COMP36111: Advanced Algorithms I
Lecture 11: How to Pass the Examination

Ian Pratt-Hartmann

Room KB2.38: email: ipratt@cs.man.ac.uk

2017–18
• Basic graph algorithms
 • directed and undirected graphs
 • DFS (depth-first search)
 • reachability
 • connectedness
• Strongly connected components of directed graphs
 • finding a topological sort of a dag
 • Tarjan’s algorithm
• Connected components of undirected graphs
 • union-find
 • optimizations
 • running time
• Matching and flow optimization
 • Flow networks
 • The Min-cut-max-flow theorem
 • How to compute optimal flows
 • Application to the marriage problem
• Stable marriage problem
 • Gale-Shapley algorithm
 • running-time
 • correctness
 • optimality (for boys!)

• String matching
 • Rabin-Karp
 • Knuth-Morris-Pratt

• Linear programming
 • Problem definition
 • Geometrical analysis
 • The simplex method (bounded cases, feasible)
 • The integer-case (ILP)
• Turing machines and complexity
 • Definition of Turing machines
 • Definitions of recursive, recursively enumerable (r.e.)
 • The existence of a universal TM and simulations
 • Undecidability of the halting problem
 • Time and space complexity (deterministic, non-deterministic)
 • Complement classes
 • The time-bounded halting problem and $\text{P} \neq \text{ExpTime}$

• Propositional satisfiability
 • Basic propositional logic
 • The problem SAT
 • The Davis-Putnam algorithm
 • The problem k-SAT
 • The problem Horn-SAT
 • Phase-transition phenomena (high-level description only)
• Reductions, completeness and hardness
 • Many-one polynomial-time/log-space reductions
 • Transitivity of many-one log-space reductions
 • Cook’s Theorem (Cook-Levin Theorem)
 • 3-SAT is NP-hard
 • 2-SAT (KROM-SAT) is (co-) NLogSpace-hard.

• Hard graph-theoretic problems
 • 3-colourability is NPTIME-hard
 • Hamiltonian and Eulerian circuits
 • The travelling salesman problem
• Two important theorems
 • Savitch’s Theorem (both forms)
 • The Immerman-Szelepcsényi Theorem (both forms)
 • Configuration graphs for Turing machines

• The standard complexity hierarchy
• Reading:
 http://studentnet.cs.manchester.ac.uk/ugt/2017/COMP36111/syllabus/

• Past exam papers:

Note that the syllabus may vary slightly from year to year.