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β of B: 

o The transformation takes polynomial-time 

o The answer for α is “yes” iff the answer for β is also 
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§  If A reduces to B, A is “no harder to solve” than B 
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1)  Given an instance α of problem A, use a 
polynomial-time reduction algorithm 

2)  Transform it to an instance β of problem B 
3)  Run the polynomial-time decision algorithm for B 

on the instance β 
4)  Use the answer for β as the answer for α 
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1. Tractability and NP Completeness

a) (NP Completeness) A clique in an undirected graph G = (V,E) is a subset V ′ ⊆V
of vertices, each pair of which is connected by an edge in E, i.e., a clique is a
complete subgraph of G. The size of a clique is the number of vertices it contains.
The problem of finding a clique of maximum size in a graph is NP-complete. The
decision problem CLIQUE has the corresponding language:

CLIQUE = {〈G,k〉 : G is a graph containing a clique of size k}

Sketch a proof of NP-completeness for the decision problem CLIQUE.

No marks will be given for simply stating that CLIQUE is NP-complete.

(10 marks)
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Model Answer:
1. Prove CLIQUE ∈ NP.
For a given G = (V,E), we use the set V ′ ⊆V of vertices in the clique
as a certificate for G. We can check whether V ′ is a clique in
polynomial time by checking whether for each pair u,v ∈V ′, the edge
(u,v) belongs to E.
2. Select Satisfiability of boolean formulas in 3-CNF as a known
NP-complete language called 3-CNF-SAT.
3. Describe an algorithm that computes a function f mapping every
instance of 3-CNF-SAT to an instance of CLIQUE.
Let φ =C1∧C2∧ . . .Ck be a boolean formula in 3-CNF with k clauses.
For r = 1,2, . . . ,k, each clause Cr has exactly three distinct literals lr

1, lr
2,

and lr
3. For each clause Cr = (lr

1∨ lr
2∨ lr

3) in φ, we place a triple of
vertices vr

1, vr
2, and vr

3 into V . We put an edge between two vertices vr
i

and vs
j if both of the following hold:

• vr
i and vs

j are in different triples, i.e., r 6= s, and

• their corresponding literals are consistent, i.e., lr
i is not the negation

of ls
j.

4. Show that this transformation of φ into G is a reduction.
First, supposed that φ has a satisfying assignment. Then each clause Cr
contains at least one literal lr

i that is assigned 1, and each such literal
corresponds to a vertex vr

i . Picking one such “true” literal from each
clause yields a set V’ of k vertices. We claim that V ′ is a clique. For any
two vertices vr

i ,v
s
j ∈V ′, where r 6= s both corresponding literals lr

i and ls
j

map to 1 by the given satisfying assignment, and thus the literals cannot
be complements. Thus, by the construction of G, the edge (vr

i ,v
s
j)

belongs to E.
5. Show that the algorithm computing f runs in polynomial time.
We can easily build this graph from φ in polynomial time. As an
example of this construction, if we have
φ = (x1∨¬x2∨¬x3)∧ (¬x1∨ x2∨ x3)∧ (x1∨ x2∨ x3) then G is the
graph shown below.
Distribution of Marks: 2 marks for each step of the proof. No marks
for answer without explanation.
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Figure 1: The graph G derived from the 3-CNF formula φ. A SAT assignment has x2 = 0,
x3 = 1, and x1 either 0 or 1. This assignment satisfies C1 with ¬x2, and it satisfies C2 and
C3 with x3, corresponding to the clique with lightly shaded vertices.
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