Types of system virtualization

- Native (bare-metal) hypervisor virtualization (e.g., Oracle VM Server, VMware ESX)
- Hosted virtualization (e.g., VMware player, VirtualBox, QEMU)

Implementation techniques

- Paravirtualization (e.g., Xen) – static approach
 - OS is aware of virtualization
 - OS cooperates with VMM over resources (e.g., page tables)
 - Do not try to access resources, call VMM interface explicitly
- Detect & fix interfaces – dynamic approach
 - Guarded resources (privilege): only VMM/hypervisor has access
 - Trap when guest OS tries to access resources
 - Hardware support or use dynamic binary translation
Learning Objectives

What can we do to a VM?

- To understand the VM-handling mechanisms of a hypervisor
- To understand how many different value-added services are constructed on top of VM-handling mechanisms
Starting a VM

Hypervisor

- gains control (e.g. clock tick)
- saves previous VM’s CPU registers
- loads next VM’s CPU registers
- jumps to next VM’s next-PC (in correct privilege state)
Stopping a VM

- Save CPU registers into Hypervisor data area
- Hypervisor stops and starts VM all the time:
 - to share CPUs
 - to serialize access to resources
 - time multiplexing

![Diagram of virtualization lifecycle]

Virtualized
VM State

- Memory (all guest physical memory)
 - Includes: Application state, OS state
- CPU state (registers)
- Small amount of I/O state
 - Let’s stop VM when I/O is quiescent!

Virtualized
“Freeze” a VM

- Once suspended, the VM image is self-contained
 - VM can be (e.g.) copied to a file
 - (LARGE file!)

What else can we do with this?
Move a VM

Applications

Guest A
Operating System

Virtual Machine Monitor

Host Hardware X

Virtualized

Freeze

Applications

Guest B
Operating System

CPU Registers

I/O State

Virtualized

Copy

Applications

Guest B
Operating System

CPU Registers

I/O State

Virtual Machine Monitor (VMM) / Hypervisor

Host Hardware Y

Virtualized

Restart

Applications

Guest B
Operating System

CPU Registers

I/O State

Virtual Machine Monitor (VMM) / Hypervisor

Host Hardware Y

Virtualized

Antoniu Pop – Virtualization 3
Snapshot and Rollback a VM

Virtualized

Why?
Can this process be optimized?
Archive a VM

Applications
Guest Operating System
CPU Registers
I/O State

Antoniu Pop – Virtualization

10 / 18
Rapid Provisioning

Applications
Guest Operating System
CPU Registers
I/O State

Virtual Machine Monitor (VMM) / Hypervisor

Host Hardware

Virtualized
Virtual Appliances

- 1000+ downloadable appliances
- e.g., mail server, web server, hotel system, firewall, virus scanner, etc...

Deploying Secure Desktops

- Increased security and flexibility
 - Better isolation between users
 - Users can have “admin” privileges within their Guest OS

Is this common? Where?
Live Migration

Optimizing live migration from source to destination VMM

- Copy every page from **source** to **destination** machine
 - reset *dirty* bit in VMM’s page table for every page copied
- Repeat:
 - Find next *dirty* page in **source** machine
 - Copy to **destination** machine and reset *dirty* bit
- Until only minimal subset of pages left

- Suspend VM on **source**
- Copy remaining pages to **destination**
- Resume VM on **destination**
Load Balancing

- Management software monitors *load* on all physical machines
- If loads are mismatched, migrate a VM from a loaded to a less-loaded machine

- Independent of Application!
- Independent of Operating System!
High Availability

- For critical applications, keep a standby VM available on a different hardware system
- Regularly copy active VM image to standby VM (but don’t activate it)
- Activate standby VM if active VM stops responding (VM crashes? VMM crashes? Hardware system fails?)

- Independent of Application!
- Independent of Operating System!
Goals of System Virtualization

- Multiple OS running on the same hardware
- Pre-configured virtual machines
- Load balancing
- High availability