Reductions and hardness

Cook’s theorem

Reductions

COMP36111: Advanced Algorithms I
Lecture 8: Hardness and Reductions

Ian Pratt-Hartmann

Room KB2.38: email: ipratt@cs.man.ac.uk

2016–17
• Reading for this lecture:
 • Sipser: Chapter 7.
Outline

Reductions and hardness
- Reductions
 - Transitivity of reductions
 - Hardness and completeness

Cook’s theorem
- Cook’s theorem

Some easy reductions
- 3-SAT
- Integer linear programming
Reductions

• Recall the problems SAT and k-SAT

SAT
Given: A set of clauses Γ
Return: Y if Γ is satisfiable, and N otherwise

k-SAT
Given: A set of clauses Γ each of which has at most k literals.
Return: Y if Γ is satisfiable, and N otherwise.

• *Prima facie*, SAT looks harder than k-SAT. But is it?
• Let P_1, P_2 be problems over alphabets Σ_1, Σ_2, respectively.

• We say P_1 is (many-one logspace) reducible to P_2 if there is a function $f : \Sigma_1^* \rightarrow \Sigma_2^*$ such that: (i) f can be computed by a deterministic TM using at most $\log n$ space on any work tape; and (ii) for all $x \in \Sigma_1^*$, $x \in P_1$ if and only if $f(x) \in P_2$.

• In this case, we write

$$P_1 \leq_{\log}^m P_2$$

• We think of $P_1 \leq_{\log}^m P_2$ as stating any of the following:
 • P_2 is at least as hard as P_1;
 • P_1 is no harder than P_2;
 • if anyone shows me an easy way of solving P_2, I have an easy way of solving P_1.
• Such reductions provide a way of showing that a problem is in a complexity class, because (sensible) complexity classes, such as

\textbf{LogSpace}, \textbf{NLogSpace}, \textbf{PTime}, \textbf{NPTime}, \ldots

are closed under many-one logspace reductions.

• \textbf{Warning}: Classes such as \textbf{TIME}(n), \textbf{TIME}(n^2) etc. are not closed under many-one logspace reductions.
Outline

Reductions and hardness
- Reductions
 - Transitivity of reductions
- Hardness and completeness

Cook’s theorem
- Cook’s theorem

Some easy reductions
- 3-SAT
- Integer linear programming
Furthermore, reducibility is a transitive relation, as the next theorem shows.

Theorem

If \(f_1 : \Sigma_1^* \rightarrow \Sigma_2^* \) and \(f_2 : \Sigma_2^* \rightarrow \Sigma_3^* \) are both computable in logarithmic space, then so is \(f_2 \circ f_1 : \Sigma_1^* \rightarrow \Sigma_3^* \).

The following picture is **not** a proof!
• Here is a Turing machine that will compute $f_2 \circ f_1$ in logarithmic space:

 calculate the first bit of $f_1(x)$
 keep a counter to say which bit this is—initially 1
 start a simulation of $f_2(f_1(x))$, using the calculated bit
 if the simulation of f_2 asks to move the read head to the right
 calculate next bit of $f_1(x)$
 write it on top of the current bit
 update the output bit counter
 if the simulation of f_2 asks to move the read head to the left
 restart the calculation of $f_1(x)$
 continue until the required output bit is calculated
 write it on top of the current bit
 update the output bit counter
• A weaker notion of reduction is commonly encountered in textbooks (e.g. Sipser).

• Denote by \mathbf{P} the set of functions $\{n^c \mid c > 0\}$.

• Let P_1, P_2 be problems over alphabets Σ_1, Σ_2, respectively.

• We say P_1 is (many-one polytime) reducible to P_2 if there is a function $f : \Sigma_1^* \rightarrow \Sigma_2^*$, in $\text{TIME}(\mathbf{P})$ such that, for all $x \in \Sigma_1^*$, $x \in P_1$ if and only if $f(x) \in P_2$.

• In this case, we write

$$P_1 \leq^p_m P_2$$
Many-one logspace reducibility is at least as strong as many-one polytime reducibility.

Many-one polytime reducibility is obviously transitive. (Ask if you do not understand this.)

However, many-one logspace reducibility is theoretically a bit more useful.

In practice, most encountered instances of many-one polytime reducibility are in fact instances of many-one logspace reducibility.

We shall always use many-one logspace reducibility unless explicitly stated otherwise.
Outline

Reductions and hardness
 Reductions
 Transitivity of reductions
 Hardness and completeness

Cook’s theorem
 Cook’s theorem

Some easy reductions
 3-SAT
 Integer linear programming
• It turns out that, for certain complexity classes \mathcal{C}, and certain problems P, every problem $P' \in \mathcal{C}$ is reducible to P.
• That is, P is at least as hard as every problem in \mathcal{C}.
• Of particular interest is where the problem P is itself a member of \mathcal{C}.
• Much of the attraction of complexity theory arises from the existence of such problems.
Definition
Let C be a complexity class and P a problem. We say that P is C-hard (under many-one logspace reducibility) if, for all $P' \in C$, $P' \leq_m^\log P$.
We say that P is C-complete (umolsr) if, $P \in C$ and P is C-hard (umolsr).
Outline

Reductions and hardness
 Reductions
 Transitivity of reductions
 Hardness and completeness

Cook’s theorem
 Cook’s theorem

Some easy reductions
 3-SAT
 Integer linear programming
Theorem (Cook)

SAT *is* **NPTIME-complete**.
Proof.
Suppose \mathcal{P} is any problem in NPTime. Let M be a TM accepting \mathcal{P}, with running time bounded by $p(n)$. For simplicity, let us assume M has just one tape. Thus, M has the form

$$\langle \Sigma, Q, s^*, T \rangle,$$

where Σ is the alphabet of \mathcal{P}, Q is the set of states, s^* the halting state and T the set of transitions.

Each transition $\tau \in T$ has the form

$$\tau = \langle s, a, t, b, \delta \rangle,$$

where $s, t \in Q$ are states, $a, b \in \Sigma \cup \{\sqcup, \triangleright\}$, and $\delta \in \{-1, 0, 1\}$ indicating ‘left’, ‘stay’ or ‘right’.

\[\square\]
Proof.
We picture the operation of M as

and encode any run using the proposition letters

$p_{i,j}^a$: tape square i contains symbol a at time j
$h_{i,j}$: the head is over tape square i at time j
q_j^s: the state is s at time j.
$t_{i,j}^\tau$: transition τ is executed at time j with head on tape square i.
Proof.

We write clauses saying that, at each time, the head is somewhere

$$\{ h_{1,j} \lor \cdots \lor h_{p(n),j} \mid 1 \leq j \leq p(n) \}$$

and is not in two places at once

$$\{ \neg h_{i,j} \lor \neg h_{i',j} \mid 1 \leq i < i' \leq p(n), 1 \leq j \leq p(n) \}$$

and so on. We write clauses saying that the input is $x[1], \ldots, x[n]$ (remember \square is the blank symbol):

$$\{ p_{i,1}^x \mid 1 \leq i \leq n \}$$

$$\{ p_{i,1}^\square \mid n + 1 \leq i \leq p(n) \}$$

and so on. (proof TBC . . .)
Proof.
Further, we write clauses specifying when a transition of M may be executed. For all i, j ($1 \leq i, j \leq p(n)$), and for all $a \in \Sigma \cup \{\sqcup, \sqsupset\}$, we take Γ_x to contain the (big) clause

$$
\neg q^s_j \lor \neg h_{i,j} \lor \neg p^a_{i,j} \lor \bigvee \{ t^T_{i,j} \mid \tau = \langle s, a, t, b, \delta \rangle \in T \}
$$

listing the allowed transitions M may make. Note that M is a non-deterministic TM!
Proof.
And we write clauses specifying the effects of transitions:

\[
\begin{align*}
\{ \neg t_{i,j}^T \lor p_{i,j+1}^b & \mid 1 \leq i, j \leq p(n), \tau = \langle s, a, t, b, \delta \rangle \} \\
\{ \neg t_{i,j}^T \lor q_{j+1}^t & \mid 1 \leq i, j \leq p(n), \tau = \langle s, a, t, b, \delta \rangle \} \\
\{ \neg t_{i,j}^T \lor h_{i+\delta,j+1} & \mid 1 \leq i, j \leq p(n), \tau = \langle s, a, t, b, \delta \rangle \}.
\end{align*}
\]

Actually, there are some complications here when the tape head is over the leftmost square. Can you fix this formula?
Proof.
And we write clauses saying that M accepts the input:

$$\{q_{p(n)}^{s^*}, p_{1,p(n)}^\gamma \} \cup \{p_{i,p(n)}^\cup \mid 2 \leq i \leq p(n)\},$$

where s^* is the halting state.

Call the resulting set of clauses Γ_x.
There are a few additional clauses in Γ_x that I have not mentioned; but it is routine to fill them in. (proof TBC . . .)
Proof.

It is easy to see that Γ_x is satisfiable iff M accepts x; hence Γ_x is satisfiable iff $x \in P$.

It is also ‘easy’ to see that, from a description of x, we can compute the set of clauses Γ_M using at most $\log n$ amount of workspace, where $n = |x|$. (Remember: the parameters of M are constant here; the only variable input is x.)

Thus, the function $x \mapsto \Gamma_x$ shows that $P \leq_{m}^{\log} \text{SAT}$, as required.
• It is completely trivial that 3-SAT is no harder than SAT.
• Slightly surprising is that the reverse condition holds: SAT is no harder than 3-SAT!
• Notice that this means that 3-SAT is \(\text{NPTime} \)-complete.
• For suppose \(\mathcal{P} \) is a problem in \(\text{NPTime} \). We have

\[
\mathcal{P} \leq^\log_m \text{SAT} \leq^\log_m \text{3-SAT}
\]

and the result follows by the transitivity of \(\leq^\log_m \).
Outline

Reductions and hardness
 Reductions
 Transitivity of reductions
 Hardness and completeness

Cook’s theorem
 Cook’s theorem

Some easy reductions
 3-SAT
 Integer linear programming
Theorem
3-SAT is \(\text{NPTime-complete} \)

Proof.
We show that \(\text{SAT} \leq^\log_m 3\text{-SAT} \).

Suppose we are given a set of clauses \(\Gamma \). We show how to compute a set of 3-literal clauses \(\Gamma' \) such that \(\Gamma \) is satisfiable iff \(\Gamma' \) is satisfiable.

Pick any \((\ell_1 \lor \cdots \lor \ell_m) \in \Gamma \) with \(m \geq 4 \). (proof TBC . . .)
Proof.
Let p be a new proposition letter, and let Γ'' be the result of replacing γ in Γ with the pair of clauses:

$$p \lor \ell_3 \lor \cdots \lor \ell_m$$
$$\neg p \lor \ell_1 \lor \ell_2$$

These clauses entail γ, so if Γ'' is satisfiable, Γ certainly is. On the other hand, if the assignment θ satisfies Γ, then setting $\theta(p) = \theta(\ell_1 \lor \ell_2)$ clearly satisfies Γ''.

Proceeding in this way, we eventually obtain the required Γ'. \qed
Outline

Reductions and hardness
 Reductions
 Transitivity of reductions
 Hardness and completeness

Cook’s theorem
 Cook’s theorem

Some easy reductions
 3-SAT
 Integer linear programming
• **Integer linear programming (ILP)** is the problem of determining the existence of a solution (over \(\mathbb{N} \)) to a system of linear Diophantine equations.

\[
\text{ILP}
\]

Given: a system of l.d. equations \(\mathcal{E} : A\mathbf{x} = \mathbf{b} \).

Return: Yes if \(\mathcal{E} \) has a solution over \(\mathbb{N} \), and No otherwise.

• We are also interested in the special case where the solutions are limited to values 0 and 1

• For \(k \geq 2 \), we have the problem

\[
\text{ILP}(0/1)
\]

Given: a system of l.d. equations \(\mathcal{E} : A\mathbf{x} = \mathbf{b} \).

Return: Yes if \(\mathcal{E} \) has a solution over \(\{0, 1\} \), and No otherwise.
Theorem

\[ILP(0/1) \text{ is } \text{NPTime}-\text{complete} \]

Proof.

We show that \(3\text{-SAT} \leq^\text{log} \text{ ILP}(0/1)\).

Suppose we are given a set of 3-literal clauses \(\Gamma\). We show how to compute system of linear Diophantine equations \(\mathcal{E}\) such that \(\mathcal{E}\) has a solution over \(\{0, 1\}\) iff \(\Gamma\) is satisfiable.

For every proposition letter \(p\) mentioned in \(\Gamma\), let \(x_p\) and \(x_{\neg p}\) be variables and write the equation

\[x_p + x_{\neg p} = 1. \]
Proof.
For every clause $\gamma := (\ell_1 \lor \ell_2 \lor \ell_3) \in \Gamma$, let y_1^γ, y_2^γ be variables, and write the equation

$$x_{\ell_1} + x_{\ell_2} + x_{\ell_3} + y_1^\gamma + y_2^\gamma = 3.$$

Call the resulting system of equations E_Γ.

Suppose θ is a truth-value assignment for the proposition letters in Γ. Now define

$$x_p = \begin{cases}
1 & \text{if } \theta(p) = \top \\
0 & \text{otherwise.}
\end{cases}$$

and define $x_{\neg p} = 1 - x_p$.

□
Proof.
If \(\theta \) makes \(\gamma := (\ell_1 \lor \ell_2 \lor \ell_3) \) true, then we can certainly find \(y_1^\gamma \), \(y_2^\gamma \) satisfying.

\[
x_{\ell_1} + x_{\ell_2} + x_{\ell_3} + y_1^\gamma + y_2^\gamma = 3.
\]

So all the equations in \(\mathcal{E}_\Gamma \) are satisfied.

Conversely, given any assignment of values in \(\{0, 1\} \) to the variables \(x_\ell \) and \(y_j^\gamma \), define the truth-value assignment

\[
\theta(p) = \begin{cases} \top & \text{if } x_p = 1 \\ \bot & \text{otherwise.} \end{cases}
\]

If the various equations \(x_p + x_{\neg p} = 1 \) hold, then, for all literals \(\ell \), \(\theta(p) = \top \) iff \(x_\ell = 1 \). Hence, if the remaining equations in \(\mathcal{E}_\Gamma \) hold, every clause in \(\Gamma \) is made true by \(\theta \).