• Reading for this lecture:
 • Sipser: Chapter 7.
Outline

Reductions and hardness

Reductions
 Transitivity of reductions
 Hardness and completeness

Cook’s theorem
 Cook’s theorem

Some easy reductions
 3-SAT
 Integer linear programming
Reductions

• Recall the problems SAT and k-SAT

SAT

Given: A set of clauses Γ
Return: Y if Γ is satisfiable, and N otherwise

k-SAT

Given: A set of clauses Γ each of which has at most k literals.
Return: Y if Γ is satisfiable, and N otherwise.

• *Prima facie*, SAT looks harder than k-SAT. But is it?
• Let P_1, P_2 be problems over alphabets Σ_1, Σ_2, respectively.

• We say P_1 is \textit{(many-one logspace) reducible} to P_2 if there is a function $f : \Sigma_1^* \rightarrow \Sigma_2^*$ such that: (i) f can be computed by a deterministic TM using at most $\log n$ space on any work tape; and (ii) for all $x \in \Sigma_1^*$, $x \in P_1$ if and only if $f(x) \in P_2$.

• In this case, we write

$$P_1 \leq^\log_m P_2$$

• We think of $P_1 \leq^\log_m P_2$ as stating any of the following:
 • P_2 is at least as hard as P_1;
 • P_1 is no harder than P_2;
 • if anyone shows me an easy way of solving P_2, I have an easy way of solving P_1.
• Such reductions provide a way of showing that a problem is in a complexity class, because (sensible) complexity classes, such as

\textbf{LogSpace, NLogSpace, PTime, NPTime, ...}

are closed under many-one logspace reductions.

• \textbf{Warning:} Classes such as \texttt{TIME}(n), \texttt{TIME}(n^2) etc. are not closed under many-one logspace reductions.
Outline

Reductions and hardness
 Reductions
 Transitivity of reductions
 Hardness and completeness

Cook’s theorem
 Cook’s theorem

Some easy reductions
 3-SAT
 Integer linear programming
Furthermore, reducibility is a transitive relation, as the next theorem shows.

Theorem

If \(f_1 : \Sigma_1^* \rightarrow \Sigma_2^* \) and \(f_2 : \Sigma_2^* \rightarrow \Sigma_3^* \) are both computable in logarithmic space, then so is \(f_2 \circ f_1 : \Sigma_1^* \rightarrow \Sigma_3^* \).

The following picture is **not** a proof!
• Here is a Turing machine that will compute \(f_2 \circ f_1 \) in logarithmic space:

- calculate the first bit of \(f_1(x) \)
- keep a counter to say which bit this is—initially 1
- start a simulation of \(f_2(f_1(x)) \), using the calculated bit
- if the simulation of \(f_2 \) asks to move the read head to the right
 - calculate next bit of \(f_1(x) \)
 - write it on top of the current bit
 - update the output bit counter
- if the simulation of \(f_2 \) asks to move the read head to the left
 - restart the calculation of \(f_1(x) \)
 - continue until the required output bit is calculated
 - write it on top of the current bit
 - update the output bit counter
• A weaker notion of reduction is commonly encountered in textbooks (e.g. Sipser).

• Denote by \mathbf{P} the set of functions $\{n^c \mid c > 0\}$.

• Let P_1, P_2 be problems over alphabets Σ_1, Σ_2, respectively.

• We say P_1 is (many-one polytime) reducible to P_2 if there is a function $f : \Sigma_1^* \rightarrow \Sigma_2^*$, in $\text{TIME}(\mathbf{P})$ such that, for all $x \in \Sigma_1^*$, $x \in P_1$ if and only if $f(x) \in P_2$.

• In this case, we write

$$ P_1 \leq_{\text{p}}^\text{m} P_2 $$
• Many-one logspace reducibility is at least as strong as many-one polytime reducibility.
• Many-one polytime reducibility is obviously transitive. (Ask if you do not understand this.)
• However, many-one logspace reducibility is theoretically a bit more useful.
• In practice, most encountered instances of many-one polytime reducibility are in fact instances of many-one logspace reducibility.
• We shall always use many-one logspace reducibility unless explicitly stated otherwise.
Outline

Reductions and hardness
- Reductions
- Transitivity of reductions
- Hardness and completeness

Cook’s theorem
- Cook’s theorem

Some easy reductions
- 3-SAT
- Integer linear programming
• It turns out that, for certain complexity classes \mathcal{C}, and certain problems P, every problem $P' \in \mathcal{C}$ is reducible to P.
• That is, P is at least as hard as every problem in \mathcal{C}.
• Of particular interest is where the problem P is itself a member of \mathcal{C}.
• Much of the attraction of complexity theory arises from the existence of such problems.
Definition
Let C be a complexity class and P a problem. We say that P is C-hard \((\text{under many-one logspace reducibility})\) if, for all $P' \in C$, $P' \leq_{\text{m}}^\log P$.
We say that P is C-complete \((\text{umolsr})\) if, $P \in C$ and P is C-hard \((\text{umolsr})\)
Outline

Reductions and hardness
 Reductions
 Transitivity of reductions
 Hardness and completeness

Cook’s theorem
 Cook’s theorem

Some easy reductions
 3-SAT
 Integer linear programming
Theorem (Cook)

SAT is \textsc{NPTIME}-complete.
Proof.
Suppose \mathcal{P} is any problem in NPTime. Let M be a TM accepting \mathcal{P}, with running time bounded by $p(n)$. For simplicity, let us assume M has just one tape. Thus, M has the form

$$\langle \Sigma, Q, s^*, T \rangle,$$

where Σ is the alphabet of \mathcal{P}, Q is the set of states, s^* the halting state and T the set of transitions.

Each transition $\tau \in T$ has the form

$$\tau = \langle s, a, t, b, \delta \rangle,$$

where $s, t \in Q$ are states, $a, b \in \Sigma \cup \{\sqcup, \triangleright\}$, and $\delta \in \{-1, 0, 1\}$ indicating ‘left’, ‘stay’ or ‘right’.
Proof.

We picture the operation of M as

and encode any run using the proposition letters

$p_{i,j}^a$: tape square i contains symbol a at time j

$h_{i,j}$: the head is over tape square i at time j

q_j^s: the state is s at time j.

$t_{i,j}^\tau$: transition τ is executed at time j with head on tape square i.
Proof.
We write clauses saying that, at each time, the head is somewhere

\[\{ h_{1,j} \lor \cdots \lor h_{p(n),j} \mid 1 \leq j \leq p(n) \} \]

and is not in two places at once

\[\{ \neg h_{i,j} \lor \neg h_{i',j} \mid 1 \leq i < i' \leq p(n), 1 \leq j \leq p(n) \} \]

and so on. We write clauses saying that the input is \(x[1], \ldots, x[n] \)
(remember \(\square \) is the blank symbol):

\[\{ p_{i,1}^{x[i]} \mid 1 \leq i \leq n \} \]

\[\{ p_{i,1}^{\square} \mid n + 1 \leq i \leq p(n) \} \]

and so on. (proof TBC . . .)
Proof.
Further, we write clauses specifying when a transition of M may be executed. For all i, j ($1 \leq i, j \leq p(n)$), and for all $a \in \Sigma \cup \{\sqsubseteq, \sqsupset\}$, we take Γ_x to contain the (big) clause

$$
\neg q_j^s \lor \neg h_{i,j} \lor \neg p_{i,j}^a \lor \bigvee\{t_{i,j}^\tau \mid \tau = \langle s, a, t, b, \delta \rangle \in T\}
$$

listing the allowed transitions M may make. Note that M is a non-deterministic TM!
Proof.

And we write clauses specifying the effects of transitions:

\[
\{ \neg t^\tau_{i,j} \lor p^b_{i,j+1} \mid 1 \leq i, j \leq p(n), \tau = \langle s, a, t, b, \delta \rangle \}
\]

\[
\{ \neg t^\tau_{i,j} \lor q^t_{j+1} \mid 1 \leq i, j \leq p(n), \tau = \langle s, a, t, b, \delta \rangle \}
\]

\[
\{ \neg t^\tau_{i,j} \lor h_{i+\delta,j+1} \mid 1 \leq i, j \leq p(n), \tau = \langle s, a, t, b, \delta \rangle \}.
\]

Actually, there are some complications here when the tape head is over the leftmost square. Can you fix this formula?
Proof.
And we write clauses saying that M accepts the input:

$$\{q_{p(n)}^{s^{*}}, p_{1, p(n)}^{\gamma} \} \cup \{p_{i, p(n)}^{\cup} \mid 2 \leq i \leq p(n)\},$$

where s^{*} is the halting state.

Call the resulting set of clauses Γ_{x}.

There are a few additional clauses in Γ_{x} that I have not mentioned; but it is routine to fill them in. (proof TBC . . .)
Proof.
It is easy to see that Γ_x is satisfiable iff M accepts x; hence Γ_x is satisfiable iff $x \in P$.

It is also ‘easy’ to see that, from a description of x, we can compute the set of clauses Γ_M using at most $\log n$ amount of workspace, where $n = |x|$. (Remember: the parameters of M are constant here; the only variable input is x.)

Thus, the function $x \mapsto \Gamma_x$ shows that $P \leq_m \text{SAT}$, as required.
• It is completely trivial that 3-SAT is no harder than SAT.
• Slightly surprising is that the reverse condition holds: SAT is no harder than 3-SAT!
• Notice that this means that 3-SAT is \(\text{NPC} \)-complete.
• For suppose \(\mathcal{P} \) is a problem in \(\text{NPC} \). We have

\[
\mathcal{P} \leq^\log_m \text{SAT} \leq^\log_m \text{3-SAT}
\]

and the result follows by the transitivity of \(\leq^\log_m \).
Outline

Reductions and hardness
 Reductions
 Transitivity of reductions
 Hardness and completeness

Cook’s theorem
 Cook’s theorem

Some easy reductions
 3-SAT
 Integer linear programming
Theorem
3-SAT is \textsc{NPTIME}-complete

Proof.
We show that \text{SAT} \leq_{m}^{\log} 3\text{-SAT}.

Suppose we are given a set of clauses Γ. We show how to compute a set of 3-literal clauses Γ' such that Γ is satisfiable iff Γ' is satisfiable.

Pick any $(\ell_1 \lor \cdots \lor \ell_m) \in \Gamma$ with $m \geq 4$. (proof TBC . . .)
Proof.
Let p be a new proposition letter, and let Γ'' be the result of replacing γ in Γ with the pair of clauses:

\[
p \lor \ell_3 \lor \cdots \lor \ell_m
\]
\[
\neg p \lor \ell_1 \lor \ell_2
\]

These clauses entail γ, so if Γ'' is satisfiable, Γ certainly is. On the other hand, if the assignment θ satisfies Γ, then setting $\theta(p) = \theta(\ell_1 \lor \ell_2)$ clearly satisfies Γ''.

Proceeding in this way, we eventually obtain the required Γ'. \qed
Outline

Reductions and hardness
- Reductions
- Transitivity of reductions
- Hardness and completeness

Cook’s theorem
- Cook’s theorem

Some easy reductions
- 3-SAT
- Integer linear programming
• Integer linear programming (ILP) is the problem of determining the existence of a solution (over \mathbb{N}) to a system of linear Diophantine equations.

ILP
Given: a system of l.d. equations $\mathcal{E} : Ax = b$.
Return: Yes if \mathcal{E} has a solution over \mathbb{N}, and No otherwise.

• We are also interested in the special case where the solutions are limited to values 0 and 1

• For $k \geq 2$, we have the problem

ILP(0/1)
Given: a system of l.d. equations $\mathcal{E} : Ax = b$.
Return: Yes if \mathcal{E} has a solution over $\{0, 1\}$, and No otherwise.
Theorem

ILP(0/1) is NPTime-complete

Proof.
We show that 3-SAT \leq_{m}^{\log} ILP(0/1).

Suppose we are given a set of 3-literal clauses Γ. We show how to compute system of linear Diophantine equations \mathcal{E} such that \mathcal{E} has a solution over $\{0, 1\}$ iff Γ is satisfiable.

For every proposition letter p mentioned in Γ, let x_p and $x_{\neg p}$ be variables and write the equation

$$x_p + x_{\neg p} = 1.$$
Proof.
For every clause \(\gamma := (\ell_1 \lor \ell_2 \lor \ell_3) \in \Gamma \), let \(y_{1\gamma}, y_{2\gamma} \) be variables, and write the equation

\[
x_{\ell_1} + x_{\ell_2} + x_{\ell_3} + y_{1\gamma} + y_{2\gamma} = 3.
\]

Call the resulting system of equations \(E_{\Gamma} \).

Suppose \(\theta \) is a truth-value assignment for the proposition letters in \(\Gamma \). Now define

\[
x_p = \begin{cases}
1 & \text{if } \theta(p) = \top \\
0 & \text{otherwise.}
\end{cases}
\]

and define \(x_{\neg p} = 1 - x_p \).
Proof.
If \(\theta \) makes \(\gamma := (\ell_1 \lor \ell_2 \lor \ell_3) \) true, then we can certainly find \(y_1^{\gamma} \), \(y_2^{\gamma} \) satisfying.

\[
x_{\ell_1} + x_{\ell_2} + x_{\ell_3} + y_1^{\gamma} + y_2^{\gamma} = 3.
\]

So all the equations in \(E_\Gamma \) are satisfied.

Conversely, given any assignment of values in \(\{0, 1\} \) to the variables \(x_\ell \) and \(y_j^{\gamma} \), define the truth-value assignment

\[
\theta(p) = \begin{cases}
\top & \text{if } x_p = 1 \\
\bot & \text{otherwise.}
\end{cases}
\]

If the various equations \(x_p + x_{\neg p} = 1 \) hold, then, for all literals \(\ell \), \(\theta(p) = \top \) iff \(x_\ell = 1 \). Hence, if the remaining equations in \(E_\Gamma \) hold, every clause in \(\Gamma \) is made true by \(\theta \). \(\square \)