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* The crux of NP-Completeness is reducibility

= A problem A can be reduced to another problem B if any

instance a of A can be transformed into some instance of
B of B:

o The transformation takes polynomial-time

o The answer for ais “yes” iff the answer for B is also
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» |f Areduces to B, Ais “no harder to solve” than B

= We are trying to prove that no efficient algorithm is
likely to exist
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1) Given an instance a of problem A, use a
polynomial-time reduction algorithm

2) Transform it to an instance § of problem B

3) Run the polynomial-time decision algorithm for B
on the instance f3

4) Use the answer for B as the answer for a
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* Prove NP-completeness of a language L by
reduction consists of the following steps

1. Prove L NP
2. Select a known NP-complete language L’

3. Describe an algorithm that computes a function f
mapping every instance x € {0, 1}*of L’to an
instance f(x) of L

4. Prove that the function f satisfies x & L’ iff f(x) & L for
all x €{0,1}*

5. Prove that the algorithm computing fruns in
polynomial-time
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1. Tractability and NP Completeness

a) (NP Completeness) A clique in an undirected graph G = (V,E) is a subset V' C V
of vertices, each pair of which is connected by an edge in E, i.e., a clique is a
complete subgraph of G. The size of a clique is the number of vertices it contains.
The problem of finding a clique of maximum size in a graph is NP-complete. The
decision problem CLIQUE has the corresponding language:

CLIQUE = {(G,k) : G is a graph containing a clique of size k}

Sketch a proof of NP-completeness for the decision problem CLIQUE.
No marks will be given for simply stating that CLIQUE is NP-complete.

(10 marks)
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Model Answer:

1. Prove CLIQUE < NP.

For a given G = (V,E), we use the set V/ C V of vertices in the clique
as a certificate for G. We can check whether V' is a clique in
polynomial time by checking whether for each pair u,v € V’, the edge
(u,v) belongs to E.

2. Select Satisfiability of boolean formulas in 3-CNF as a known
NP-complete language called 3-CNF-SAT.

3. Describe an algorithm that computes a function f mapping every
instance of 3-CNF-SAT to an instance of CLIQUE.

Let 9 = Cy ACy A...Cy be a boolean formula in 3-CNF with & clauses.
Forr=1,2,...,k, each clause C, has exactly three distinct literals /7, 5,
and /5. For each clause C, = (I{ V15V I5) in ¢, we place a triple of
vertices v/, v, and v5 into V. We put an edge between two vertices v}
and v; if both of the following hold:

e v and vsi are in different triples, i.e., r # s, and

e their corresponding literals are consistent, i.e., [ is not the negation
of .

4. Show that this transformation of ¢ into G is a reduction.

First, supposed that ¢ has a satisfying assignment. Then each clause C,
contains at least one literal /] that is assigned 1, and each such literal
corresponds to a vertex v;. Picking one such “true” literal from each
clause yields a set V’ of k vertices. We claim that V' is a clique. For any
two vertices v;, v} € V', where r # s both corresponding literals I/ and I}
map to 1 by the given satisfying assignment, and thus the literals cannot
be complements. Thus, by the construction of G, the edge (v7, v;)
belongs to E.

5. Show that the algorithm computing f runs in polynomial time.
We can easily build this graph from ¢ in polynomial time. As an
example of this construction, if we have

0= (x1 V—xyV —|X3) VAN (—|x1 V xo \/X3) VAN (x1 V X2 \/X3) then G is the
graph shown below.

Distribution of Marks: 2 marks for each step of the proof. No marks
for answer without explanation.
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Cl = XV X3 VX3

C2=_')C1V)C2VX3 C3=X1VX2VX3

Figure 1: The graph G derived from the 3-CNF formula ¢. A SAT assignment has x; =0,
x3 =1, and x either O or 1. This assignment satisfies C1 with —x,, and it satisfies C; and
C3 with x3, corresponding to the clique with lightly shaded vertices.
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