COMP26120: Tractability and NP Completeness (2018/19)

Lucas Cordeiro
lucas.cordeiro@manchester.ac.uk
Reduction

• The crux of NP-Completeness is *reducibility*
Reduction

• The crux of NP-Completeness is *reducibility*
 - A problem A can be reduced to another problem B if any instance α of A can be transformed into some instance of β of B:
 - The *transformation* takes *polynomial-time*
 - The answer for α is “yes” *iff* the answer for β is also “yes”
Reduction

• The crux of NP-Completeness is reducibility

 ▪ A problem A can be reduced to another problem B if any instance α of A can be transformed into some instance of β of B:

 o The transformation takes polynomial-time

 o The answer for α is “yes” iff the answer for β is also “yes”

 ▪ If A reduces to B, A is “no harder to solve” than $B
Reduction

• The crux of NP-Completeness is reducibility

 ▪ A problem A can be reduced to another problem B if any instance α of A can be transformed into some instance of β of B:

 o The transformation takes polynomial-time

 o The answer for α is “yes” iff the answer for β is also “yes”

 ▪ If A reduces to B, A is “no harder to solve” than B

 ▪ We are trying to prove that no efficient algorithm is likely to exist
Polynomial-time Reduction

1) Given an instance α of problem A, use a polynomial-time reduction algorithm
1) Given an instance α of problem A, use a polynomial-time reduction algorithm
2) Transform it to an instance β of problem B
1) Given an instance α of problem A, use a polynomial-time reduction algorithm

2) Transform it to an instance β of problem B

3) Run the polynomial-time decision algorithm for B on the instance β
Polynomial-time Reduction

1) Given an instance α of problem A, use a polynomial-time reduction algorithm
2) Transform it to an instance β of problem B
3) Run the polynomial-time decision algorithm for B on the instance β
4) Use the answer for β as the answer for α
Proving NP-Completeness

• Prove NP-completeness of a language L by reduction consists of the following steps

1. Prove $L \in \text{NP}$
Proving NP-Completeness

• Prove NP-completeness of a language L by reduction consists of the following steps
 1. Prove $L \in NP$
 2. Select a known NP-complete language L'
Proving NP-Completeness

• Prove NP-completeness of a language L by reduction consists of the following steps

1. Prove $L \in NP$
2. Select a known **NP-complete language** L'
3. Describe an algorithm that computes a **function** f mapping every instance $x \in \{0, 1\}^*$ of L' to an instance $f(x)$ of L
Proving NP-Completeness

• Prove NP-completeness of a language L by reduction consists of the following steps

1. Prove $L \in NP$

2. Select a known NP-complete language L'

3. Describe an algorithm that computes a function f mapping every instance $x \in \{0, 1\}^*$ of L' to an instance $f(x)$ of L

4. Prove that the function f satisfies $x \in L'$ iff $f(x) \in L$ for all $x \in \{0, 1\}^*$
Proving NP-Completeness

• Prove NP-completeness of a language \(L \) by reduction consists of the following steps

1. Prove \(L \in NP \)

2. Select a known **NP-complete language** \(L' \)

3. Describe an algorithm that computes a **function** \(f \) mapping every instance \(x \in \{0, 1\}^* \) of \(L' \) to an instance \(f(x) \) of \(L \)

4. Prove that the function \(f \) satisfies \(x \in L' \) iff \(f(x) \in L \) for all \(x \in \{0,1\}^* \)

5. Prove that the algorithm computing \(f \) runs in **polynomial-time**
The use of electronic calculators is permitted provided they are not programmable and do not store text.
1. Tractability and NP Completeness

a) **(NP Completeness)** A clique in an undirected graph $G = (V, E)$ is a subset $V' \subseteq V$ of vertices, each pair of which is connected by an edge in E, i.e., a clique is a complete subgraph of G. The size of a clique is the number of vertices it contains. The problem of finding a clique of maximum size in a graph is NP-complete. The decision problem CLIQUE has the corresponding language:

$$CLIQUE = \{\langle G, k \rangle : G \text{ is a graph containing a clique of size } k\}$$

Sketch a proof of NP-completeness for the decision problem CLIQUE.

No marks will be given for simply stating that CLIQUE is NP-complete.

(10 marks)
Model Answer:
1. **Prove CLIQUE ∈ NP.**
 For a given $G = (V, E)$, we use the set $V' \subseteq V$ of vertices in the clique as a certificate for G. We can check whether V' is a clique in polynomial time by checking whether for each pair $u, v \in V'$, the edge (u, v) belongs to E.

2. **Select Satisfiability of boolean formulas in 3-CNF as a known NP-complete language called 3-CNF-SAT.**

3. **Describe an algorithm that computes a function f mapping every instance of 3-CNF-SAT to an instance of CLIQUE.**
 Let $\phi = C_1 \land C_2 \land \ldots C_k$ be a boolean formula in 3-CNF with k clauses. For $r = 1, 2, \ldots, k$, each clause C_r has exactly three distinct literals $l_{r1}, l_{r2},$ and l_{r3}. For each clause $C_r = (l_{r1} \lor l_{r2} \lor l_{r3})$ in ϕ, we place a triple of vertices $v_{r1}, v_{r2},$ and v_{r3} into V. We put an edge between two vertices v_{ri} and v_{sj} if both of the following hold:
 - v_{ri} and v_{sj} are in different triples, i.e., $r \neq s$, and
 - their corresponding literals are consistent, i.e., l_{ri} is not the negation of l_{sj}.

4. **Show that this transformation of ϕ into G is a reduction.**
 First, supposed that ϕ has a satisfying assignment. Then each clause C_r contains at least one literal l_{ri} that is assigned 1, and each such literal corresponds to a vertex v_{ri}. Picking one such “true” literal from each clause yields a set V' of k vertices. We claim that V' is a clique. For any two vertices $v_{ri}, v_{sj} \in V'$, where $r \neq s$ both corresponding literals l_{ri} and l_{sj} map to 1 by the given satisfying assignment, and thus the literals cannot be complements. Thus, by the construction of G, the edge (v_{ri}, v_{sj}) belongs to E.

5. **Show that the algorithm computing f runs in polynomial time.**
 We can easily build this graph from ϕ in polynomial time. As an example of this construction, if we have $\phi = (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3)$ then G is the graph shown below.

Distribution of Marks: 2 marks for each step of the proof. No marks for answer without explanation.
Figure 1: The graph G derived from the 3-CNF formula ϕ. A SAT assignment has $x_2 = 0$, $x_3 = 1$, and x_1 either 0 or 1. This assignment satisfies C_1 with $\neg x_2$, and it satisfies C_2 and C_3 with x_3, corresponding to the clique with lightly shaded vertices.