Q1 a) The following non-deterministic procedure recognizes 2-NO-Majority, and obviously runs in polynomial time.

begin 2noMag (S)
set a := 0
set b := 0
for each x in S do
 either set a := a + s
 or set b := b + s
end for each
if a = b
 output Y
else
 output N
end if

b) If \(S^* \) contains both \((\exists s - b)\) and \((\exists s + b)\), then \(\exists s^*_1 \geq \exists s \) and \(\exists s^*_2 < \exists s \). Since \(S \) must be non-empty, we have \(\exists s^*_1 > \exists s^*_2 \). If \(S^* \) contains neither number, a symmetric argument shows \(\exists s^*_1 < \exists s^*_2 \).

c) \(\exists s^*_1 = \exists s + (\exists s - b) \)
\(\exists s^*_2 = \exists (S \setminus S') + (\exists s + b) \)
\(= 2 \exists s - \exists s' + b \)
Hence, if \(\exists s^*_1 = \exists s^*_2 \), then \(\exists s' + (2 \exists s - b) = 2 \exists s - \exists s' + b \)
\(\therefore 2 \exists s' = 2b \)
\(\therefore \exists s' = b \)
d) \((Q1\ could)\)

Define \(S^\ast_1 = S'' \cup \Xi S - b \) \(S^\ast_2 = S' \setminus S'' \cup \Xi S + b \)

Thus, \(S^\ast_1 \) and \(S^\ast_2 \) partition \(S^\ast \). Since \(\Xi S'' = b \),
we have

\[
\Xi S^\ast_1 = \Xi S'' + \Xi S - b = \Xi S
\]
\[
\Xi S^\ast_2 = \Xi S - \Xi S'' + (\Xi S + b) = \Xi S
\]

Hence \(\Xi S^\ast_1 = \Xi S^\ast_2 \) as required.

e) \n
1. \(S^\ast \) is a positive instance of \(2\text{-}\text{No-Majority} \),

then, by part b), \(S^\ast \) can be partitioned into

\(S^\ast_1 \) and \(S^\ast_2 \) with \(\Xi S^\ast_1 = \Xi S^\ast_2 \) and \(S^\ast_1 \) containing

\(\Xi S - b \), but not \(\Xi S + b \). Now define \(S' \) as in

part c) so that \(\Xi S' = b \), whence \((S,b)\) is a

positive instance of \(\text{SUBSETSUM} \).

1. \((S,b)\) is a positive instance of \(\text{SUBSETSUM} \).

then \(S^\ast \) is a positive instance of \(2\text{-}\text{No-Majority} \)

by d).

It is obvious that this reduction can be effected

in logarithmic space, since we need only store

carries in computing sums and differences.

Hence, \((S,b)\) \(\rightarrow\) \(S^\ast \) is a reduction. Since \(\text{SUBSETSUM} \)

is known to be \text{NP-hard}, and \(\text{SUBSETSUM} \subseteq^h \text{NP} \text{-hard} \),

\(2\text{-}\text{No-Majority} \) is \text{NP-hard}.
Q2. a) Let \(S = 3 \). Note that, by assumption \(S_i \leq S_{i+1} + \ldots + S_p \). So let \(i \) be the largest number \((1 \leq i \leq p)\) s.t.

\[
\sum_{i=1}^{i} S_i \leq \sum_{i=j}^{p} S_j
\]

Now let \(S_1 = 3 \)

\[
S_2 = \sum_{i=1}^{i} S_i
\]

\[
S_3 = \sum_{i=1}^{i} S_i
\]

By construction, \(\sum_{i=1}^{i} S_i = \sum_{i=2}^{i} S_i + \sum_{i=3}^{i} S_i \), since this is just the statement (1). By assumption, \(\sum_{i=2}^{i} S_i \leq \sum_{i=1}^{i} S_i + \sum_{i=3}^{i} S_i \), since this is just the statement \(S_{i+1} \leq (S_1 + \ldots + S_i) + (S_{i+2} + \ldots + S_p) \). We need only show \(\sum_{i=1}^{i} S_i \leq \sum_{i=2}^{i} S_i + \sum_{i=3}^{i} S_i \).

Suppose \(i = p-1 \). Then, by assumption

\[
\sum_{i=1}^{p-1} S_i = \sum_{i=p}^{p} S_i \leq \sum_{i=1}^{p-1} S_i + S_p \]

and there is nothing to show. On the other hand, suppose \(i < p-1 \). Then, by maximality \(R_i \) in (1), we have

\[
s_1 + \ldots + s_{i+1} > s_{i+2} + \ldots + s_p
\]

But this is just the statement \(\sum_{i=1}^{i} S_i < \sum_{i=2}^{i} S_i + \sum_{i=3}^{i} S_i \), so we certainly have \(\sum_{i=1}^{i} S_i \leq \sum_{i=2}^{i} S_i + \sum_{i=3}^{i} S_i \) as required.
Q 2 could b)

Suppose the multiset S is written in blocks on the input tape, with the integers (in binary) separated by \#. Write $S = \{s_1, \ldots, s_p\}$.

| bits of s_1 | $\#$ | bits of s_2 | $\#$ | $\#$ | bits of s_p |

The following subroutine computes the jth bit and carry of the sum of all the s_i except for s_i.

\[\text{bit+Carry}(j, i) \]

Let $c' = \begin{cases} 0 & \text{if } j = 1 \\ \text{bit+Carry}(j-1, i) & \text{where } \text{bit+Carry}(j-1, i) = (b'', c'') \end{cases}$.

For each $i' = 1$ to m

Let b' be the jth bit of s_i.

If $i = i'$ then

Let $c' = c' + b'$

End if

End for

Let b be the least significant bit of c' (i.e., shift c' right)

Let $c = \lfloor c' / 2 \rfloor$ (i.e. shift c' right)

Return (b, c).

This clearly takes only logarithmic space, since the number of bits required for c is $\log p$

Note that the recursive call space used by the recursive call can be recovered; we need only store the index i and the carry c''.

Now, to test if S is a positive instance of m-NO-majority, just look for a number in S greater than the sum of all the others. If none is found, reject; otherwise, accept.

m-Nimaj (S)

Let $S = s_1, \ldots, s_p$. Let b be one greater than the maximum number of bits in any s_i plus p.

For $i = 1$ to p

For $j = b$ to 1 (i.e., in decreasing order)

Let b be the jth bit of s_i.

Let $(b', c') = \text{bit} + \text{carry} (i, j)$

If $b > b'$ answer N ($s_i > \text{sum of others}$)

If $b' < b$ set $j = 0$ ($s_i < \text{sum of others}$, so break out of inner loop)

end for j

end for i

answer Y (No s_i is greater than sum of all others)