border pixels, and 

‘index’ pads the border with 1s if the image is of class double, or 0s otherwise. 

 

6.3 Morphology 

Morphology is the study of the form of things. Morphological transforms are designed to find this 

structure. Morphological transforms are usually applied to thresholded data, but can equally well be 

defined for greyscale and colour images. There are two fundamental transforms: erosion and dilation 

that can be combined in two ways to give two derived operations: opening and closing. Further 

combinations are defined to achieve other effects. 

Morphological operations firstly require a structuring element. This is simply a kernel that defines a 

shape, commonly a circle, square or cross, others are equally possible and may be more useful in 

specific circumstances. The values in the element are unimportant. The element has an origin that 

specifies its location in the image and therefore the position where the operation’s result will be 

written. 

 

6.3.1 Dilation and Erosion 

These are most simply defined for binary images (pixels have values of 1 or 0 only). A structuring 

element is said to fit at a location in a binary image if all the image pixels that overlap the structuring 

element have value 1. A structuring element is said to hit at an image location if any of the pixels 

overlapping the structuring element are 1. 

Binary erosion of an image f(x,y) by a structuring element s(x,y) is defined by 





=⊗
otherwise0

fitsif1 fs
sf  

The effect of erosion is to shrink objects: pixels are removed from the boundary of the object to a depth 

approximating half of the structuring element’s width. Objects of this characteristic size are removed 

completely. 

Binary dilation is similarly defined as 



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otherwise0

hitsif1 fs
sf  

Its effect is to increase the size of an object by adding pixels to a depth of about half the structuring 

element’s width. Gaps of this size in the object are filled. 

The definitions can be modified for greyscale images. Rather than setting the output to zero or one, the 

minimum or maximum of the set of values selected by the structuring element are selected. So 

greyscale erosion is defined as 
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And greyscale dilation as 
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Structuring elements differ according to whether the image to be manipulated is binary (a flat se) or 

greyscale (a non-flat se). The basic syntax for creating a structuring element is: 

>> se = strel(shape, parameters); 

A number of predefined shapes are available: 

Shape Parameters  

diamond R distance from origin to extreme points of the diamond 

disk R radius (plus other parameters) 

line length, orientation  length of element and angle wrt horizontal axis 

octagon R length from origin to a vertical side, must be a multiple of 3 

pair offset is a vector specifying an offset 

periodicline P, V a se of 2P + 1 elements, each separated by the vector V. 

Element 1 is at the origin, element 2 at -1*V, etc. 

rectangle MN a two element vector of non-negative values: the numbers 

of row and columns in th ese 

square W the dimension of the square 

arbitrary NHOOD creates an arbitrary shaped se, NHOOD is a matrix of 0s 

and 1s specifying the shape 

 

Non-flat structuring elements are created by passing strel two matrices, the first defines the 

neighbourhood, the second the height at each point in the neighbourhood. 

In MATLAB, erosion and dilation of both binary and greyscale images are achieved by: 

>> dst = imerode(src, se); 

>> dst = imdilate(src, se); 

 

6.3.2 Opening and Closing 

Opening is defined to be erosion applied a number of times, followed by dilation applied the same 

number of times with the same structuring element. Noise structures are removed and the features 

shrunk by erosion, the features are then restored by dilation. 

Closing is defined as dilation followed by erosion. 

If we apply both opening and closing operations to a greyscale image, we achieve a degree of 

smoothing.  

Opening and closing are invoked by: 

>> dst = imopen(src, se); 

>> dst = imclose(src, se); 

(open(src) and close(src) can be used and they assume a 3x3 se.) 

 

6.3.3 Top Hat 

The top hat operator is defined as the difference between an image and the opened version. It enhances 

detail that would otherwise be hidden in low contrast regions. It is invoked by imtophat if a structuring 

element is to be specified or tophat if a 3x3 element is to be assumed. 

 

6.3.4 Edge Detector 

The morphological edge detector is defined as the difference between the opened and closed images. 
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6.3.5 Skeleton 

The skeleton of a binary object is a one-pixel thick line that represents the object’s shape. The skeleton 

retains shape and topology but loses thickness information. Obvious uses are in applications where 

these factors are important, such as character or fingerprint recognition. MATLAB provides the 

function skel. 
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7 Image Processing 

Image processing operators compute the value of a single pixel in the output using all of the input 

values.  

 

7.1 Fourier Transform 

The Fourier transform was suggested in 1807. It states that any periodic function can be synthesised as 

the sum of sines and/or cosines of different amplitudes and frequencies: the set of amplitudes is known 

as a Fourier series. Even non-periodic functions can be represented by these so-called basis functions 

(the sines and cosines).  The amplitudes of the sines and cosines are computed using a Fourier 

transform. 

The original data can be recovered exactly using an inverse Fourier transform. So it is possible to 

transform the data to the “Fourier domain”, process it and inverse transform back to the original 

domain. 

The important point to understand in the Fourier transform relates to spatial frequencies. A low spatial 

frequency corresponds to a large object – think of a slow wave. Conversely, a high spatial frequency 

corresponds to rapid fluctuations. Or we can view this from the viewpoint of image structures: the 

smaller an image structure, the broader the range of spatial frequency components that is required to 

synthesis it. 

Mathematically, the Fourier transformed data is in two parts: the magnitude and phase. The magnitude 

part tells us how much energy there is at a given spatial frequency, the phase tells us the relative 

starting point of each component. Both parts are needed for the reverse transform, but we are interested 

in manipulating only the magnitude.  

If we compute the Fourier transform of an image: 

>> dst = fft2(src); 

The magnitude of the transform is returned by 

>> dst = abs(src); 

and scale the output linearly to make it more visible 

>> imshow(src, [ ]); 

We will observe the zero frequency component in the four corners of the image (this corresponds 

mathematically to the mean grey value). The transform can be simplified by moving the origin to the 

centre: 

>> dst = fftshift(src); 

Frequencies increase away from the centre.  

We see that the transform data is symmetrical: F(u,v) = F(-u,-v). An image with many small objects 

will have more high frequency content. Scaling non-linearly can make the faint data easier to see: 

 >> dst = log(1+ src); 

>> imshow(dst, [ ]); 

Where src in this case is the Fourier transformed data. 

The reverse of these transforms is as follows. ifftshift(src) rearranges the quadrants of the data, 

ifft2(src) performs the inverse Fourier transform. 

The Fourier transform that is implemented works most efficiently if the image dimensions are powers 

of 2.  

 

7.1.1 Convolution Theorem 

It can be shown that the convolution of two functions will give the same result as multiplying the 

functions’ Fourier transforms. Although it would seem that there is more computation to be performed 

if we Fourier transform the image, multiply it by some filter and compute the inverse, there is actually 



 20 

more computation to be performed in the direct convolution if the kernel is sufficiently large; 

somewhere around 15x15 pixels. 

Therefore, if we can identify the Fourier transform of the earlier kernels, we can achieve the results of 

the convolution in the frequency domain. 

A certain type of error is avoided if the two images to be processed are padded with zeros. If the 

original image dimensions are (A, B) and (C, D), the padded images, usually the same size, must be at 

least (A + C – 1, B + D – 1). To make the transforms more efficient, the padding is usually such that 

the image dimensions are now powers of 2. 

  

7.1.2 High-, Low- and Band-Pass filters 

Edge detection is often thought of as enhancing small-scale structures: edges. It should not be a 

surprise therefore that high pass filtering is equivalent to edge detection. 

The simplistic high pass filter is defined as: 
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Where D(u,v) computes the distance of the point (u,v) from the origin. 

Whilst this is the obvious filter, and is sometimes called the ideal high-pass filter, it introduces serious 

artefacts that mean it should never be used. Instead, a high-pass filter with a more gradual cutoff should 

be used. 

The ideal low-pass filter is defined similarly, and should also not be used. A Gaussian function could 

be used instead. The maximum value of the filter should be 1. A high-pass filter can be made from this 

low-pass one by subtracting it from 1. 

A band-pass filter is a combination of high- and low-pass filters, with the high-pass filter’s cutoff 

frequency less being than the low-pass filter’s one. 

 

7.1.3 Wiener Filter 

The Wiener filter is designed to remove image degradations, provided we are able to model the 

degradation. Degradations such as relative motion of the camera and subject, out-of-focus optics or 

light scattering can be modelled. We assume that the observed image, f, is generated by adding noise, n, 

to the ideal image, g, that is convolved with some function, H, that represents the total imaging system 

(i.e. includes the degradation).so the observed image can be described as: 

ngHf +=  

The process of computing g from f, assuming n and H, is called deconvolution. MATLAB provides a 

single function to perform it: 

>> dst = deconvwnr(src, PSF); 

PSF is the degradation model that you assume. The function has further arguments that can improve 

the results – if their values are known accurately. 
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Appendix A - Matrix Manipulation 

Remember that a matrix is an n x m array of values. An individual element is referenced as M[r,c]. All 

the values are of the same type. 

 

A.1 Addition and Subtraction 

These are defined iff the numbers of rows and columns are the same. Then they are defined as 

elementwise addition (or subtraction): 

[ ] [ ] [ ]cr,Bcr,Acr,R +=  

 

A.2 Multiplication 

Is defined only if the number of columns of matrix 1 equals the number of rows of matrix 2. Then each 

element of the result is computed by: 

[ ] [ ] [ ]∑=
j

kj,B*ji,Aki,R

 

The order of multiplication is important, as it will affect the result. Generally AB ≠ BA. 

 

A.3 Identity 

The identity matrix is defined as a square matrix with the elements on the leading diagonal (the same 

row and column indices) having the value 1, every other element is zero. It is given the symbol I. 

Multiplying any matrix by the identity leaves the matrix unchanged.  

 

A.4 Inverse 

The inverse of a matrix is denoted as M
-1

. The product of a matrix and its inverse is defined to be the 

identity. This is an exception to the order of multiplication rule, in that M M
-1

 = M
-1

M. 

 

A.5 Transpose 

The transpose of a matrix is given by interchanging the rows and columns. So what was an n by m 

matrix becomes m by n, and the elements are interchanged: M[r,c] = M[c,r]. The transpose of a matrix 

is denoted by M
T
. 
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Appendix B – Vector Processing 

A vector has magnitude and direction. It can be resolved into components, i.e. a set of vectors that add 

up to the original. Whilst a vector can be resolved into any number of components in many 

orientations, it is most usual to resolve into two components that are at right angles. The benefit here is 

that each component is completely independent of the other.  

The reverse problem happens when making measurements, e.g. of edge strength. We have the two 

components (edge strengths parallel to the image sides), and we want to find the vector strength and 

magnitude. This is done using the triangle of vectors: the two components are drawn head to tail to 

form a right angled triangle. The resultant vector is the triangle’s hypotenuse. Its magnitude is found as 

the length of the hypotenuse, using Pythagoras, its orientation is the inverse tangent of the ratio of the 

two components: 
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Appendix C - MATLAB Programming 

MATLAB allows sequences of instructions to be stored in so-called M-files.  

An M-file has the following structure: 

• The function definition line 

• The H1 line 

• Help text 

• The function body 

• Comments 

The function definition line looks like 

function [outputs] = function_name(inputs) 

For example, a function to split a colour image into its R, G, and B components would look like: 

function [R, G, B] = split_colour_planes(src) 

This would be called at the command prompt as: 

>> [r, g, b] = split_colour_planes(a_colour_image); 

There are restrictions on the form of function names: they must begin with a letter, can’t contain any 

spaces and only the first 63 characters are significant. If the function has no output, the square brackets 

and equal sign are omitted. If the function has a single output, the square brackets may be omitted. 

The H1 line follows the definition line with no blank lines of leading spaces. It is a comment that 

Matlab returns first when help is invoked, and is searched for keywords when lookfor keyword is 

used. The format of the H1 line is 

% function_name <text description> 

The help text must follow with no blank lines. The lines up to the next blank line are also printed by 

help. Each line of help text must start with a % symbol. 

Other lines stating with the % symbol are treated simply as comments for the programmer. 

The function body can contain any instruction that would be valid at the command line. Array and 

matrix operations are shown in Table 1, image arithmetic operations in Table 2. 

Matlab provides the usual programming constructs, but (naturally) the syntax is different to other 

languages. 

 

Conditional execution 

if expression 
 statement(s) 
end 

OR 

if expression1 
 statement1 
elseif expression2 
 statement2 
else 
 statement3 
end 

 

For loop 

for index = start:increment:end 
 statements 
end 
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While loop 

while expression 
 statements 
end 

 

break Terminate loop execution 

 

continue Passes control to the next iteration of a loop 

 

Switch: executes one of several alternative statements 

switch  switch_expression 
 case case_expression1 
 statement(s) 
 case  case_expression2 
 statement 
 otherwise 
  statement 
end 

 

return Causes execution to return to the calling function 

 

try … catch changes flow of control if an error is encountered 

 

Operator Name Matlab function Examples 

+ Addition plus(A, B) a + b 

- Subtraction minus(A,B) a - b 

.* Array multiplication times(A,B) C = A.*B, C(I,J)=A(I,J)*B(I,J) 

* Matrix multiplication mtimes(A,B) A*B, standard matrix multiplication 

./ Array right division rdivide(A,B) C = A./B, C(I,J) = A(I,J)/B(I,J) 

.\ Array left division ldivide(A,B) C = A.\B, C(I,J) = B(I,J)/A(I,J) 

/ Matrix right division mrdivide(A,B) A/B, is roughly A*inv(B) 

\ Matrix left division mldivide(A,B) A\B, is roughly inv(A)*B 

.^ array power power(A,B) C = A.^B, C(I,J) = A(I,J)^B(I,J) 

^ Matrix power mpower(A,B) C = mpower(A,x) is A(I,J)
x
 

C = mpower(x,A) is C(I,J) = x
A(I,J)

 

C = mpower(A,B) is an error 

.’ Vector, matrix 

transpose 

transpose(A) A.’  as standard 

‘ Vector, matrix complex 

conjugate 

ctranspose(A) A’  as standard 

+ unary plus uplus(A) +A 

- Unary minus uminus(A) -A 

: Colon  Discussed in section 4.2 

Table 1: Array and Matrix Operations 
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Function Description 

imadd Adds two images, or an image and constant 

imsubtract Subtracts two images, or a constant from an image 

immultiply Multiplies an image by a constant, or two images pixel by pixel 

imdivide Divides an image by a constant, or two images pixel by pixel 

imabsdiff Computes absolute difference between two images 

imcomplement Computes the negative 

imlincomb Computes a linear combination, A*a + B*b + C*c + …, A is an image, a a 

scalar 

 

Table 2: Some Image Processing Toolbox Operators 
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