COMP36111: Advanced Algorithms I
Lecture 9: Savitch’s Theorem and the Immerman-Szelepcsényi Theorem

Ian Pratt-Hartmann

Room KB2.38: email: ipratt@cs.man.ac.uk

2017–18
• Reading for this lecture:
 • Sipser, Ch. 8 (Space Complexity).
Outline

REACHABILITY again

Savitch’s theorem

The Immerman-Szelepcsényi Theorem

Standard hierarchy

Time and space

The big picture
• Recall that a *directed graph* is a pair $G = (V, E)$, where V is a set and $E \subseteq \binom{V}{2}$ a set of ordered pairs of distinct elements of V.

• We assume G is encoded on the input tape of a TM as follows:

$$7 : 0, 1; 0, 2; 0, 3; 1, 0; 1, 3; 1, 4; 2, 5; 3, 6; 5, 1; 7, 2; 7, 5; 7, 6$$
If $G = (V, E)$ is a directed graph, and $u, v \in V$, we say that v is *reachable* from u if there exists a sequence $u = u_0, \ldots, u_m = v$ from V with $m \geq 0$ such that, for each i ($0 \leq i < m$) $(u_i, u_{i+1}) \in E$.

In our graph G, v_6 is reachable from v_0

since we have the sequence

$$v_0 \rightarrow v_1 \rightarrow v_3 \rightarrow v_6.$$
• However, v_7 is not reachable from v_0.
• We then have the problem:

REACHABILITY
Given: A directed graph $G = (V, E)$ and nodes $s, t \in V$
Return: Yes if t is reachable from s in G, No otherwise.

• In an earlier lecture, we gave an algorithm showing that
REACHABILITY is in $\text{TIME}(O(n))$.

• A bit of revision won’t hurt . . .
• An algorithm for solving REACHABILITY:

begin DFS-directed((V, E), u, v)
 DFS-aux((V, E), u)
 if v is marked
 return Y
 return N
end DFS-directed

begin DFS-aux((V, E), u)
 mark u
 for each e ∈ edges(u) do
 if e = (u, w) with w unmarked do
 DFS-aux((V, E), w)
 end DFS-aux

• We saw an essentially identical algorithm in Lecture 1a. It runs in linear time (and hence linear space).
Outline

REACHABILITY again

Savitch’s theorem

The Immerman-Szelepcsényi Theorem

Standard hierarchy

Time and space

The big picture
The following deterministic algorithm outputs YES iff \(v \) is reachable from \(u \) in \(G = (V, E) \) in at most \(2^h \) steps:

begin isReachableNum\((u,v,G,h)\)
 if \(h = 0 \)
 if \(u = v \) or \((u,v) \in E\) return Yes
 else return No
 for \(w \in V \)
 if (isReachableNum\((u,w,G,h-1)\) and
 isReachableNum\((w,v,G,h-1)\)) return Yes
 return No

Thus, we can then solve the reachability problem by calling
isReachableNum\((u,v,G,\lceil \log V \rceil)\)
• To see how this works, we note that any path from u to v of length $\leq 2^h$ must have a midpoint w

• Hence, there is a path from u to w of length $\leq 2^{h-1}$ and a path from w to v of length $\leq 2^{h-1}$
How do we implement this on a Turing machine?

Answer: by keeping the triples $\langle u, v, h \rangle$ on a work-tape:

\[
\langle u, v, h \rangle
\]

begin isReachableNum(u,v,G,h)
 if $h = 0$
 if $u = v$ or $(u,v) \in E$ return Yes
 else return No
 for $w \in V$
 if (isReachableNum(u,w,G,h-1) and
 isReachableNum(w,v,G,h-1)) return Yes
 return No
end

We see that this algorithm requires at most $O(h \cdot \log |V|)$ space.
• How do we implement this on a Turing machine?
• Answer: by keeping the triples \(\langle u, v, h \rangle \) on a work-tape:

\[
\langle u, v, h \rangle \langle u, w_1, h - 1 \rangle
\]

begin isReachableNum(u,v,G,h)
 if \(h = 0 \)
 if \(u = v \) or \((u, v) \in E \) return Yes
 else return No
 for \(w \in V \)
 if (isReachableNum(u,w,G,h – 1) and
 isReachableNum(w,v,G,h – 1)) return Yes
 return No

• We see that this algorithm requires at most \(O(h \cdot \log |V|) \) space.
• How do we implement this on a Turing machine?
• Answer: by keeping the triples \(\langle u, v, h \rangle \) on a work-tape:

\[
\langle u, v, h \rangle \langle u, w_1, h - 1 \rangle \langle u, w_2, h - 2 \rangle
\]

begin isReachableNum(u,v,G,h)
 if \(h = 0 \)
 if \(u = v \) or \((u, v) \in E \) return Yes
 else return No
 for \(w \in V \)
 if (isReachableNum(u,w,G,h - 1) and
 isReachableNum(w,v,G,h - 1)) return Yes
 return No

• We see that this algorithm requires at most \(O(h \cdot \log |V|) \) space.
• How do we implement this on a Turing machine?
• Answer: by keeping the triples $\langle u, v, h \rangle$ on a work-tape:

$$\langle u, v, h \rangle \langle u, w_1, h - 1 \rangle \langle u, w_2, h - 2 \rangle \cdots \langle u, w_\ell, h - \ell \rangle$$

begin isReachableNum(u,v,G,h)
 if $h = 0$
 if $u = v$ or $(u, v) \in E$ return Yes
 else return No
 for $w \in V$
 if (isReachableNum($u,w,G,h - 1$) and isReachableNum($w,v,G,h - 1$)) return Yes
 return No

• We see that this algorithm requires at most $O(h \cdot \log |V|)$ space.
• How do we implement this on a Turing machine?
• Answer: by keeping the triples \(\langle u, v, h \rangle \) on a work-tape:

\[
\langle u, v, h \rangle \langle u, w_1, h - 1 \rangle \langle u, w_2, h - 2 \rangle \cdots \langle w_\ell, v, h - \ell \rangle
\]

begin isReachableNum\((u,v,G,h)\)

 if \(h = 0 \)

 if \(u = v \) or \((u, v) \in E \) return Yes

 else return No

 for \(w \in V \)

 if \((\text{isReachableNum}(u,w,G,h - 1) \) and

 isReachableNum\((w,v,G,h - 1)\)) return Yes

 return No

• We see that this algorithm requires at most \(O(h \cdot \log |V|) \) space.
• Hence the call \texttt{isReachableNum}(u,v,G,\lceil \log V \rceil) requires $O(\log^2|V|)$ space.

• This proves:

\textbf{Theorem (Savitch, first form)}

\textit{REACHABILITY is in SPACE($\log^2 n$).}
• Suppose we have a Turing machine M over an alphabet with c symbols, having just one tape, and running in space $f(n)$.

• By a configuration of M we mean a triple $\langle s, w, i \rangle$, where:
 • s is a state of M;
 • w is a word over the alphabet of M (tape contents);
 • $1 \leq i \leq |w|$ (head position).

• Writing $w = a_1 \ldots a_\ell$, we can conveniently encode this configuration on a second (work-) tape as

$$a_1 \ldots a_{h-1}sa_h \ldots a_\ell$$

• We can think of this as the label of a node in a graph, G.
• Consider again the configuration

\[a_1 \ldots a_{h-1} s a_h \ldots a_\ell \]

and suppose \(s, a_h \rightarrow b, \text{right, } t \) is a transition of \(M \), where \(a = a_h \).

• Then we can easily compute the subsequent configuration

\[a_1 \ldots a_{h-1} b t a_{h+1} \ldots a_\ell \]

(on another tape if you like).

• We can think of any pair of such configurations as an edge in \(G \)
• Determining whether M has an accepting run (in time $f(n)$) now amounts to determining whether there is a path from the initial state of M to any accepting state of M.

• The number of nodes of G is bounded by $S \cdot f(n) \cdot c^f(n)$, where S is the number of states and c the size of the alphabet;

• Note that we can compute the edges of the G on the fly: we often do not need the whole graph.
Theorem (Savitch (second form))

If f is a proper complexity function and $f(n) \geq \log n$, then $\text{NSpace}(f) \subseteq \text{Space}(f^2)$.

Proof.
Suppose P is a problem in $\text{NSpace}(f)$. Let M be a nondeterministic TM running in $\text{Space}(f)$, and accepting P. To determine whether $x \in P$, determine whether configuration graph of M has a path of length at most $2^{O(f(|x|))}$ from the initial node to an accepting node. This can be done in $\text{Space}(O(f(n))^2)$.

Corollary
$\text{NPSpace} = \text{PSpace}; \text{NExpSpace} = \text{ExpSpace}, \ldots$

Corollary
$\text{NPSpace} = \text{Co-NPSpace}; \text{NExpSpace} = \text{Co-NExpSpace}, \ldots$
Outline

REACHABILITY again

Savitch’s theorem

The Immerman-Szelepcsényi Theorem

Standard hierarchy
 Time and space
 The big picture
• The algorithm DFS-directed showed that REACHABILITY is in $\textsc{Time}(n)$ and hence in $\textsc{Space}(n)$.
• The algorithm isReachableNum showed that REACHABILITY is in $\textsc{Space}((\log n)^2)$.
• We now present a very simple algorithm to show that, with non-determinism, we can get the space requirements down still further.
• The following non-deterministic algorithm has a run which outputs YES iff \(v \) is reachable from \(u \) in \(G = (V, E) \):

begin isReachable\((u,v,G)\)
 let current = \(u \)
 let counter = 0
 until current = \(v \) or counter = \(|V| \)
 guess a node \(u' \in V \)
 if \((current, u') \notin E\) return NO
 let current = \(u' \)
 increment counter
 if current = \(v \) return YES
 else return NO

• The only things we need to store are current and counter, which require only \(\log |V| \) bits.

• Thus we see that REACHABILITY is in \(\mathsf{NSpace}(\log n) \) —i.e. \(\mathsf{NLogSpace} \).
Theorem

REACHABILITY is NLogSpace-complete.

Proof.

We showed above that REACHABILITY is in NLogSpace.

Suppose L is a language recognized by a non-deterministic TM, M, running in time $O(\log n)$. Given an input x, let G be the configuration graph for M with input x. Let u be the node representing the initial configuration. We may assume this graph has a single accepting node v. Now, $x \in L$ if and only if (G, u, v) is an instance of REACHABILITY. The mapping $x \mapsto (G, u, v)$ can easily be constructed in space bounded by $\log n$. \hfill \square
• It was very easy to see that \textsc{Reachability} is in \textsc{NLogSpace}.

• However, let us now consider its converse:

\begin{center}
\textbf{Unreachability}

Given: A directed graph \(G = (V, E) \) and nodes \(s, t \in V \)

Return: Yes if \(t \) is not reachable from \(s \) in \(G \), No otherwise.
\end{center}

• We shall now show that \textsc{Unreachability} is in \textsc{NLogSpace} too.
• Fix a directed graph $G = (V, E)$, and a node $u \in V$.

• The trick is to use a very simple non-deterministic subroutine:

 begin reachableLossy(u, v, k)
 set $u' := u$
 until $k = 0$

 guess any node v'
 if $u' \neq v'$ and $(u', v') \notin E$ return No
 set $u' := v'$
 decrement k
 if $u' = v$ return Yes
 return No

• reachableLossy(u, v, k) has a run returning Yes iff v is reachable from u in k or fewer steps.

• Nothing is said about runs of reachableLossy(u, v, k) returning No.
• Assume we have an algorithm \texttt{isReachableFail}(u, v, k) which, for $1 \leq k < n$, either returns \texttt{\bot}, Yes or No:
 • \texttt{isReachableFail} has a run returning Yes, iff v is reachable from u in at most k steps;
 • \texttt{isReachableFail} has a run returning No, iff v is not reachable from u in at most k steps;

• Then the following algorithm returns the number of nodes reachable from u in k steps or fewer, or just returns \texttt{\bot}:

\begin{verbatim}
begin numReachableFail(u, k)
 if $k = 0$ return 1
 set $m = 0$
 for $i = 0, \ldots, n - 1$
 let $Q = \texttt{isReachableFail}(u, u_i, k)$
 if $Q = \bot$, then return \bot
 if $Q = \text{Yes}$, then increment m
 return m
\end{verbatim}
Now for the definition of isReachableFail (assume $1 \leq k < n$):

\begin{verbatim}
begin isReachableFail(u, v, k)
 let s = numReachableFail(u, k - 1)
 if s = ⊥ then return ⊥
 let m = 0
 for i = 0, ..., n - 1
 if reachableLossy(u, u_i, k - 1) = Yes
 if u_i = v or (u_i, v) ∈ E then return Yes
 increment m
 if m < s then return ⊥
 return No
\end{verbatim}
• Now for the our non-deterministic algorithm accepting UNREACHABILITY:

\[
\text{begin isUnreachable}(u, \nu, (V, E))
\]

if isReachableFail\((u, \nu, |V| - 1) = \text{No}\) then return Yes
return No

• It is easy to see that this algorithm requires only logarithmic space, and has a run returning Yes if and only if \(\nu\) is not reachable from \(u\) in \(G = (V, E)\).
Theorem (Immerman-Szelepcsényi, first form)

UNREACHABILITY is in NLogSpace.
Theorem (Immerman-Szelepcsényi (second form))

If \(f \) is a proper complexity function and \(f(n) \geq \log(n) \), then \(\text{NSpace}(f) = \text{Co-NSpace}(f) \).

Proof.
Suppose \(P \) is a problem in \(\text{NSpace}(f) \), and let \(\overline{P} \) be its complement problem. Let \(M \) be a nondeterministic TM running in \(\text{Space}(f) \), and accepting \(P \), and let \(x \) be an input string. Denote by \(G \) be the configuration graph of \(M \) with input \(x \). Then \(x \) is a positive instance of \(\overline{P} \) if and only if the node of \(G \) representing a successful run is unreachable from the start node of \(G \).

Corollary
\(\text{NLogSpace} = \text{Co-NLogSpace} \).

Corollary
\(\text{KROM-SAT} (= 2\text{-SAT}) \) is in \(\text{NLogSpace} \).
Theorem

The problem \(\text{KROM-SAT} \) \((\equiv 2\text{-SAT}) \) is \(\text{NLogSpace-complete} \).

Proof.

We have just shown that KROM-SAT is in \(\text{NLogSpace} \). For \(\text{NLogSpace} \)-hardness, we reduce the problem \(\text{UNREACHABILITY} \) \((\equiv \text{Co-REACHABILITY}) \) to KROM-SAT. Let \(G = (V, E) \) be a directed graph, and \(u_0, v_0 \in V \) be vertices. Treating the vertices \(V \) as propositional variables, define the set of clauses \(\Gamma_G \)

\[
\{u_0, \neg v_0\} \cup \{u \rightarrow v \mid (u, v) \in E\}.
\]
Proof.
If \(u_0, \ldots, u_m = v_0 \) is a path through \(G \), then any truth-value assignment marking \(u_0 \) and \(\{ u \rightarrow v \mid (u, v) \in E \} \) true must make \(v_0 \) true. Hence \(\Gamma_G \) is unsatisfiable.

Conversely, if \(v_0 \) is not reachable from \(u_0 \), let \(\theta \) be the truth-value assignment

\[
\theta(v) = \begin{cases}
 T & \text{if } v \text{ is reachable from } u_0 \text{ in } G; \\
 F & \text{otherwise.}
\end{cases}
\]

Then \(\theta \) evidently satisfies \(\Gamma_G \).

\(\text{NLogSpace} \)-hardness of KROM-SAT then follows from the \(\text{NLogSpace} \)-hardness of UNREACHABILITY.
Outline

REACHABILITY again

Savitch's theorem

The Immerman-Szelepcsényi Theorem

Standard hierarchy
 Time and space
 The big picture
• Consider again the classes \(\text{TIME}(f) \), \(\text{NTIME}(f) \), \(\text{SPACE}(f) \).
• How are these related?
• First of all, it is trivial that

\[
\text{TIME}(f) \subseteq \text{NTIME}(f).
\]

• What about \(\text{NTIME}(f) \) and \(\text{SPACE}(f) \)?
 • Consider a TM, \(M \), running in \(\text{NTIME}(f) \), and acting on input \(x \) of length \(n \).
 • \(M \) can make at most \(f(n) \) non-deterministic choices.
 • Represent these choices as a digits as a string \(s \) of length \(f(n) \).
 • We can run through all possible strings, guiding the choices of \(M \) using \(s \), succeeding if \(M \) ever succeeds.
 • The resulting deterministic TM takes no more space, and recognizes the same language as \(M \).

• Thus, we have

\[
\text{NTIME}(f) \subseteq \text{SPACE}(f).
\]
• To relate $\text{SPACE}(f)$ to a time-complexity class, consider a TM, M, running in $\text{SPACE}(f)$, and operating on an input x of length n.

• We may suppose M has K tapes ($K - 2$ work-tapes) and uses an alphabet Σ.

• A configuration is given by $K - 2$ strings of length at most $f(n)$, together with one of $|Q|$ states, and a K-tuple of integers ($\leq f(n)$) indicating the head position on each tape.

• The total number of such configurations is $|Q|.|\Sigma|^{(K-2)f(n)+K\log(f(n))}$, and reachability in such a graph can be decided in time $c' \cdot |Q|.|\Sigma|^{(K-2)f(n)+K\log(f(n))}$ for some constant c'.

• Thus, we have

$$\text{SPACE}(f(n)) \subseteq \bigcup_{a>0} \text{TIME}(2^{af(n)}).$$
• Applying these results to the larger classes PTime, NPTime, PSpace etc, a nice picture emerges:

$$\text{PTime} \subseteq \text{NPTime} \subseteq \text{PSpace} \subseteq \text{ExpTime} \ldots$$
• What about the non-deterministic stuff?
• We know from Savitch’s theorem that \(\text{PSPACE} = \text{NPSpace} \), \(\text{EXPSPACE} = \text{NEXPSPACE} \) etc., so we can henceforth ignore large non-deterministic space-classes.
• Warning: it does not follow from Savitch’s theorem that \(\text{LOGSPACE} = \text{NLOGSPACE} \), and we do not know whether this equation holds.
• Warning: it does not follow from Savitch’s theorem that \(\text{PTIME} = \text{NPTIME} \), etc, and we do not know whether these equations hold.
Thus, we have:

\[\text{LogSpace} \subseteq \text{NLogSpace} \subseteq \text{PTime} \subseteq \text{NPTime} \subseteq \text{PSpace} \subseteq \text{ExpTime} \subseteq \text{NExpTime} \subseteq \text{ExpSpace} \subseteq \cdots \]

We showed earlier that \(\text{PTime} \subset \text{ExpTime} \), and hence that at least one of the inequalities

\[\text{PTime} \subseteq \text{NPTime}, \quad \text{NPTime} \subseteq \text{PSpace}, \quad \text{PSpace} \subseteq \text{ExpTime} \]

is strict; but it is not known which.
• How do the complements of these classes fit into the picture?
• We have already established the following:
 • deterministic classes (time or space) are always equal to their complement classes;
 • non-deterministic space classes from NPSpace upwards are equal to their deterministic variants (Savitch) and hence to their complement classes;
 • \(\text{NLogSpace} \) is equal to its complement class (Immerman-Szelepcseényi).
• We do not know whether common non-deterministic time classes, such as \(\text{NPTime} \), \(\text{NExpTime} \) etc., are equal to their complements.