COMP36111: Advanced Algorithms I

Lecture 1a:

Some Basic Graph Algorithms

Ian Pratt-Hartmann

Room KB2.38: email: ipratt@cs.man.ac.uk

2017–18
In this lecture, we consider algorithms for determining very simple properties of (directed and undirected) graphs.

The lecture is divided into three parts. The first establishes notation and terminology; the second introduces some very basic algorithms based on depth-first search; the third presents a generalization—Tarjan’s algorithm for strongly connected components.
Outline

Graphs and directed graphs

Depth-first search and other simple algorithms

Tarjan’s algorithm for strongly connected components
• A graph is a pair $G = (V, E)$, where V is a finite set and E a set of subsets of V of cardinality 2.

• We call the elements of V vertices, and the elements of E edges.

• If $\{u, v\} \in E$, we say that u and v are neighbours.

• If $v \in V$, $e \in E$ and $v \in e$, we say v and e are adjacent.

• Graphs are typically displayed pictorially:
- The following are **not** pictures of graphs:
 - Self-loops:
 - Multiple edges
 - Directions on edges
• A directed graph is a pair $G = (V, E)$, where V is a set and E a set of ordered pairs of distinct elements of V.
• Vertices, edges neighbours and adjacency are defined as with graphs.
• Directed graphs are again often depicted pictorially (notice the arrows on the edges):
• (Directed) graphs may be stored using adjacency lists, interpreted in the obvious way. Here is an example of an undirected graph:

From any vertex, the adjacent edges can be accessed efficiently.

From any edge, the adjacent vertices can be accessed efficiently.
• Alternatively, graphs can be stored using (symmetric) matrices.

\[
\begin{pmatrix}
* & 1 & 0 & 1 \\
1 & * & 1 & 1 \\
0 & 1 & * & 1 \\
1 & 1 & 1 & *
\end{pmatrix}
\]

• Note that we do not care about the diagonal elements.
• This method is wasteful in terms of memory, but often more convenient than adjacency lists.
• In these lectures, we will employ adjacency lists by default.
• If $G = (V, E)$ is a (directed) graph, and $u, v \in V$, we say that v is **reachable** from u if there exists a sequence $u = u_0, \ldots, u_m = v$ from V with $m \geq 0$ such that, for each i ($0 \leq i < m$) $(u_i, u_{i+1}) \in E$.

• In the following directed graph, v_6 is reachable from v_0 since we have the sequence $v_0 \rightarrow v_1 \rightarrow v_3 \rightarrow v_6$.

• However, v_7 is not reachable from v_0.
• A graph is **connected** if every node is reachable from every other.

• A directed graph is **strongly connected** if every vertex is reachable from every other.

• These notions give rise to the following two problems:

CONNECTIVITY

Given: A graph $G = (V, E)$.
Return: Yes if G is connected, No otherwise.

STRONG CONNECTIVITY

Given: A directed graph $G = (V, E)$.
Return: Yes if G is strongly connected, No otherwise.
• The following are natural generalizations of the notions of connectedness and strong connectedness.

• A **connected component** of a graph is a maximal set of vertices each of which is reachable from any other.

• A **strongly connected component** of a directed graph is a maximal set of vertices each of which is reachable (in the directed graph sense) from any other.

• It is easy to see that the connected components of a graph $G = (V, E)$ form a partition of V. Similarly for the strongly connected components of a directed graph.
• A graph is connected just in case it has exactly one connected component.
• A directed graph is strongly connected just in case it has exactly one strongly connected component.
• These notions give rise to the following two computational tasks:

CONNECTED COMPONENTS
Given: A graph \(G = (V, E) \).
Return: The connected components of \(G \).

STRONGLY CONNECTED COMPONENTS
Given: A directed graph \(G = (V, E) \).
Return: The strongly connected components of \(G \).
The following example illustrates the problem of finding the connected components of a graph.
- The following example illustrates the problem of finding the connected components of a graph.
The following example illustrates the problem of finding the strongly connected components of a directed graph.
The following example illustrates the problem of finding the strongly connected components of a directed graph.
• A cycle in a directed graph G is a sequence of vertices $v_0, \ldots, v_k = v_0$ ($k \geq 2$) such that, for all i ($0 \leq i < k$), (v_i, v_{i+1}) is an edge. We call G cyclic if it has a cycle, otherwise acyclic.

• The following directed graph is ...

• This notion gives rise to the following problem:

CYCLICITY

Given: A directed graph $G = (V, E)$.
Return: Yes if G is cyclic, No otherwise.
• A cycle in a directed graph G is a sequence of vertices $v_0, \ldots, v_k = v_0$ ($k \geq 2$) such that, for all i ($0 \leq i < k$), (v_i, v_{i+1}) is an edge. We call G cyclic if it has a cycle, otherwise acyclic.

• The following directed graph is acyclic.

• This notion gives rise to the following problem:

CYCLICITY

Given: A directed graph $G = (V, E)$.

Return: Yes if G is cyclic, No otherwise.
Outline

Graphs and directed graphs

Depth-first search and other simple algorithms

Tarjan’s algorithm for strongly connected components
• Here is a simple algorithm to reverse all the links in a directed graph, \(G \).

\begin{verbatim}
begin reverse(G)
 G'.vertices = G.vertices
 for each \(u \in G'.vertices \) do
 G'.edges(u) = \(\emptyset \)
 for each \(u \in G.vertices \) do
 for each \(v \in G.edges(u) \) do
 add \(u \) to \(G'.edges(v) \)
 return G'
end reverse
\end{verbatim}

• If \(G \) has \(n \) vertices and \(m \) edges, running time is:
Here is a simple algorithm to reverse all the links in a directed graph, G.

begin reverse(G)
 G'.vertices $=$ G.vertices
 for each $u \in G'$.vertices do
 G'.edges(u) $=$ \emptyset
 for each $u \in G$.vertices do
 for each $v \in G$.edges(u) do
 add u to G'.edges(v)
 return G'
end reverse

If G has n vertices and m edges, running time is: $O(m + n)$.
Here is a simple algorithm to compute the in-degree of all vertices in a directed graph:

```plaintext
begin inDegrCompute(G)
    for each u ∈ G.vertices do
        G.inDeg(u) = 0
    for each u ∈ G.vertices do
        for each v ∈ G.edges(u) do
            increment G.inDeg(v)
end inDegrCompute
```

If G has n vertices and m edges, running time is: .
Here is a simple algorithm to compute the in-degree of all vertices in a directed graph:

```
begin inDegrCompute(G)
    for each \( u \in G.\text{vertices} \) do
        \( G.\text{inDeg}(u) = 0 \)
    for each \( u \in G.\text{vertices} \) do
        for each \( v \in G.\text{edges}(u) \) do
            increment \( G.\text{inDeg}(v) \)
end inDegrCompute
```

- If \(G \) has \(n \) vertices and \(m \) edges, running time is: \(O(m + n) \).
Here is a simple algorithm, **depth-first search**, that computes the vertices of a (directed or undirected) graph G reachable from a given vertex v.

begin $\text{DFS}(G, v)$
mark v
for each $w \in G.\text{edges}(v)$ do
 if w unmarked do
 $\text{DFS}(G, w)$
end DFS

This algorithm marks all vertices reachable from v.

It works for with directed and undirected graphs.

$\text{DFS}((V, E), v)$ runs in time $O(m + n)$ where $n = |V|$ and $m = |E|$.
• Here is an animation:
Here is an animation:
• Here is an animation:
Here is an animation:
• Here is an animation:
Here is an animation:
• Here is an animation:
• Here is an animation:
• Here is an animation:
Here is an animation:
• Here is an animation:
Here is an animation:
• Here is an animation:
• Here is an animation:
Theorem

CONNECTIVITY of a graph \((V, E)\) can be determined in time \(O(|V| + |E|)\).

Proof.
Pick any vertex \(v\), run DFS on \(v\), and check that all vertices have been marked.

\[\square\]

Theorem

STRONG CONNECTIVITY of a directed graph \(G = (V, E)\) can be determined in time \(O(|V| + |E|)\).

Proof.
If \(V\) is empty, \(G\) is strongly connected. Otherwise, pick any \(v_0 \in V\). Let \(G^\leftarrow\) be the reversal of \(G\). Then \(G\) is strongly connected if and only if every vertex \(v \in V\) is reachable from \(v_0\) in both \(G\) and \(G^\leftarrow\).

\[\square\]
• Recall the definition of cycle and cyclicity for directed graphs, given above.

• A topological sort(ing) of a directed graph G is an ordering of its vertices as v_0, \ldots, v_{n-1} such that, for all edges (v_i, v_j) we have $i < j$.

• It is simple to show that a graph is acyclic if and only if it admits a topological sorting.

• The following algorithm takes a directed graph and finds a topological sorting, or outputs “cyclic”.
• Recall the definition of *cycle* and *cyclicity* for directed graphs, given above.

• A **topological sort** (ing) of a directed graph G is an ordering of its vertices as v_0, \ldots, v_{n-1} such that, for all edges (v_i, v_j) we have $i < j$.

• It is simple to show that a graph is acyclic if and only if it admits a topological sorting.

• The following algorithm takes a directed graph and finds a topological sorting, or outputs “cyclic”.

![Graph Diagram]

- Recall the definition of *cycle* and *cyclicity* for directed graphs, given above.
- A **topological sort** (ing) of a directed graph G is an ordering of its vertices as v_0, \ldots, v_{n-1} such that, for all edges (v_i, v_j) we have $i < j$.
- It is simple to show that a graph is acyclic if and only if it admits a topological sorting.
- The following algorithm takes a directed graph and finds a topological sorting, or outputs “cyclic”.

![Graph Diagram]
• Recall the definition of cycle and cyclicity for directed graphs, given above.

• A topological sort(ing) of a directed graph G is an ordering of its vertices as v_0, \ldots, v_{n-1} such that, for all edges (v_i, v_j) we have $i < j$.

• It is simple to show that a graph is acyclic if and only if it admits a topological sorting.

• The following algorithm takes a directed graph and finds a topological sorting, or outputs “cyclic”.
• Recall the definition of cycle and cyclicity for directed graphs, given above.

• A topological sort(ing) of a directed graph G is an ordering of its vertices as v_0, \ldots, v_{n-1} such that, for all edges (v_i, v_j) we have $i < j$.

• It is simple to show that a graph is acyclic if and only if it admits a topological sorting.

• The following algorithm takes a directed graph and finds a topological sorting, or outputs “cyclic”.
• Recall the definition of cycle and cyclicity for directed graphs, given above.

• A topological sort(ing) of a directed graph G is an ordering of its vertices as v_0, \ldots, v_{n-1} such that, for all edges (v_i, v_j) we have $i < j$.

• It is simple to show that a graph is acyclic if and only if it admits a topological sorting.

• The following algorithm takes a directed graph and finds a topological sorting, or outputs “cyclic”.
• Recall the definition of **cycle** and **cyclicity** for directed graphs, given above.

• A **topological sort(ing)** of a directed graph G is an ordering of its vertices as v_0, \ldots, v_{n-1} such that, for all edges (v_i, v_j) we have $i < j$.

• It is simple to show that a graph is acyclic if and only if it admits a topological sorting.

• The following algorithm takes a directed graph and finds a topological sorting, or outputs “cyclic”.
Here is the pseudocode for topological sorting $G = (V, E)$

begin topSort(G)
 compute all in-degrees and store in G.inDeg
 let $S = \emptyset$ be a stack and let $i = 0$
 for each $v \in G$.vertices
 if G.inDeg(v) = 0 then push v on S
 while S is non-empty
 $u = \text{pop}(S)$
 let sort(i) = u
 increment i
 for each $v \in G$.edges(u) do
 decrement G.inDeg
 if G.inDeg(v) = 0
 push v on S
 if $i = n$ then output sort(0), ..., sort($n - 1$)
 output “cyclic”
 end DFS

Running time is $O(m + n)$ where $n = |V|$ and $m = |E|$.
Outline

Graphs and directed graphs

Depth-first search and other simple algorithms

Tarjan’s algorithm for strongly connected components
• Recall the definition of strongly connected component (SCC) for a directed graph, given above.

• The following algorithm, known as Tarjan’s algorithm, allows us to determine the strongly connected components of a directed graph.

• There is a very good presentation on

https://en.wikipedia.org/wiki/Tarjan’s_strongly_connected_components_algorithm

• We reproduce the core of this algorithm (more or less verbatim from Wikipedia), and illustrate with an example.
• The algorithm has the following features:
 • It can be seen as a version of depth-first search.
 • It maintains a stack of vertices in contention to be in an SCC.
 • Each vertex is given an index and a lowlink value, which is the earliest node encountered so far and known to be in the same SCC as that vertex.

• The core of Tarjan’s algorithm is the function \texttt{strongConnect}(v), which we call repeatedly on some vertex \(v\) until all vertices have been assigned to an SCC.

• This function uses a global variable \texttt{index}, initially set to zero, and a global stack of vertices, initially set to empty.
strongConnect(v)
 v.index := index
 v.lowlink := index
increment index
push v on stack
for each w in G.successors(v)
 if w.index undefined
 strongConnect(w)
 v.lowlink := min(v.lowlink, w.lowlink)
 if w is on stack
 v.lowlink := min(v.lowlink, w.index)
if v.lowlink = v.index
 repeat
 pop w off stack
 add w to current strongly connected component
 while w! = v
 output the current strongly connected component
end strongConnect
• The graph

\[\text{has strongly connected components:} \]
The graph has strongly connected components:
\{v_0, v_1, v_2\}, \{v_3, v_4, v_5\}, \{v_6\}, \{v_7\}, \{v_8\}.
- Notice that the strongly connected components naturally form an acyclic directed graph. Indeed, Tarjan’s algorithm computes a topological ordering for this graph.

- In particular, if given an acyclic graph as input, this algorithm will compute a topological ordering—in fact, it is just the algorithm we encountered above for topological sorting.