The aim of this lecture is to:

Look at the saturation-based setting and the first step of transforming to clausal form

Learning Outcomes

By the end of this lecture you will be able to:

1. Recall the saturation loop and the main steps in it
2. Describe the clausal transformation pipeline
3. Transform general first-order formulas into clausal form
4. Identify points where this transformation could be optimised
5. Recall how to run Vampire to perform resolution and clausification
In first-order logic every two terms have a most general unifier

A substitution σ is a unifier for two terms t_1 and t_2 if $\sigma(t_1) = \sigma(t_2)$

I avoid giving a very formal definition of more general but a unifier σ_1 is more general than σ_2 if $\sigma_2(t)$ is always an instance of $\sigma_1(t)$

There is a relatively straightforward algorithm for generating most general unifiers called Robinsons Algorithm (does the obvious thing) but in reality we compute unifiers using special data structures.
A literal is an atom or its negation. A clause is a disjunction of literals.

Clauses are implicitly universally quantified.

We can think of a clause as a conjunction implying a disjunction e.g.

$$(a_1 \wedge \ldots a_n) \rightarrow (b_1 \vee \ldots \vee b_m)$$

An empty clause is false.

Resolution works on clauses

$$\frac{l_1 \lor C}{(C \lor D) \theta} \quad \frac{\neg l_2 \lor D}{\theta = \text{mgu}(l_1, l_2)}$$
We are going to look at a reasoning method that works by refutation.

Recall $\Gamma \models \phi$ if and only if $\Gamma \cup \{\neg \phi\} \models false$

If we want to show that ϕ is entailed by Γ we can show that $\Gamma \cup \{\neg \phi\}$ is inconsistent

There are some caveats we will meet later.
Refutational Based Reasoning

We are going to look at a reasoning method that works by refutation.

Recall $\Gamma \models \phi$ if and only if $\Gamma \cup \{\neg \phi\} \models false$

If we want to show that ϕ is entailed by Γ we can show that $\Gamma \cup \{\neg \phi\}$ is inconsistent

This is refutational based reasoning.

We will saturate $\Gamma \cup \{\neg \phi\}$ until there is nothing left to add or we have derived false.

If we do not find false then $\Gamma \not\models \phi$.

There are some caveats we will meet later.
We could have done it in the other order (picked $\neg \text{rich}(x)$ first). We'll find out later that it's better to organise proof search to avoid this redundancy.
Resolving to false

\[\neg \text{rich}(x) \lor \text{happy}(x) \]
\[\text{rich}(\text{giles}) \]
\[\neg \text{happy}(\text{giles}) \]
Resolving to false

$$\neg \text{rich}(x) \lor \text{happy}(x)$$

$$\text{rich}(\text{giles})$$

$$\neg \text{happy}(\text{giles})$$
Resolving to false

\[\neg \text{rich}(x) \lor \text{happy}(x) \]

\[\text{rich}(giles) \]

\[\neg \text{happy}(giles) \]

\[\neg \text{rich}(giles) \]
Resolving to false

¬rich(x) ∨ happy(x)
rich(giles)
¬happy(giles)
¬rich(giles)
Resolving to false

\[\neg\text{rich}(x) \lor \text{happy}(x) \]
\[\text{rich}(\text{giles}) \]
\[\neg\text{happy}(\text{giles}) \]
\[\neg\text{rich}(\text{giles}) \]
\[\text{false} \]
We could have done it in the other order (picked $\neg rich(x)$ first). We’ll find out later that it’s better to organise proof search to avoid this redundancy.
What about Equality?

\[\neg \text{rich}(\text{father}(x)) \lor \text{happy}(x) \]
\[\text{rich(david)} \]
\[\text{father}(\text{giles}) = \text{david} \]

\[\models \text{happy}(\text{giles}) \]
What about Equality?

\[\neg \text{rich}(\text{father}(x)) \lor \text{happy}(x) \]
\[\text{rich}(\text{david}) \]
\[\text{father}(\text{giles}) = \text{david} \]
\[\neg \text{happy}(\text{giles}) \]
What about Equality?

\[\neg \text{rich}(\text{father}(x)) \lor \text{happy}(x) \]
\[\text{rich}(\text{david}) \]
\[\text{father}(\text{giles}) = \text{david} \]
\[\neg \text{happy}(\text{giles}) \]
What about Equality?

\[\neg \text{rich}(\text{father}(x)) \lor \text{happy}(x) \]
\[\text{rich}(\text{david}) \]
\[\text{father}(\text{giles}) = \text{david} \]
\[\neg \text{happy}(\text{giles}) \]
\[\neg \text{rich}(\text{father}(\text{giles})) \]
What about Equality?

\[
\neg \text{rich}(\text{father}(x)) \lor \text{happy}(x)
\]

\[
\text{rich}(\text{david})
\]

\[
\text{father}(\text{giles}) = \text{david}
\]

\[
\neg \text{happy}(\text{giles})
\]

\[
\neg \text{rich}(\text{father}(\text{giles}))
\]

\text{father}(x) \text{ and } \text{david} \text{ do not unify.}
The paramodulation rule lifts the idea behind resolution to equality

\[
\frac{C \lor s = t \quad l[u] \lor D}{(l[t] \lor C \lor D)\theta} \quad \theta = \text{mgu}(s, u)
\]

where \(u \) is not a variable.
The paramodulation rule lifts the idea behind resolution to equality

\[
\frac{C \lor s = t \quad l[u] \lor D}{(l[t] \lor C \lor D)\theta} \quad \theta = \text{mgu}(s, u)
\]

where \(u \) is not a variable.

For example

\[
\text{father}(giles) = \text{david} \quad \neg\text{rich}(\text{father}(x)) \lor \text{happy}(x)
\]

\[
\neg\text{rich}(\text{david}) \lor \text{happy}(giles)
\]

where \(u = \text{father}(x) \) and therefore \(\theta = \{ x \mapsto giles \} \).
The **demodulation** rule works with unit equalities

\[
\frac{s = t}{l[u] \lor D} \quad \theta = \text{matches}(s, u)
\]

Note that \(u \) must be an instance of \(s \).

Why is this special? The premise \(l[u] \lor D \) becomes **redundant**. We’ll find out what that means properly next time but it means we can remove it.

Notice that we could apply this in either direction - this is going to lead to redundancy and later we will see that we should (where possible) order equalities so that we rewrite more complicated things with simpler things.
We have another special case, is the following ever true?

$$\forall x. f(x) \neq f(a)$$

e.g. for every input to f the result is not equal to applying f to a.
We have another special case, is the following ever true?

$$\forall x. f(x) \neq f(a)$$

e.g. for every input to f the result is not equal to applying f to a.

Functions in first-order logic are always total
Equality Resolution

We have another special case, is the following ever true?

$$\forall x. f(x) \neq f(a)$$

e.g. for every input to f the result is not equal to applying f to a.

Functions in first-order logic are always total

So, no. We have a rule called equality resolution

$$s \neq t \lor C \quad \theta = \text{mgu}(s, t)$$

e.g. if we can make two terms equal then any disequality is false.
Vampire is a first-order theorem prover

It works on Clauses and implements resolution (and lots of other rules)

It takes problems in either TPTP or STM-LIB format

cnf(one, axiom, ~rich(X) | happy(X)).
cnf(two, axiom, rich(giles)).
cnf(three, negated_conjecture, ~happy(giles)).

The above is TPTP format already in conjunctive normal form.
Saturation Based Reasoning

To decide $\Gamma \models \varphi$ we are going to follow the below steps

1. Let $NotDone = \Gamma \cup \{\neg \varphi\}$
2. Transform $NotDone$ into clauses
3. Let $Done$ be an empty set of clauses
4. Select a clause c from $NotDone$
5. Perform all inferences (e.g. resolution) between c and all clauses in $Done$ putting any *new* children in $NotDone$
6. Move c to $Done$
7. If one of the children was *false* then return valid
8. If $NotDone$ is empty stop otherwise go to 4
9. return not valid
To decide $\Gamma \models \varphi$ we are going to follow the below steps

1. Let $\text{NotDone} = \Gamma \cup \\{\neg \varphi\}$
2. Transform NotDone into clauses
3. Let Done be an empty set of clauses
4. Select a clause c from NotDone
5. Perform all inferences (e.g. resolution) between c and all clauses in Done putting any new children in NotDone
6. Move c to Done
7. If one of the children was $false$ then return valid
8. If NotDone is empty stop otherwise go to 4
9. return not valid
Transformation to Clausal Form

To go from general formula to set of clauses we’re going to go through the following steps

1. Rectify the formula
2. Transform to Negation Normal Form
3. Eliminate quantifiers
4. Transform into conjunctive normal form

At any stage we might simplify using rules about \textit{true} and \textit{false}, e.g. \(false \land \phi = false\), and remove \textit{tautologies}, e.g. \(p \lor p\).
A formula is **rectified** if each quantifier binds a different variable and all bound variables are distinct from free ones.

To rectify a formula we identify any name clashes, pick one and rename it consistently. It is important to work out which variables are in the scope of a quantifier e.g.

\[
\forall x. (p(x) \lor \exists x. r(x)) \quad \text{becomes} \quad \forall x (p(x) \lor \exists y. r(y))
\]

To automate this we typically rename bound variables starting with \(x_0 \) etc.
Negation Normal Form

Apply rules in a completely deterministic syntactically-guided way

\[-(F_1 \land \ldots \land F_n) \Rightarrow \neg F_1 \lor \ldots \lor \neg F_n\]
\[-(F_1 \lor \ldots \lor F_n) \Rightarrow \neg F_1 \land \ldots \land \neg F_n\]
\[F_1 \rightarrow F_2 \Rightarrow \neg F_1 \lor F_2\]
\[-\neg F \Rightarrow F\]
\[-\forall x_1, \ldots, x_n F \Rightarrow \exists x_1, \ldots, x_n \neg F\]
\[-\exists x_1, \ldots, x_n F \Rightarrow \forall x_1, \ldots, x_n \neg F\]
\[-(F_1 \leftrightarrow F_2) \Rightarrow F_1 \otimes F_2\]
\[-(F_1 \otimes F_2) \Rightarrow F_1 \leftrightarrow F_2\]
\[F_1 \leftrightarrow F_2 \Rightarrow (F_1 \rightarrow F_2) \land (F_2 \rightarrow F_1);
\[F_1 \otimes F_2 \Rightarrow (F_1 \lor F_2) \land (\neg F_1 \lor \neg F_2).\]

Where \otimes is exclusive or. Can get an exponential increase in size.
Examples

\[(\forall x. p(x)) \rightarrow (\exists x. p(x))\]

\[(\forall x. (p(x) \lor q(x)) \iff (\neg \exists x. (\neg p(x) \land \neg q(x))))\]

\[\forall x, y, z. ((f(x) = y \land f(x) = z) \rightarrow y = z)\]

\[\forall x. ((\exists y. p(x, y)) \rightarrow q(x)) \land p(a, b) \land \neg \exists x. q(x)\]

Also, which of the above statements are valid or inconsistent?
There is a best kind of pizza
\[\exists x. \forall y.((pizza(x) \land pizza(y) \land x \neq y) \rightarrow better(x, y)) \]

There are two different people who live in the same house
\[\exists x. \exists y. \exists z.(x \neq y \land lives_in(x, z) \land lives_in(y, z)) \]

Everybody loves somebody
\[\forall x. \exists y. loves(x, y) \]
Dealing with Existential Quantifiers

There is a best kind of pizza
\[\exists x. \forall y. ((\text{pizza}(x) \land \text{pizza}(y) \land x \neq y) \to \text{better}(x, y)) \]

There are two different people who live in the same house
\[\exists x. \exists y. \exists z. (x \neq y \land \text{lives_in}(x, z) \land \text{lives_in}(y, z)) \]

Everybody loves somebody
\[\forall x. \exists y. \text{loves}(x, y) \]

Let \(\mathcal{I} \) be some interpretation. If \(\mathcal{I}(\exists x.\phi[x]) \) is true then there must be some domain constant \(d \) such that \(\mathcal{I}(\phi[d]) \) is true.
Dealing with Existential Quantifiers

There is a best kind of pizza
\[\exists x. \forall y. ((\text{pizza}(x) \land \text{pizza}(y) \land x \neq y) \rightarrow \text{better}(x, y)) \]

There are two different people who live in the same house
\[\exists x. \exists y. \exists z. (x \neq y \land \text{lives_in}(x, z) \land \text{lives_in}(y, z)) \]

Everybody loves somebody
\[\forall x. \exists y. \text{loves}(x, y) \]

Let \(\mathcal{I} \) be some interpretation. If \(\mathcal{I}(\exists x. \phi[x]) \) is true then there must be some domain constant \(d \) such that \(\mathcal{I}(\phi[d]) \) is true.

Let \(a \) be a fresh constant symbol (a new name for the object that has to exist). As it is fresh we can freely let \(\mathcal{I}(a) = d \).
(This requires the Axiom of Choice)
Dealing with Existential Quantifiers

There is a best kind of pizza
\[\exists x. \forall y. ((\text{pizza}(x) \land \text{pizza}(y) \land x \neq y) \rightarrow \text{better}(x, y)) \]

There are two different people who live in the same house
\[\exists x. \exists y. \exists z. (x \neq y \land \text{lives in}(x, z) \land \text{lives in}(y, z)) \]

Everybody loves somebody
\[\forall x. \exists y. \text{loves}(x, y) \]

Let \(\mathcal{I} \) be some interpretation. If \(\mathcal{I}(\exists x. \phi[x]) \) is true then there must be some domain constant \(d \) such that \(\mathcal{I}(\phi[d]) \) is true.

Let \(a \) be a fresh constant symbol (a new name for the object that has to exist). As it is fresh we can freely let \(\mathcal{I}(a) = d \).
(This requires the Axiom of Choice)
Dealing with Existential Quantifiers

There is a best kind of pizza
\[\exists x. \forall y. (\neg pizza(x) \lor \neg pizza(y) \lor x = y \lor \text{better}(x, y)) \]

There are two different people who live in the same house
\[\exists x. \exists y. \exists z. (x \neq y \land lives_in(x, z) \land lives_in(y, z)) \]

Everybody loves somebody
\[\forall x. \exists y. loves(x, y) \]

Let \(I \) be some interpretation. If \(I(\exists x. \phi[x]) \) is true then there must be some domain constant \(d \) such that \(I(\phi[d]) \) is true.

Let \(a \) be a fresh constant symbol (a new name for the object that has to exist). As it is fresh we can freely let \(I(a) = d \).
(This requires the Axiom of Choice)
Dealing with Existential Quantifiers

There is a best kind of pizza
\[\forall y. (\neg \text{pizza}(a) \lor \neg \text{pizza}(y) \lor a = y \lor \text{better}(a, y)) \]

There are two different people who live in the same house
\[\exists x. \exists y. \exists z. (x \neq y \land \text{lives}_\text{in}(x, z) \land \text{lives}_\text{in}(y, z)) \]

Everybody loves somebody
\[\forall x. \exists y. \text{loves}(x, y) \]

Let \(\mathcal{I} \) be some interpretation. If \(\mathcal{I}(\exists x. \phi[x]) \) is true then there must be some domain constant \(d \) such that \(\mathcal{I}(\phi[d]) \) is true.

Let \(a \) be a fresh constant symbol (a new name for the object that has to exist). As it is fresh we can freely let \(\mathcal{I}(a) = d \).
(This requires the Axiom of Choice)
Dealing with Existential Quantifiers

There is a best kind of pizza
\[\forall y. (\neg pizza(a) \lor \neg pizza(y) \lor a = y \lor better(a, y)) \]

There are two different people who live in the same house
\[\exists x. \exists y. \exists z. (x \neq y \land lives_in(x, z) \land lives_in(y, z)) \]

Everybody loves somebody
\[\forall x. \exists y. loves(x, y) \]

Let \(I \) be some interpretation. If \(I(\exists x. \phi[x]) \) is true then there must be some domain constant \(d \) such that \(I(\phi[d]) \) is true.

Let \(a \) be a fresh constant symbol (a new name for the object that has to exist). As it is fresh we can freely let \(I(a) = d \). (This requires the Axiom of Choice)
Dealing with Existential Quantifiers

There is a best kind of pizza
\[\forall y. (\neg pizza(a) \lor \neg pizza(y) \lor a = y \lor better(a, y)) \]

There are two different people who live in the same house
\[a \neq b \land lives_in(a, c) \land lives_in(b, c) \]

Everybody loves somebody
\[\forall x. \exists y. loves(x, y) \]

Let \(\mathcal{I} \) be some interpretation. If \(\mathcal{I}(\exists x. \phi[x]) \) is true then there must be some domain constant \(d \) such that \(\mathcal{I}(\phi[d]) \) is true.

Let \(a \) be a fresh constant symbol (a new name for the object that has to exist). As it is fresh we can freely let \(\mathcal{I}(a) = d \). (This requires the Axiom of Choice)
Dealing with Existential Quantifiers

There is a best kind of pizza
\[\forall y. (\neg pizza(a) \lor \neg pizza(y) \lor a = y \lor better(a, y))\]

There are two different people who live in the same house
\[a \neq b \land lives_in(a, c) \land lives_in(b, c)\]

Everybody loves somebody
\[\forall x. \exists y. loves(x, y)\]
Dealing with Existential Quantifiers

There is a best kind of pizza
∀y.(¬pizza(a) ∨ ¬pizza(y) ∨ a = y ∨ better(a, y))

There are two different people who live in the same house
a ≠ b ∧ lives_in(a, c) ∧ lives_in(b, c)

Everybody loves somebody
∀x.∃y.loves(x, y)

Let ℐ be some interpretation. If ℐ(∀x.∃y.φ[x, y]) is true then for every domain constant d₁ there must be some other domain constant d₂ such that ℐ(φ[d₁, d₂]) is true. But how do we find d₂ given d₁?

Let f be a fresh function symbol whose interpretation can be made to select the necessary domain constant.
Dealing with Existential Quantifiers

There is a best kind of pizza
\(\forall y. (\neg pizza(a) \lor \neg pizza(y) \lor a = y \lor better(a, y)) \)

There are two different people who live in the same house
\(a \neq b \land lives_{\text{in}}(a, c) \land lives_{\text{in}}(b, c) \)

Everybody loves somebody
\(\forall x. \exists y. loves(x, y) \)

Let \(\mathcal{I} \) be some interpretation. If \(\mathcal{I}(\forall x. \exists y. \phi[x, y]) \) is true then for every domain constant \(d_1 \) there must be some other domain constant \(d_2 \) such that \(\mathcal{I}(\phi[d_1, d_2]) \) is true. But how do we find \(d_2 \) given \(d_1 \)?

Let \(f \) be a fresh \textit{function} symbol whose interpretation can be made to \textit{select} the necessary domain constant.
There is a best kind of pizza
\[\forall y. (\neg \text{pizza}(a) \lor \neg \text{pizza}(y) \lor a = y \lor \text{better}(a, y)) \]

There are two different people who live in the same house
\[a \neq b \land \text{lives_in}(a, c) \land \text{lives_in}(b, c) \]

Everybody loves somebody
\[\forall x. \text{loves}(x, f(x)) \]

Let \(I \) be some interpretation. If \(I(\forall x. \exists y. \phi[x, y]) \) is true then for every domain constant \(d_1 \) there must be some other domain constant \(d_2 \) such that \(I(\phi[d_1, d_2]) \) is true. But how do we find \(d_2 \) given \(d_1 \)?

Let \(f \) be a fresh function symbol whose interpretation can be made to select the necessary domain constant.
Dealing with Universal Quantifiers

Forget about them
This process is called **Skolemisation** and the new symbols we introduce are called **Skolem** constants or **Skolem** functions.

The rules are simply

\[
\forall x_1, \ldots, x_n F \Rightarrow F \\
\exists x_1, \ldots, x_n F \Rightarrow F \{ x_1 \mapsto f_1(y_1, \ldots, y_m), \ldots, x_n \mapsto f_n(y_1, \ldots, y_m) \},
\]

where \(f_i \) are fresh function symbols of the correct arrity and \(y_1, \ldots y_m \) are the **free variables** of \(F \) e.g. they are the things universally quantified in the larger scope.

Remember that Skolem constants/functions act as witnesses for something that we know has to exist for the formula to be true.
Validity or Satisfiability Preserving?

Do these two formulas have the same models?

$$\exists x. \forall y. p(x, y) \quad \forall y. p(a, y)$$

No - the first one does not need to interpret a

Do the formulas both have models?

Yes - there’s no negation, just make everything true

When we introduce new symbols we preserve satisfiability (the existence of models) not validity (the same models).

However, most transformations are stronger than this and preserve models on the initial signature.
Validity or Satisfiability Preserving?

Do these two formulas have the same models?

$$\exists x. \forall y. p(x, y) \quad \forall y. p(a, y)$$

No - the first one does not need to interpret a
Validity or Satisfiability Preserving?

Do these two formulas have the same models?

\[\exists x. \forall y. p(x, y) \quad \forall y. p(a, y) \]

No - the first one does not need to interpret \(a \)

Do the formulas both have models?

Yes - there's no negation, just make everything true

When we introduce new symbols we preserve satisfiability (the existence of models) not validity (the same models).

However, most transformations are stronger than this and preserve models on the initial signature.
Validity or Satisfiability Preserving?

Do these two formulas have the same models?

\[\exists x. \forall y. p(x, y) \quad \forall y. p(a, y) \]

No - the first one does not need to interpret \(a \)

Do the formulas both have models?

Yes - there's no negation, just make everything true
Validity or Satisfiability Preserving?

Do these two formulas have the same models?

$$\exists x. \forall y. p(x, y) \quad \forall y. p(a, y)$$

No - the first one does not need to interpret a

Do the formulas both have models?

Yes - there’s no negation, just make everything true

When we introduce new symbols we preserve **satisfiability** (the existence of models) not **validity** (the same models).

However, most transformations are stronger than this and preserve models on the initial signature.
Now the only connectives left should be \land and \lor and we need to push the \lor symbols under the \land symbols.

The associated rule is

$$(A_1 \land \ldots \land A_m) \lor B_1 \lor \ldots \lor B_n \quad \Rightarrow \quad (A_1 \lor B_1 \lor \ldots \lor B_n) \land \ldots \land (A_m \lor B_1 \lor \ldots \lor B_n).$$

This can lead to exponential growth.
Looking at Vampire’s clausification

Run

./vampire --mode clausify problem

on problem file problem

It will sometimes do a lot more than what we’ve discussed above.

Vampire performs lots of optimisations e.g. naming subformulas, removing pure symbols, or unused definitions.
Examples

\[(\forall x. p(x)) \rightarrow (\exists x. p(x))\]

\[(\forall x. (p(x) \lor q(x)) \leftrightarrow (\neg \exists x. (\neg p(x) \land \neg q(x))))\]

\[\forall x, y, z. ((f(x) = y \land f(x) = z) \rightarrow y = z)\]

\[\forall x. ((\exists y. p(x, y)) \rightarrow q(x)) \land p(a, b) \land \neg \exists x. q(x)\]

Also, which of the above statements are valid or inconsistent?
To go from general formula to set of clauses we’re going to go through the following steps

1. Rectify the formula
2. Transform to *Equivalence Negation Form*
3. Apply *naming* of subformulas
4. Transform to *Negation Normal Form*
5. Eliminate quantifiers
6. Transform into conjunctive normal form
Push negations in but preserve equivalences

\[\neg (F_1 \land \ldots \land F_n) \Rightarrow \neg F_1 \lor \ldots \lor \neg F_n \]
\[\neg (F_1 \lor \ldots \lor F_n) \Rightarrow \neg F_1 \land \ldots \land \neg F_n \]
\[F_1 \rightarrow F_2 \Rightarrow \neg F_1 \lor F_2 \]
\[\neg \neg F \Rightarrow F \]
\[\neg \forall x_1, \ldots, x_n F \Rightarrow \exists x_1, \ldots, x_n \neg F \]
\[\neg \exists x_1, \ldots, x_n F \Rightarrow \forall x_1, \ldots, x_n \neg F \]
\[\neg (F_1 \leftrightarrow F_2) \Rightarrow F_1 \otimes F_2 \]
\[\neg (F_1 \otimes F_2) \Rightarrow F_1 \leftrightarrow F_2 \]

Only get a linear increase in size.
Subformula Naming

We want to get to a conjunction of disjunctions but this process can ‘blow up’ in general e.g.

\[p(x, y) \leftrightarrow (q(x) \leftrightarrow (p(y, y) \leftrightarrow q(y))), \]

is equivalent to

\[
\begin{align*}
 p(x, y) & \lor \neg q(y) \lor \neg p(y, y) \lor \neg q(x) \\
 p(x, y) & \lor q(y) \lor p(y, y) \lor \neg q(x) \\
 p(x, y) & \lor p(y, y) \lor \neg q(y) \lor q(x) \\
 p(x, y) & \lor q(y) \lor \neg p(y, y) \lor q(x) \\
 q(x) & \lor \neg q(y) \lor \neg p(y, y) \lor \neg p(x, y) \\
 q(x) & \lor q(y) \lor p(y, y) \lor \neg p(x, y) \\
 p(y, y) & \lor \neg q(y) \lor \neg q(x) \lor \neg p(x, y) \\
 q(y) & \lor \neg p(y, y) \lor \neg q(x) \lor \neg p(x, y)
\end{align*}
\]
Subformula Naming

We can replace

\[p(x, y) \leftrightarrow (q(x) \leftrightarrow (p(y, y) \leftrightarrow q(y))) \],

by

\[p(x, y) \leftrightarrow (q(x) \leftrightarrow n(y)); \]
\[n(y) \leftrightarrow (p(y, y) \leftrightarrow q(y)). \]

to get the same number of clauses but each clause is simpler (better for reasoning).

In the case when the subformula \(F(x_1, \ldots, x_k) \) has only positive occurrences in \(G \), one can use the axiom \(n(x_1, \ldots, x_k) \rightarrow F(x_1, \ldots, x_k) \) instead of \(n(x_1, \ldots, x_k) \leftrightarrow F(x_1, \ldots, x_k) \). This will lead to fewer clauses.
Assigning a name \(n \) to \(F_2 \leftrightarrow F_3 \) yields two formulas

\[
F_1 \leftrightarrow n;
\]
\[
n \leftrightarrow (F_2 \leftrightarrow F_3),
\]

where the second formula has the same structure as the original formula \(F_1 \leftrightarrow (F_2 \leftrightarrow F_3) \).
When to Name Subformulas?

Vampire uses a heuristic that estimates how many clauses a subformula will produce and names that subformula if that number is above a certain threshold.

Naming can not increase the number of clauses introduced but does not always reduce.

The idea is the same as the optimised structural transformation in the propositional case but we don’t always apply it as the cost on reasoning is much higher here.