COMP26120: Algorithms and Imperative Programming

Lecture 2
Data structures for binary trees
Priority queues
Heaps
Lecture outline

- Different data structures for representing binary trees (vector-based, linked), linked structure for general trees;
- Priority queues (PQs);
- The heap data structure;
- Implementing priority queues as heaps;
- The vector representation of a heap and basic operations (insertion, removal);
A vector-based structure for binary trees is based on a simple way of numbering the nodes of T.

For every node v of T define an integer $p(v)$:

- If v is the root, then $p(v) = 1$;
- If v is the left child of the node u, then $p(v) = 2p(u)$;
- If v is the right child of the node u, then $p(v) = 2p(u) + 1$;

The numbering function $p(.)$ is known as a level numbering of the nodes in a binary tree T.
Data structures for representing trees
A vector-based data structure

\(((3+1)*3)/(9-5+2))-(3*(7-4)+6))
Data structures for representing trees
A vector-based data structure

- The level numbering suggests a representation of a binary tree T by a vector S, such that the node v from T is associated with an element $S[p(v)]$;

```
S  - / + * + * 6 + 3 - 2 3 - 3 1 9 5 7 4
```
Data structures for representing trees

A vector-based data structure

<table>
<thead>
<tr>
<th>Operation</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>positions()</code>, <code>elements()</code></td>
<td>$O(n)$</td>
</tr>
<tr>
<td><code>swapElements()</code>, <code>replaceElement()</code></td>
<td>$O(1)$</td>
</tr>
<tr>
<td><code>root()</code>, <code>parent()</code>, <code>children()</code></td>
<td>$O(1)$</td>
</tr>
<tr>
<td><code>leftChild()</code>, <code>rightChild()</code>, <code>sibling()</code></td>
<td>$O(1)$</td>
</tr>
<tr>
<td><code>isInternal()</code>, <code>isExternal()</code>, <code>isRoot()</code></td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>

Running times of the methods when a binary tree T is implemented as a vector.
Data structures for representing trees
A linked data structure

- The vector implementation of a binary tree is fast and simple, but it may be space inefficient when the tree height is large (why?);
- A natural way of representing a binary tree is to use a linked structure.
- Each node of T is represented by an object that references to the element v and the positions associated with its parent and children.
Data structures for representing trees
A linked data structure for binary trees
Data structures for representing trees
A linked data structure for general trees

- Extends the previous data structure to the case of general trees;
- In order to register a potentially large number of children of a node, we need to use a container (a list or a vector) to store the children, instead of using instance variables;
Keys and the total order relation

- In various applications it is frequently required to compare and rank objects according to some parameters or properties, called keys that are assigned to each object in a collection.
- A key is an object assigned to an element as a specific attribute that can be used to identify, rank or weight that element.
- A rule for comparing keys needs to be robustly defined (not contradicting).
- We need to define a total order relation, denoted by \(\leq \) with the following properties:
 - Reflexive property: \(k \leq k \);
 - Antisymmetric property: if \(k_1 \leq k_2 \) and \(k_2 \leq k_1 \), then \(k_1 = k_2 \);
 - Transitive property: if \(k_1 \leq k_2 \) and \(k_2 \leq k_3 \), then \(k_1 \leq k_3 \);
- The comparison rule that satisfies the above properties defines a linear ordering relationship among a set of keys.
- In a finite collection of elements with a defined total order relation we can define the smallest key \(k_{\text{min}} \) as the key for which \(k_{\text{min}} \leq k \) for any other key \(k \) in the collection.
Priority queues

- A priority queue P is a container of elements with keys associated to them at the time of insertion.
- Two fundamental methods of a priority queue P are:
 - `insertItem(k,e)` – inserts an element e with a key k into P;
 - `removeMin()` – returns and removes from P an element with a smallest key;
- The priority queue ADT is simpler than that of the sequence ADT. This simplicity originates from the fact that the elements in a PQ are inserted and removed based on their keys, while the elements are inserted and removed from a sequence based on their positions and ranks.
Priority queues

- A comparator is an object that compares two keys. It is associated with a priority queue at the time of construction.

- A comparator method provides the following objects, each taking two keys and comparing them:
 - `isLess(k₁, k₂)` – true if \(k₁ < k₂ \);
 - `isLessOrEqualTo(k₁, k₂)` – true if \(k₁ \leq k₂ \);
 - `isEqualTo(k₁, k₂)` – true if \(k₁ = k₂ \);
 - `isGreater(k₁, k₂)` – true if \(k₁ > k₂ \);
 - `isGreaterOrEqualTo(k₁, k₂)` – true if \(k₁ \geq k₂ \);
 - `isComparable(k)` – true if \(k \) can be compared;
The heap data structure

- The aim is to provide a realisation of a priority queue that is efficient for both insertions and removals.
- This can be accomplished with a data structure called a heap, which enables to perform both insertions and removals in logarithmic time.
- The idea is to store the elements in a binary tree instead of a sequence.
The heap data structure

- A heap is a binary tree that stores a collection of keys at its internal nodes that satisfies two additional properties:
 - A relational property (that affects how the keys are stored);
 - A structural property;
- We assume a total order relationship on the keys.
- **Heap-Order property:** In a heap T for every node v other than a root, the key stored in v is greater or equal than the key stored at its parent.
- The consequence is that the keys encountered on a path from the root to an external node are in non-decreasing order and that a minimum key is always stored at the root.
- **Complete binary tree property:** A binary tree T with height h is complete if the levels 0 to $h-1$ have the maximum number of nodes (level i has 2^i nodes for $i=0,...,h-1$) and in the level $h-1$ all internal nodes are to the left of the external nodes.
The heap data structure

An example of a heap T storing 13 integer keys. The last node (the right-most, deepest internal node of T) is 8 in this case.
A heap-based priority queue consists of:

- **heap**: a complete binary tree with keys that satisfy the heap-order property. The binary tree is implemented as a vector.
- **last**: A reference to the last node in T. For a vector implementation, last is an integer index to the vector element storing the last node of T.
- **comp**: A comparator that defines the total order relation among the keys. The comparator should maintain the minimal element at the root.

A heap T with n keys has height $h = \lceil \log(n + 1) \rceil$

If the update operations on a heap can be performed in time proportional to its height, rather than to the number of its elements, then these operations will have complexity $O(\log n)$.
Implementing a Priority Queue using a Heap

(heap

(4,C)

(comp

<

=)

>)

(heap

(4,C)

(5,A)

(6,Z)

(15,K)

(9,F)

(7,Q)

(20,B)

(16,X)

(25,J)

(14,E)

(12,H)

(11,S)

(8,W)

last)
Insertion into the PQ implemented using a heap

- In order to store a new key-element pair \((k,e)\) into \(T\), we need to add a new node to \(T\). To keep the complete tree property, the new node must become the last node of \(T\).
- If a heap is implemented as a vector, the insertion node is added at index \(n+1\), where \(n\) is the current size of the heap.
Up-heap bubbling after an insertion

- After the insertion of the element z into the tree T, it remains complete, but the heap-order property may be violated.
- Unless the new node is the root (the PQ was empty prior to the insertion), we compare keys $k(z)$ and $k(u)$ where u is the parent of z. If $k(u) > k(z)$, the heap order property needs to be restored, which can locally be achieved by swapping the pairs $(u,k(u))$ and $(z,k(z))$, making the element pair $(z,k(z))$ to go up one level. This upward movement caused by swaps is referred to as up-heap-bubbling.
- In the worst case the up-heap-bubbling may cause the new element to move all the way to the root.
- Thus, the worst case running time of the method insertItem() is proportional to the height of T, i.e. $O(\log n)$, as T is complete.
Up-heap bubbling after insertion
(an example)
Up-heap bubbling after insertion (an example)
Up-heap bubbling after insertion (an example)
Up-heap bubbling after insertion (an example)
Up-heap bubbling after insertion (an example)
Up-heap bubbling after insertion
(an example)
Up-heap bubbling after insertion
(an example)
Up-heap bubbling after insertion (an example)
Removal from the PQ implemented as a heap

- We need to perform the method removeMin() from the PQ.
- The element r with a smallest key is stored at the root of the heap. A simple deletion of this element would disrupt the binary tree structure.
- We access the last node in the tree, copy it to the root, and delete it. This makes T complete.
- However, these operations may violate the heap-order property.
To restore the heap-order property, we examine the root r of T. If this is the only node, the heap-order property is trivially satisfied. Otherwise, we distinguish two cases:

- If the root has only the left child, let s be the left child;
- Otherwise, let s be the child of r with the smallest key;

If $k(r) > k(s)$, the heap-order property is restored by swapping locally the pairs stored at r and s.

We should continue swapping down T until no violation of the heap-order property occurs. This downward swapping process is referred to as down-heap bubbling. A single swap either resolves the violation of the heap-order property or propagates it one level down the heap.

The running time of the method removeMin is thus $O(\log n)$.

Down-heap bubbling after removal (an example)
Down-heap bubbling after removal (an example)