

COMP26120: Tractability and NP Completeness (2018/19)

Lucas Cordeiro

lucas.cordeiro@manchester.ac.uk

The crux of NP-Completeness is reducibility

- The crux of NP-Completeness is reducibility
 - A problem A can be reduced to another problem B if any instance α of A can be transformed into some instance of β of B:
 - o The transformation takes polynomial-time
 - o The answer for α is "yes" iff the answer for β is also "yes"

- The crux of NP-Completeness is reducibility
 - A problem A can be reduced to another problem B if any instance α of A can be transformed into some instance of β of B:
 - o The transformation takes polynomial-time
 - o The answer for α is "yes" iff the answer for β is also "yes"
 - If **A** reduces to **B**, **A** is "no harder to solve" than **B**

- The crux of NP-Completeness is reducibility
 - A problem A can be reduced to another problem B if any instance α of A can be transformed into some instance of β of B:
 - o The transformation takes polynomial-time
 - o The answer for α is "yes" iff the answer for β is also "yes"
 - If **A** reduces to **B**, **A** is "no harder to solve" than **B**
 - We are trying to prove that no efficient algorithm is likely to exist

1) Given an instance α of problem A, use a polynomial-time reduction algorithm

- 1) Given an instance α of problem A, use a polynomial-time reduction algorithm
- 2) Transform it to an instance eta of problem B

- 1) Given an instance α of problem A, use a polynomial-time reduction algorithm
- 2) Transform it to an instance β of problem B
- 3) Run the polynomial-time decision algorithm for B on the instance $oldsymbol{eta}$

- 1) Given an instance α of problem A, use a polynomial-time reduction algorithm
- 2) Transform it to an instance eta of problem B
- 3) Run the polynomial-time decision algorithm for B on the instance β
- 4) Use the answer for β as the answer for α

- Prove NP-completeness of a language L by reduction consists of the following steps
 - 1. Prove $L \in NP$

- Prove NP-completeness of a language L by reduction consists of the following steps
 - 1. Prove $L \in NP$
 - 2. Select a known NP-complete language L'

- Prove NP-completeness of a language L by reduction consists of the following steps
 - 1. Prove $L \in NP$
 - 2. Select a known NP-complete language L'
 - Describe an algorithm that computes a function f
 mapping every instance x ∈ {0, 1}*of L' to an
 instance f(x) of L

- Prove NP-completeness of a language L by reduction consists of the following steps
 - 1. Prove $L \in NP$
 - 2. Select a known NP-complete language L'
 - 3. Describe an algorithm that computes a **function** f mapping every instance $x \in \{0, 1\}$ *of L' to an instance f(x) of L
 - 4. Prove that the function f satisfies $x \in L'$ iff $f(x) \in L$ for all $x \in \{0,1\}^*$

- Prove NP-completeness of a language L by reduction consists of the following steps
 - 1. Prove $L \in NP$
 - 2. Select a known NP-complete language L'
 - 3. Describe an algorithm that computes a **function** f mapping every instance $x \in \{0, 1\}$ *of L' to an instance f(x) of L
 - 4. Prove that the function f satisfies $x \in L'$ iff $f(x) \in L$ for all $x \in \{0,1\}^*$
 - 5. Prove that the algorithm computing *f* runs in **polynomial-time**

1.5 hours

UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE

COMP26120

January 2018

Time: 00:00 - 00:00

Marking Scheme Included

Do not publish

Answer both questions

The use of electronic calculators is permitted provided they are not programmable and do not store text.

(10 marks)

1. Tract	ability and NP Completeness
of co Ti	NP Completeness) A clique in an undirected graph $G = (V, E)$ is a subset $V' \subseteq V$ exertices, each pair of which is connected by an edge in E , i.e., a clique is a simplete subgraph of G . The size of a clique is the number of vertices it contains. The problem of finding a clique of maximum size in a graph is NP-complete. The ecision problem CLIQUE has the corresponding language:
	$CHOME = \{(C, h) : C \text{ is a grown containing a clique of size } h\}$
	$CLIQUE = \{\langle G, k \rangle : G \text{ is a graph containing a clique of size } k \}$
Sl	ketch a proof of NP-completeness for the decision problem CLIQUE.
N	o marks will be given for simply stating that CLIQUE is NP-complete.

Model Answer:

1. Prove CLIQUE \in NP.

For a given G = (V, E), we use the set $V' \subseteq V$ of vertices in the clique as a certificate for G. We can check whether V' is a clique in polynomial time by checking whether for each pair $u, v \in V'$, the edge (u, v) belongs to E.

- 2. Select Satisfiability of boolean formulas in 3-CNF as a known NP-complete language called 3-CNF-SAT.
- 3. Describe an algorithm that computes a function f mapping every instance of 3-CNF-SAT to an instance of CLIQUE.

Let $\phi = C_1 \wedge C_2 \wedge \ldots C_k$ be a boolean formula in 3-CNF with k clauses. For $r = 1, 2, \ldots, k$, each clause C_r has exactly three distinct literals l_1^r , l_2^r , and l_3^r . For each clause $C_r = (l_1^r \vee l_2^r \vee l_3^r)$ in ϕ , we place a triple of vertices v_1^r , v_2^r , and v_3^r into V. We put an edge between two vertices v_i^r and v_i^s if both of the following hold:

- v_i^r and v_i^s are in different triples, i.e., $r \neq s$, and
- their corresponding literals are consistent, i.e., l_i^r is not the negation of l_i^s .

4. Show that this transformation of ϕ into G is a reduction.

First, supposed that ϕ has a satisfying assignment. Then each clause C_r contains at least one literal l_i^r that is assigned 1, and each such literal corresponds to a vertex v_i^r . Picking one such "true" literal from each clause yields a set V' of k vertices. We claim that V' is a clique. For any two vertices $v_i^r, v_j^s \in V'$, where $r \neq s$ both corresponding literals l_i^r and l_j^s map to 1 by the given satisfying assignment, and thus the literals cannot be complements. Thus, by the construction of G, the edge (v_i^r, v_j^s) belongs to E.

5. Show that the algorithm computing f runs in polynomial time. We can easily build this graph from ϕ in polynomial time. As an

 $\phi = (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3)$ then *G* is the graph shown below.

example of this construction, if we have

Distribution of Marks: 2 marks for each step of the proof. No marks for answer without explanation.

Figure 1: The graph G derived from the 3-CNF formula ϕ . A SAT assignment has $x_2 = 0$, $x_3 = 1$, and x_1 either 0 or 1. This assignment satisfies C1 with $\neg x_2$, and it satisfies C_2 and C_3 with x_3 , corresponding to the clique with lightly shaded vertices.