COMP36111: Advanced Algorithms I

Lecture 6: Propositional logic satisfiability

Ian Pratt-Hartmann

Room KB2.38: email: ipratt@cs.man.ac.uk

2017–18
Outline

Propositional logic

Clauses

The Davis-Putnam algorithm

The probability of satisfiability

Special cases

Summary
• Let $\mathbf{P} = \{p_1, p_2, \ldots\}$ be a countably infinite set. We call the elements of \mathbf{P} *proposition letters*.

• The set of formulas of propositional logic is defined recursively as follows:
 - every element of \mathbf{P} is a formula
 - if φ_1 and φ_2 are formulas, then so are
 $$(\neg \varphi_1), \ (\varphi_1 \lor \varphi_2), \ (\varphi_1 \land \varphi_2), \ (\varphi_1 \rightarrow \varphi_2)$$

• For example:
 $$(\neg (p_1 \rightarrow ((\neg p_2) \lor p_3)))$$
 $$((p_1 \rightarrow (\neg p_1)) \land ((\neg p_1) \rightarrow p_1))$$

 are formulas

• We omit parentheses for clarity, using standard conventions:
 $$(\neg (p_1 \rightarrow (\neg p_2 \lor p_3)))$$
 $$(p_1 \rightarrow \neg p_1) \land (\neg p_1 \rightarrow p_1)$$
• An assignment is a function $\theta : \mathcal{P} \rightarrow \{T, F\}$.

• We extend θ to formulas by setting

$$
\theta(\neg \varphi_1) = T \text{ iff } \varphi_1 = F
$$

$$
\theta(\varphi_1 \lor \varphi_2) = T \text{ iff } \theta(\varphi_1) = T \text{ or } \theta(\varphi_2) = T
$$

$$
\theta(\varphi_1 \land \varphi_2) = T \text{ iff } \theta(\varphi_1) = T \text{ and } \theta(\varphi_2) = T
$$

$$
\theta(\varphi_1 \rightarrow \varphi_2) = T \text{ iff } \theta(\varphi_1) = F \text{ or } \theta(\varphi_2) = T
$$

• A formula φ is satisfiable if there exists an assignment θ such that $\theta(\varphi) = T$.

• For example,

$$
\neg(p_1 \rightarrow (\neg p_2 \lor p_3))
$$

is satisfiable, but

$$
(p_1 \rightarrow \neg p_1) \land (\neg p_1 \rightarrow p_1)
$$

is not
We then have the problem:

PROPOSITIONAL SAT

Given: a propositional logic formula \(\varphi \);
Return: Yes if \(\varphi \) is satisfiable, and No otherwise.

Later on, we shall be interested in the complexity of the satisfiability problem.
Outline

Propositional logic

Clauses

The Davis-Putnam algorithm

The probability of satisfiability

Special cases

Summary
• It turns out that the following special case is as general as we need.

• A literal is an expression p or $\neg p$, where p is a propositional letter.

• A clause is an expression $\ell_1 \lor \cdots \lor \ell_k$, where the ℓ_i are literals. (We allow the empty disjunction, denoted \bot, which contains no literals.)

• Examples of clauses

 $p_1 \lor \neg p_2 \lor p_3$

 $\neg p_1 \lor \neg p_4 \lor \neg p_7 \lor p_8$

 $\neg p_{14}$

 p_1

 \bot
• We extend any assignment \(\theta \) to literals by setting

\[
\theta(\neg p) = \begin{cases}
 F & \text{if } \theta(p) = T \\
 T & \text{otherwise}
\end{cases}
\]

and to clauses by setting

\[
\theta(\ell_1 \lor \cdots \lor \ell_k) = \begin{cases}
 T & \text{if } \theta(\ell_i) = T \text{ for some } i \\
 F & \text{otherwise}
\end{cases}
\]

A set of clauses is \emph{satisfiable} if there exists an assignment \(\theta \) such that \(\theta(\gamma) = T \) for all \(\gamma \in \Gamma \).
• Thus, the set of clauses

\[
\{(p_1 \lor \neg p_2 \lor p_3), (\neg p_1 \lor \neg p_4 \lor \neg p_7 \lor p_8), \neg p_{14}\}
\]

is clearly satisfiable.

• By contrast,

\[
\{(p_1 \lor p_2), (p_1 \lor \neg p_2), (\neg p_1 \lor p_2), (\neg p_1 \lor \neg p_2)\}
\]

is clearly unsatisfiable.
• We then have the problem:

SAT
Given: a set of clauses \(\Gamma \);
Return: Yes if \(\Gamma \) is satisfiable, and No otherwise.

• We are also interested in the special case where there is a fixed bound on the length of each clause.

• For \(k \geq 2 \), we have the problem

\(k \)-SAT
Given: a set of clauses \(\Gamma \), each with at most \(k \) literals;
Return: Yes if \(\Gamma \) is satisfiable, and No otherwise.
Outline

Propositional logic

Clauses

The Davis-Putnam algorithm

The probability of satisfiability

Special cases

Summary
• The *Davis-Putnam* (-Logemann-Loveland) algorithm

begin resolve(Γ, ℓ)
 for each γ ∈ Γ
 if γ contains ℓ, remove γ from Γ
 if γ contains ¯ℓ, remove ¯ℓ from γ

begin DPLL(Γ)
 if Γ is empty then return Yes
 if Γ contains the empty clause then return No
 while Γ contains any unit clause ℓ
 remove ℓ from Γ
 Γ = resolve(Γ, ℓ)
 if Γ is empty then return Yes
 if Γ contains the empty clause then return No
 let ℓ be the first literal of the first clause of Γ
 if DPLL(Γ ∪ {ℓ}) then return Yes
 if DPLL(Γ ∪ {¯ℓ}) then return Yes
return No
• The DLLP algorithm (which is deterministic) can be seen to run in time bounded by $2^{p(n)}$, where p is some fixed polynomial, and n is the total size of Γ.

• It follows that SAT is in ExpTime.

• In fact, this algorithm is (close to) the best way of determining propositional clause satisfiability in practice.

• Nevertheless, from the point of view of the complexity classes seen in the last lecture, we can do ‘better’ . . .
• Consider the following non-deterministic algorithm for SAT

begin NdSatTest(Γ)
 if Γ contains ⊥ then return No
 while Γ is non-empty
 Select some proposition letter p occurring in Γ
 Either
 Delete every clause containing the literal p
 Delete ¬p from all remaining clauses
 Or
 Delete every clause containing the literal ¬p
 Delete p from all remaining clauses
 if Γ contains ⊥ then return No
 return Yes

• Hence, SAT is in \textsf{NPTime}.
• Notice the asymmetry involved in the notion of (non-deterministic) computation:

\[M \text{ recognizes } L \subseteq \Sigma^* \text{ just in case, for each string } x \in \Sigma^*, x \in L \text{ if and only if there exists a terminating run of } M \text{ on input } x. \]

• This asymmetry prompts us to define the complement classes as follows.

If \(\mathcal{C} \) is a class of languages, then \(\mathcal{C}_\text{co} \) is the class of languages \(L \) such that \(\Sigma^* \setminus L \) is in \(\mathcal{C} \), where \(\Sigma \) is the alphabet of \(L \).
• Trivially,

\[\text{TIME}(G) = \text{CO-TIME}(G) \]
\[\text{SPACE}(G) = \text{CO-SPACE}(G). \]

• For non-deterministic classes, some of these equations are not known to hold:

\[\text{NP\text{\text{-}TIME}} \ ? = \ \text{CO-NP\text{\text{-}TIME}} \]

• But there are some surprises to come . . .
Outline

Propositional logic

Clauses

The Davis-Putnam algorithm

The probability of satisfiability

Special cases

Summary
• Suppose we fix integers $m > 0$, $n > 0$ and $k > 1$.
• There is a finite number of (multi-) sets of m k-literal clauses over n proposition letters.
• Some of these will be satisfiable, others not. So how many are satisfiable (as a function of m, k and n)?
• Immediately, we see that, for fixed k:
 • if m/n is small, then the probability of satisfiability is high;
 • if m/n is large, then the probability of satisfiability is low.
• But what does the relationship look like in detail?
• In practice, we must solve this problem by generating a sample of sets of clauses at random, and then running an algorithm such as DPLL.
• Here is a graph I obtained by running my own implementation on large, randomly generated sets of 3-literal clauses.

• Probability of satisfiability is plotted against m/n where m is number of clauses and n is number or proposition letters.

• Graphs are given for $n = 20$, $n = 30$, $n = 40$, $n = 50$.
• The 50% satisfiability point seems to be achieved at around $m/n = 4.3$

• As $n \to \infty$, the 50% threshold value seems to approach a limit; moreover, the transition seems to get steeper with increasing n.

• This phenomenon is known as a *phase transition*: it still has the status of a conjecture.
Outline

Propositional logic

Clauses

The Davis-Putnam algorithm

The probability of satisfiability

Special cases

Summary
A clause $\ell_1 \lor \cdots \lor \ell_k$ is Horn if all but at most one of the literals are negative.

For example,

\[
\neg p_1 \lor p_2, \quad \neg p_1 \lor \neg p_2 \lor p_3, \quad p_1, \quad \neg p_1
\]

are all Horn, while

\[
p_1 \lor p_2, \quad p_1 \lor \neg p_2 \lor p_3
\]

are not.

Note that a Horn clause

\[
\neg p_1 \lor \cdots \lor \neg p_{k-1} \lor p_k
\]

can be written as an implication

\[
(p_1 \land \cdots \land p_{k-1}) \rightarrow p_k.
\]
The problem *Horn-SAT* may now be defined as follows:

Given: A set of Horn clauses Γ

Return: Yes if Γ is satisfiable, and No otherwise.

The following modification of DPLL decides *Horn-SAT*.

begin Horn-DPLL(Γ)
 if Γ contains the empty clause then return No
 while Γ contains any unit clause ℓ
 remove ℓ from Γ
 $\Gamma =$ resolve(Γ, ℓ)
 if Γ contains the empty clause then return No
 return Yes
end Horn-DPLL

Horn-DPLL is easily seen to run in time $O(n^2)$.

• Another special case is 2-SAT

• Terminology: a clause is *Krom* if it contains at most two literals.

• For example,

\[\neg p_1 \lor p_2, \quad \neg p_1 \lor \neg p_2 \quad p_1, \quad \neg p_1 \]

are all Krom, while \(\neg p_1 \lor \neg p_2 \lor p_3 \) is not.

• The problem *2-SAT* just asks for the satisfiability of Krom clauses.
• Recall that, in the context of propositional logic, a clause is **Krom** if it contains at most two literals.

• Let us write the opposite of any literal ℓ as $\overline{\ell}$.

• Note that (non-unit) Krom clauses may be regarded as implications:

$$\ell \lor m \equiv \overline{\ell} \rightarrow m.$$

• We have the problem

`KROM-SAT`

Given: A set Γ of Krom clauses.
Return: Yes if Γ is satisfiable, and No otherwise.

• and its complement

`KROM-UNSAT`

Given: A set Γ of Krom clauses.
Return: Yes if Γ is **unsatisfiable**, and No otherwise.
Theorem

The problem KROM-UNSAT is in NLogSpace.

Proof.

Let a set of clauses Γ be given. We may assume there are no unit clauses, since these can be eliminated by unit propagation. Also, we may assume $\bot \not\in \Gamma$ and $\Gamma \neq \emptyset$. So the clauses in Γ are all of the form $l \rightarrow m$.

Define a relation \succeq on the literals in Γ by $l \succeq m$ iff there is a sequence of literals $l = l_0, \ldots, l_k = m$ ($k \geq 1$) such that $l_i \rightarrow l_{i+1} \in \Gamma$ for each i ($0 \leq i < k$). Thus, \succeq is a pre-order (reflexive and transitive). Write $l \sim m$ if $l \succeq m$ and $m \succeq l$.

It suffices to prove that Γ is satisfiable iff there exists no literal l such that $l \sim \bar{l}$, determining $l \succeq m$ is essentially a ‘graph search’.
Proof.
It is obvious that Γ is unsatisfiable if there exists a literal l such that $l \sim \overline{l}$.

To prove the converse, consider the partial order (reflexive and transitive and anti-symmetric) induced by \succeq on the equivalence classes of \sim

Note that if l and m are in the same equivalence class, then so are l and \overline{m}. So equivalence classes come in 'opposite pairs'. □
Proof.

Suppose that \(\ell \) is never equivalent to \(\bar{\ell} \).

Start with some (undecided) equivalence class \(C \) lowest in the partial order, and make all its literals true (no contradictions). Make all its literals in the opposite equivalence class, say \(\bar{C} \), false. (no contradictions).

Make all literals false in any \(D \) such that \(\bar{C} \) is reachable from \(D \) in the partial order (no contradictions). Continue until all literals have been given a truth value. Easy to see that \(\Gamma \) is satisfied.
Proof.
Suppose that ℓ is never equivalent to $\bar{\ell}$.

Start with some (undecided) equivalence class C lowest in the partial order, and make all its literals true (no contradictions). Make all its literals in the opposite equivalence class, say \bar{C}, false. (no contradictions).

Make all literals false in any D such that \bar{C} is reachable from D in the partial order (no contradictions). Continue until all literals have been given a truth value. Easy to see that Γ is satisfied.
Proof.
Suppose that \(\ell \) is never equivalent to \(\bar{\ell} \).

Start with some (undecided) equivalence class \(C \) lowest in the partial order, and make all its literals true (no contradictions). Make all its literals in the opposite equivalence class, say \(\bar{C} \), false. (no contradictions).

Make all literals false in any \(D \) such that \(\bar{C} \) is reachable from \(D \) in the partial order (no contradictions). Continue until all literals have been given a truth value. Easy to see that \(\Gamma \) is satisfied.
Proof.
Suppose that ℓ is never equivalent to $\bar{\ell}$.

Start with some (undecided) equivalence class C lowest in the partial order, and make all its literals true (no contradictions). Make all its literals in the opposite equivalence class, say \bar{C}, false. (no contradictions).

Make all literals false in any D such that \bar{C} is reachable from D in the partial order (no contradictions). Continue until all literals have been given a truth value. Easy to see that Γ is satisfied.
Proof.
Suppose that \(\ell \) is never equivalent to \(\bar{\ell} \).

Start with some (undecided) equivalence class \(C \) lowest in the partial order, and make all its literals true (no contradictions). Make all its literals in the opposite equivalence class, say \(\bar{C} \), false. (no contradictions).

Make all literals false in any \(D \) such that \(\bar{C} \) is reachable from \(D \) in the partial order (no contradictions). Continue until all literals have been given a truth value. Easy to see that \(\Gamma \) is satisfied.
Outline

Propositional logic

Clauses

The Davis-Putnam algorithm

The probability of satisfiability

Special cases

Summary
We defined the problems PROPOSITIONAL SAT, SAT, k-SAT ($k \geq 1$) and HORN-SAT.

We presented the DPLL algorithm for SAT, and saw that it runs in exponential time.

We showed that SAT is in NPTIME.

We presented a modified version of the DPLL algorithm for Horn-SAT, and saw that it runs in polynomial time. Thus, Horn-SAT is in PTIME.

We presented a non-deterministic logarithmic space algorithm for KROM-UNSAT. Thus KROM-SAT is in Co-NLogSpace. (Warning: you will have to wait for several more lectures to hear the end of the story on this.)