1. x := 1; w := 0
 z := 0
 loop \(x \) \{
 w := z
 z := z + 1
 return w

2. Because no instruction can increase any register by more than 1, and hence at least \(g(x) = x \) instructions will have to be executed to put the value \(g(x) \) in the output register.

3. \(f_1(x) = \begin{cases} 1 & \text{if } x = 0 \\ z & \text{otherwise} \end{cases} \)

 Alternatively \(f = (2x - 1) + 1 \)

4. We observe that any increasing function \(f: \mathbb{N} \to \mathbb{N} \) with \(f(0) > 0 \) is expansive. For suppose, inductively, that \(f(x) > x \). Then since \(x + 1 > x \), \(f(x+1) \geq f(x) + 1 > x + 1 \), as required.

 Observe also that, for all \(n \), \(f_n(0) = 1 > 0 \).

 We show by induction on \(n \) that \(f_n \) is increasing (hence expansive). Evidently, \(f_0 \) is increasing. Suppose \(f_n \) is increasing (hence expansive). Then

 \(f_{n+1}(x+1) = f_n(1) = f_n(f_n(1)) > f_n(1) = f_n(x) \). Hence \(f_{n+1} \) is increasing, and therefore expansive.
5. It suffices to show by induction that \(P_{n+1}(x) \geq P_n(x) \).

For \(n = 0 \), it is obvious that \(P_0(x) \geq P_0(x) \).

Assuming the result for \(n \), we have:

\[
F_{n+2}(x) = \underbrace{\cdots}_n \underbrace{\left(P_{n+1}(x) \right)}_n \\
\geq \underbrace{\cdots}_n \underbrace{\left(P_n(1) \right)}_n \\
= F_{n+1}(x). \quad \text{(since } P_{n+1} \text{ increases)}
\]

Assume first that \(x > 0 \)

Now for \(n \geq 1 \)

\[
F_n(x) = F_n \left(F_n^{(k)}(x) \right) \\
\geq F_{n+1} \left(F_n^{(k)}(x) \right) \\
\geq 2 F_n^{(k)}(x) \quad \text{(using } F_n^{(k)}(x) \geq x > 0) \\
\geq F_n(x) + x \quad \text{since } F_n \text{ is expansive}
\]

On the other hand, if \(x = 0 \), the result follows immediately from the fact that \(F_n \) is expansive.
6. \[F_1(x) = \begin{cases} 1 & \text{if } x = 0 \\ 2x & \text{otherwise} \end{cases} \]

\[= \left(2x \div 1 \right) + 1 \]

This can be computed by:

```
loop x \{ 
  x := x + 3 
  w_1 := 0 
  z := 0 
  loop (x) \{ 
    w_1 := z 
    z := z + 3 
    w_1 := w_1 + 3 
    return w_1 
  \} \}
```

double \(x \)

as in Q.1

compute \(x := 1 \)

as in Q.1

and so \(w \) is in \(E_1 \). Suppose \((P_n; \text{return } w_n)\) is a program computing \(F_n(x) \) and using registers \(w_1, \ldots, w_n, y \), putting the return value in \(w_n \). To compute \(F_{n+1} \), execute the program \((P_{n+1}; \text{return } w_{n+1})\) where \(P_{n+1} \) is:

\[\begin{align*}
 y &:= 1 \\
 w_{n+1} &:= 1 \\
 loop (x) \{
 x := y \\
 P_n \{
 y := w_n \\
 \} \\
 w_{n+1} := y \\
 \} \\
\end{align*} \]

If \(P_n \) is in \(E_{n-1} \), then \(P_{n+1} \) is in \(E_{n+1} \).
If the running time of P is bounded by $f_\infty (x)$, then the function g computed by P is bounded by $f_n^{(k)}(x)$ and hence by $f_n^{(k+1)}(x)$ for $n \geq 1$. But then $g = f_{n+1}$ cannot be computed by a program with at most n nested loops, since f_{n+1} eventually dominates $f_n^{(k+1)}$. For $n = 0$, we simply observe that P can increase x by only a constant amount, hence $f_1 \neq f_0$.