Textbook

• *Algorithm Design and Applications*, Goodrich and Tamassia (Chapter 17)
• *Introduction to Algorithms*, Cormen, Leiserson, Rivest, and Stein (Chapter 34)
• *Introduction to the Theory of Computation*, Michael Sipser (Chapters 4 and 7)
Intended Learning Outcomes

• Outline “The Halting Problem”
• Explain complexity class P and NP of decision problems
• Explain NP-Hard and NP-completeness
• Relate decision problems via polynomial-time “reduction” algorithm
• Analyze typical NP-complete problems
• Sketch proofs of NP-complete problems
Automated Verification

• Given a computer **program** and a precise **specification** (e.g., sort a list of numbers)

• We need to **verify** that the **program** performs as specified

• Since both program and specification are **mathematical objects**, we could **automate the verification process** by a computer
Termination Analysis

- Given this C program and any unsigned integer input, will the program terminate or will it run forever?

```c
int main() {
  unsigned int n = __VERIFIER_nondet_uint();
  unsigned int x=n, y=0;
  while(x>0) {
    x--;
    y++;
  }
  __VERIFIER_assert(y==n);
}
```
Termination Analysis

• Given this C program and any integer input, will the program terminate or will it run forever?

```c
int main() {
    int y = __VERIFIER_nondet_int();
    while (y >= 0 && y <= 10) {
        y = (2*y + 1) / 2;
    }
    return 0;
}
```

Does not terminate for 0 <= x <= 10 due to rounding in integer division
Termination Analysis

• Given this C program and any integer input, will the program terminate or will it run forever?

```c
Void funcA(int *y1, int *y2) {
    while (*y1 != *y2) {
        if (*y1 > *y2) *y1 = *y1 - *y2;
        else *y2 = *y2 - *y1;
    }
}
int main() {
    int *y1 = alloca(sizeof(int)), *y2 = alloca(sizeof(int));
    *y1, *y2 = __VERIFIER_nondet_int();
    if (*y1 >= 0 && *y2 >= 0) funcA(y1, y2);
    return 0;
}
```

there is no verifier that can decide about termination for general enough programs
Turing’s “Halting Problem” (COMP11212)

• In 1936, Alan Turing proved that there exists no algorithm that
 - given a description of an arbitrary computer program and an input
 - decide whether that program will terminate or continue running forever for all possible inputs

• The general problem of program verification is not solvable by computers
 - Unbounded memory usage
Tractability

• What are **tractable** and **intractable** problems?
• Some problems are **intractable**: as inputs grow, we are unable to solve them in reasonable time
• What constitutes **reasonable time**?
 - A: **polynomial-time**
 - On an input of size n the worst-case running time is $O(n^k)$ for some constant k
 - Polynomial-time: $O(n)$, $O(n^2)$, $O(n^3)$, $O(1)$, $O(n \log n)$
 - Not in polynomial-time: $O(2^n)$, $O(n^n)$, $O(n!)$
Growth Functions

"E" represents "times ten raised to the power of"
Exercise: Comparison of Running Times

For each function \(f(n) \) and time \(t \), determine the largest size \(n \) of a problem that can be solved in time \(t \)

- the algorithm to solve the problem takes \(f(n) \) microseconds

<table>
<thead>
<tr>
<th>Time (s)</th>
<th>(\log n)</th>
<th>(n^{1/2})</th>
<th>(n)</th>
<th>(n^2)</th>
<th>(n^3)</th>
<th>(2^n)</th>
<th>(n!)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 second</td>
<td>2(^{1.1 \times 10^6})</td>
<td>1(x)10(^{12})</td>
<td>1(x)10(^6)</td>
<td>1000</td>
<td>100</td>
<td>19</td>
<td>9</td>
</tr>
</tbody>
</table>

\[
\log n = 1 \times 10^6 \quad \therefore \quad n = 2^{1.1 \times 10^6}
\]

\[
\sqrt{n} = 1 \times 10^6 \quad \therefore \quad \left(\sqrt{n}\right)^2 = (1 \times 10^6)^2 \quad \therefore \quad n = 1 \times 10^{12}
\]

\[
n^2 = 1 \times 10^6 \quad \therefore \quad n = \sqrt{1 \times 10^6} \quad \therefore \quad n = 1000
\]

\[
n^3 = 1 \times 10^6 \quad \therefore \quad n = \sqrt[3]{1 \times 10^6} \quad \therefore \quad n = 100
\]

\[
2^n = 1 \times 10^6 \quad \therefore \quad \log 2^n = \log 1 \times 10^6 \quad \therefore \quad n = 6 / \log 2 \approx 19
\]
Exercise: Comparison of Running Times

• For each function $f(n)$ and time t, determine the largest size n of a problem that can be solved in time t

 ▪ the algorithm to solve the problem takes $f(n)$ microseconds

<table>
<thead>
<tr>
<th>$\lg n$</th>
<th>1 Second</th>
<th>1 Minute</th>
<th>1 Hour</th>
<th>1 Day</th>
<th>1 Month</th>
<th>1 Year</th>
<th>1 Century</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^{10^6}</td>
<td>$2^{6\times10^7}$</td>
<td>$2^{3.6\times10^9}$</td>
<td>$2^{8.64\times10^{10}}$</td>
<td>$2^{2.592\times10^{12}}$</td>
<td>$2^{3.1536\times10^{13}}$</td>
<td>$2^{3.15576\times10^{15}}$</td>
<td></td>
</tr>
<tr>
<td>\sqrt{n}</td>
<td>1×10^{12}</td>
<td>3.6×10^{15}</td>
<td>1.29×10^{19}</td>
<td>7.46×10^{21}</td>
<td>6.72×10^{24}</td>
<td>9.95×10^{26}</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>1×10^{6}</td>
<td>6×10^{7}</td>
<td>3.6×10^{9}</td>
<td>8.64×10^{10}</td>
<td>2.59×10^{12}</td>
<td>3.15×10^{13}</td>
<td></td>
</tr>
</tbody>
</table>

n^2	1000	7745	60000	293938	1609968	5615692	56176151
n^3	100	391	1532	4420	13736	31593	146679
2^n	19	25	31	36	41	44	51
$n!$	9	11	12	13	15	16	17

Assume a 30 day month and 365 day year
Polynomial-Time Algorithms

• Are **some** problems solvable in polynomial time?
 - **Yes:** Every algorithm we have studied so far provides polynomial-time solution to some problem
 - We define P to be the class of problems solvable in polynomial time (**tractable** or **easy**)

• Are **all** problems solvable in polynomial-time?
 - **No:** Turing’s “Halting Problem”
 - Verification of multi-threaded programs
 - Verification of bounded multi-threaded programs
 - **Intractable** (or hard), not in P
Summary of Tractability

- **Computational challenge**
- Polynomial time
- Not in Polynomial time
- Turing Halting Problem
- Decidable
- Undecidable

- Polynomial time
- Turing Halting Problem
What is P and NP?

- **P** is set of problems that can be solved in polynomial-time
 - problems that can be solved in $O(n^k)$ for some constant k, where n is the size of the input

- **NP** (nondeterministic polynomial-time) is the set of problems that can be solved in polynomial-time by a **nondeterministic** computer
 - What does it mean?
Nondeterminism

- Think of a **non-deterministic computer** as a computer that magically “guesses” a solution, then has to **verify** that it is correct
 - If a solution exists, computer always guesses it
 - Imagine a **parallel computer** that can freely **spawn** an **unbounded number of processes**

- **So: NP = problems verifiable** in polynomial-time
NP-complete Problems

Definition 1: A decision problem is in the class NP-complete if it is in NP and is as “hard” as any problem in NP.

A decision problem has two possible outputs on any input.

- Circuit Satisfiability
NP-complete Problems

Definition 1: A decision problem is in the class NP-complete if it is in NP and is as “hard” as any problem in NP.

- Circuit Satisfiability
- Formula Satisfiability

\[\Phi = ((x_1 \rightarrow x_2) \lor \neg((\neg x_1 \leftrightarrow x_3) \lor x_4)) \]

A decision problem has **two possible outputs** on any input.
NP-complete Problems

Definition 1: A decision problem is in the class NP-complete if it is in NP and is as “hard” as any problem in NP.

A decision problem has two possible outputs on any input.
NP-complete Problems

Definition 1: A decision problem is in the class NP-complete if it is in NP and is as “hard” as any problem in NP.

A decision problem has two possible outputs on any input.

- Circuit Satisfiability
- Formula Satisfiability
- Equivalence checking
- k-Clique
NP-complete Problems

Definition 1: A decision problem is in the class NP-complete if it is in NP and is as “hard” as any problem in NP.

- The class NP consists of those (decision) problems that are “verifiable” in polynomial-time.

Certificate: \(<x_1 = 1, x_2 = 1, x_3 = 0>\)

Algorithm: Circuit Satisfiability

Yes

Satisfiable

Verify that the certificate is correct in time polynomial in the size of the input.
The NP-complete problems (or simply NPC) are an interesting class of problems:

- No polynomial-time algorithm has been discovered for any NP-Complete problem.

- $P \neq NP$ question? The biggest open problem in CS since it was first posed in 1971.

If you can establish a problem as NP-complete, then it is intractable unless $P = NP$:

- Do not search for a fast algorithm that solves the problem exactly!

- Approximation algorithm or tractable special case.
NP-complete problems are particularly tantalizing

• Several NP-complete problems seem similar to problems that are solved in polynomial-time
 ▪ Shortest vs. longest simple paths:
 o Find *shortest paths* from a single source in a directed graph $G=(V, E)$ is $O(VE)$ time
 o Find a *longest simple path* between two vertices is NPC
NP-complete problems are particularly tantalizing

- Euler tour vs. Hamiltonian cycle:
 - An Euler tour of a connected, directed graph $G=(V,E)$ is a cycle that traverses each edge of G exactly once in $O(E)$
 - A Hamiltonian cycle of a directed graph $G=(V,E)$ is a simple cycle that contains each vertex in V exactly once (NPC)

Euler tour:
$R-D-A-B-C-D-C-A-R$

Hamiltonian cycle shown by shadowed edges
Compute Hamiltonian Cycles

- The Hamiltonian-cycle problem: given a graph G, does it have a Hamiltonian cycle?
 - one possible decision algorithm lists all permutations of the vertices of G and checks if each one is a Hamiltonian cycle
 - There are $m!$ possible permutations of the vertices
 - the running time is $O(m!)$, where m depends on the graph encoding (e.g., adjacency matrix)
 - Verify that the cycle is Hamiltonian by checking if it is a permutation of the vertices of V
 - if each of the consecutive edges along the cycle exists in the graph
Example of a solution verified in polynomial-time

• In the Hamiltonian-cycle problem, given a directed graph $G=(V,E)$, a solution would be a sequence $\langle v_1, v_2, v_3, ..., v_{|V|} \rangle$ of n vertices.

• We could check in polynomial-time that (v_i, v_{i+1}) in E for $i = 1, 2, 3, ..., n-1$ and that (v_n, v_1) in E as well.

![Diagram of a Hamiltonian cycle](image)
Exercise: Formula Satisfiability

• Is this logical formula SAT? \((A \rightarrow B) \land A \land \neg B\)

Approach 1: Enumeration \((A \rightarrow B)\) is equivalent to \neg A \lor B

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>A \rightarrow B</td>
<td>A</td>
<td>\neg B</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

→ Processor 1 → Processor 2 → Processor 3 → Processor 4

Approach 2: Deduction

\((A \rightarrow B)\) \quad A \quad B \quad \neg B \quad \text{Can we parallelise this?}

B
FALSE
Exercise: Equivalence Checking of Programs

• Are these two code fragments equivalent?

\[
\Phi_1 = \left((\neg a \land \neg b) \land h \right) \lor \left((a \land g) \lor (a \land f) \right)
\]
\[
\Phi_2 = \left((a \land f) \lor (a \land (b \land g) \lor (b \land h)) \right)
\]

Are \(\Phi_1 \) and \(\Phi_2 \) equivalent?
Can we check a certificate in polynomial-time?
Summary of P and NP

• Summary so far:
 - **P** = problems that can be *solved* in polynomial time
 - **NP** = problems for which a *certificate* can be *verified* in *polynomial-time*
 - We can believe that **P ⊆ NP**

• Formula Satisfiability, Equivalence Checking and Hamiltonian-cycle problems are in **NP**:
 - Cannot solve in polynomial-time
 - Easy to verify a certificate in polynomial-time
Summary of NP-Complete Problems

• NP-Complete problems are the “hardest” problems in NP:
 ▪ If any one NP-Complete problem can be solved in polynomial-time…
 ▪ …then every NP-Complete problem can be solved in polynomial-time…
 ▪ …and in fact every problem in \(\text{NP} \) can be solved in polynomial-time (which would show \(\text{P} = \text{NP} \))
 ▪ Despite years of study, no polynomial-time algorithm has ever been discovered for any NP-complete problem
Reduction

• The crux of NP-Completeness is reducibility

 ▪ A problem A can be reduced to another problem B if any instance α of A can be transformed into some instance of β of B:

 o The transformation takes polynomial-time

 o The answer for α is “yes” iff the answer for β is also “yes”

 ▪ If A reduces to B, A is “no harder to solve” than B

 ▪ We are trying to prove that no efficient algorithm is likely to exist
Polynomial-time Reduction

1) Given an instance α of problem A, use a polynomial-time reduction algorithm
2) Transform it to an instance β of problem B
3) Run the polynomial-time decision algorithm for B on the instance β
4) Use the answer for β as the answer for α
Reducibility Example: SAT to 3-CNF-SAT

- **A**: A Boolean formula that contains
 - variables whose values are 0 or 1
 - connectives such as \land (AND), \lor (OR), and \neg (NOT)

- **B**: A Boolean formula that is in 3-CNF
 - AND of clauses, each clause has exactly 3 distinct literals

\[A: \Phi = ((x_1 \rightarrow x_2) \lor \neg((\neg x_1 \leftrightarrow x_3) \lor x_4)) \land \neg x_2 \]

\[\neg\Phi' = (y_1 \land y_2 \land y_3) \lor (y_1 \land \neg y_2 \land x_2) \lor (y_1 \land \neg y_2 \land \neg x_2) \lor (\neg y_1 \land y_2 \land \neg x_2) \]

\[B: \Phi'' = (\neg y_1 \lor \neg y_2 \lor \neg y_3) \land (\neg y_1 \lor y_2 \lor x_2) \land (\neg y_1 \lor y_2 \lor x_2) \land (y_1 \lor \neg y_2 \lor x_2) \]
Exercise: SAT to 3-CNF-SAT

• Convert the following Boolean formula to 3-CNF:

\[x_1 \rightarrow (x_2 \land x_3) \]

\[y_1 \leftrightarrow (x_1 \rightarrow y_2) \]
\[y_2 \leftrightarrow (x_2 \land x_3) \]
Exercise: SAT to 3-CNF-SAT

\(\Phi'_1 = y_1 \leftrightarrow (x_1 \rightarrow y_2) \)

<table>
<thead>
<tr>
<th>(y_1)</th>
<th>(x_1)</th>
<th>(y_2)</th>
<th>((\neg x_1 \lor y_2))</th>
<th>(y_1 \leftrightarrow (x_1 \rightarrow y_2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\(\neg \Phi'_1 \)

\((y_1 \land x_1 \land \neg y_2) \lor \)
\((\neg y_1 \land x_1 \land y_2) \lor \)
\((\neg y_1 \land \neg x_1 \land y_2) \lor \)
\((\neg y_1 \land \neg x_1 \land \neg y_2) \lor \)

\(\Phi''_1 \)

\((\neg y_1 \lor \neg x_1 \lor y_2) \land \)
\((y_1 \lor \neg x_1 \lor \neg y_2) \land \)
\((y_1 \lor x_1 \lor \neg y_2) \land \)
\((y_1 \lor x_1 \lor y_2) \land \)
Exercise: SAT to 3-CNF-SAT

\[\Phi'_2 = y_2 \leftrightarrow (x_2 \land x_3) \]

<table>
<thead>
<tr>
<th>(y_2)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>((x_2 \land x_3))</th>
<th>(y_2 \leftrightarrow (x_2 \land x_3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

\[\neg \Phi'_2 \]
\[(y_2 \land x_2 \land \neg x_3) \lor \]
\[(y_2 \land \neg x_2 \land x_3) \lor \]
\[(y_2 \land \neg x_2 \land \neg x_3) \lor \]
\[(\neg y_2 \land x_2 \land x_3) \lor \]

\[\Phi''_2 \]
\[(\neg y_2 \lor \neg x_2 \lor x_3) \land \]
\[(\neg y_2 \lor x_2 \lor \neg x_3) \land \]
\[(\neg y_2 \lor x_2 \lor x_3) \land \]
\[(y_2 \lor \neg x_2 \lor \neg x_3) \land \]
Summary

• No polynomial-time algorithm has yet been discovered for an NP-complete problem
 ▪ To become a good algorithm designer, you must understand the theory of NP-completeness

• Various problems have been shown to be NP-complete
 ▪ Some reductions are profound, some are comparatively easy, many are easy once the key insight is given

• You can expect a simple NP-Completeness proof on the final