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Introduction

Purpose

The purpose of this course is to:

• gain more experience and confidence in assembly language programming

• learn something of the structure of the low-level embedded software

• probe the hardware/software interface

• interface computers to their environment

Prerequisites

The course will require some knowledge of assembly language programming and of basic
logic design. It is assumed that participants will already have taken COMP15111 and a course
in basic digital design (COMP12111). Some of the tools used in these courses will be revisited
in COMP22712 – you should therefore bring your own manuals and notes from these to refer
to.

COMP22712 is primarily a software course, although a great deal of ‘hardware literacy’ is
involved.

Teaching Style

This manual describes the entire course, together with some extensions and background mate-
rial; we recommend youread it – thoroughly. There are no formal lectures although there will
be interludes of taught material within the labs. However this is a practical subject and the only
way to learn it is by having a go (and making mistakes).

Because of this style all the assessment is also done on the practical work. This means that you
must not only complete the course butyou must hand in any required evidenceso that we
know you have done it.

Submit the appropriate exercises by e-mail copied to: james.garside@manchester.ac.uk
vasileios.pavlidis@manchester.ac.uk

The exercises in this course are intended to introduce a set of concepts. In general it is neces-
sary to complete the basic exercise before moving on, as some of the ideas – and frequently
some of the practical output – are prerequisites for later exercises. In addition many exercises
include suggestions for extensions; such extensions are not necessary to the course but are
there to provide a starting point if you want to learn more.
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Like a magazine, this manual has a number of interspersed ‘side boxes’. These contain mate-
rial which is notdirectly relevant in that place but should come in useful about that time. Each
attempts to encapsulate a particular concept which should contribute to both this laboratory
and other later courses. Primarily they are there to make your life easier; there are also cases
where ignoring their advice will probably waste marks.

You will find occasional ‘ARM programming puzzles’ filling up odd spaces in the manual.
These are purely fun challenges for you to see how close to the target answer you can get.
Some of these are really quite hard; if you can work out an answer without help you can feel
suitably smug!

External references

There are a number of external references scattered through this manual. These may be to
teaching resources, research projects, product data etc. and are usually to information obtaina-
ble via the World Wide Web (WWW). In general URLs arenot given – WWW pages some-
times disappear and new and better ones are created – instead you should track down your own
sources with the search engines of your choice. There is a very powerful research resource lit-
erally at your fingertips; use it!



COMP22712 - 5

University of ManchesterSchool of Computer Science

COMP22712 Microcontroller Laboratory Manual

Organisation of the Laboratory

Organisation will be as informal as possible. All sessions are two hours long and will be per-
formed in the Tootill 0 lab. (LF 9). Most sessions will consist of a short talk on aspects of the
particular exercise followed by time spent in practical work. If required/desired there will also
be time allocated to a discussion of preceding exercises and a chance for feedback.

Please make every effort to arrive on time.

Some other points

• Certain exercises require paperwork (listings or schematics) to be handed in.
You must do this or you will not be credited for that piece of work.

• Many exercises will depend on previous work. You should therefore complete
exercises in the order given.

• The syllabus assumes that you will spend approximately the same time working
on this course outside laboratory time as you do in scheduled lab. hours. To
quote the Department Undergraduate Handbook:

“Please note that the expectation is that students will be required to under-
take approximately forty hours per week of study i.e. an average of one
hour’s private study will be required for every scheduled hour of lectures,
laboratories etc. and some students may require much more time than this.
BEING A STUDENT IS A FULL-TIME OCCUPATION!”

As there are no lectures to read up on and no examination to revise for you should
spend this time on the lab. Don’t expect to keep up if you don’t!

• Some exercises include suggestions for further work. These carry no extra marks
but may provide some more good practice. If you have time you may attempt
some of these; if not then they are a distraction so don’t bother.
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Assessment

Marks will be accrued for successfully demonstrating a working design, for efficiency of the
solution and for presentation of listings/schematics etc.

Equipment Handling Precautions

• The computer building is quite susceptible to building up static electric charges
on its occupants. Electrostatic Discharge (ESD) will destroy computer chips.
Please make every effort todischarge yourselfbefore handling the lab. boards
and observe handling precautions as advised by the staff.
If you suspect you may be carrying a charge, painless discharge can be achieved
by using a coin, key etc. rather than your finger as a conductor to a ground.

• Short circuits may damage certain devices. Pleaseremove any metal watch
straps/buckles, rings etc. before handling the boards.
There are no dangerous voltages or currents which will harmyouhere, but this is
a good habit to form for when you may be handling other electrical equipment.

• Connecting and disconnecting I/O systems should be done with the power
switched off.

Exercise Sessions Demonstrate
Submission
Deadline

1-Simple Output 1,2 Not assessed

2-Less Simple Output 3 Not assessed

3-Nesting Procedures 4,5 End of Session 5 13/2/2018

4-System Calls 6,7 Not assessed

5-Counters/Timers 8,9 End of Session 10

Consolidation 10 1/3/2018

6-Interrupts 11,12 Not assessed

7-Keyboards 13,14 End of Session 14 15/3/2018

8-System Design/Sounds 15,16 Not assessed

Easter Vacation 26/3/2018 - 13/4/2018

9-Project 17-22 End of Session 22 3/5/2018

Table 1: COMP22712 Laboratory Timetable 2018
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The Laboratory Equipment

ARM programmers’ model

The ARM register map and mode encodings are shown below for quick reference.

Mode Code Privileged

User 1 0000 No

System 1 1111 Yes

Supervisor (SVC) 1 0011 Yes

Abort 1 0111 Yes

Undefined 1 1011 Yes

Interrupt (IRQ) 1 0010 Yes

Fast Interrupt (FIQ) 1 0001 Yes

CPSR CPSR CPSR CPSR CPSR

R15 (PC) R15 (PC) R15 (PC) R15 (PC) R15 (PC)

R12
R11
R10
R9
R8
R7
R6
R5
R4
R3
R2
R1
R0

R12
R11
R10
R9
R8
R7
R6
R5
R4
R3
R2
R1
R0

R12
R11
R10
R9
R8
R7
R6
R5
R4
R3
R2
R1
R0

R12
R11
R10
R9
R8
R7
R6
R5
R4
R3
R2
R1
R0

R7
R6
R5
R4
R3
R2
R1
R0

R15 (PC)
R14 (LR)
R13 (SP)

CPSR

R12
R11
R10
R9
R8
R7
R6
R5
R4
R3
R2
R1
R0

R14 (LR)
R13 (SP)

R14 (LR)
R13 (SP)

R14 (LR)
R13 (SP)

R14 (LR)
R13 (SP)

R12
R11
R10
R9
R8

R14 (LR)
R13 (SP)

SPSR SPSR SPSR SPSR SPSR

User System Supervisor Abort Undefined IRQ FIQ

N Z C V I F T ModePSR format

R15 (PC)
R14 (LR)
R13 (SP)

CPSR

R12
R11
R10
R9
R8
R7
R6
R5
R4
R3
R2
R1
R0

Aliased registers are mapped to the bolder type to their left on this figure

Figure 1:  The ARM processor architecture

31 30 29 28 2 1 05 4 37 6
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After reset the ARM processor’s state is changed as follows:

• PC := 00000000

• Mode := Supervisor

• Interrupts are disabled (I = F = 1)

• Thumb is disabled (T = 0)

Software Development Environment

The software development environment used is Komodo, which is the same system used in
COMP15111. The only real difference is that programmes will be downloaded to, and be exe-
cuted on, a real ARM processor rather than a software simulation. This gives access to the real
peripheral devices on a stand-alone computer.

Debugging environment

The interface to the laboratory board is provided by “Komodo”, a monitor front-end and down-
load tool. This allows the memory on the remote circuit board to be displayed and manipu-
lated, files to be downloaded into memory, and programmes to be executed. The memory and
processor register views are updated periodically during execution to aid understanding and
debugging. The facilities are introduced gradually in other parts of this manual.

One minor difference is that the mnemonic ‘SVC’ is preferred to the older ‘SWI’.

Komodo also allows hardware designs to be downloaded into the FPGAs (Field Programmable
Gate Arrays) on the experimental board.

Circuit Board

The microcontroller laboratory is intended to reflect the development environment used for
embedded controllers in the early 21st century. The basic system comprises a software pro-
grammable processor – in this case an ARM – with a number of peripheral I/O systems. The
microcontroller itself includes parallel I/O, a serial line, a timer and a simple interrupt control-
ler. Much more I/O is provided using an FPGA which can be configured to suit a particular
application; this means that both the software and the hardware is programmable and available
to the user. The ability to use FPGAs for customisable hardware had considerable influence on
the design of systems in the 1990s. As FPGAs have increased in capacity it is now feasible to
use them for significant sized systems. The device used in this laboratory has a size of about
200 000 gates.

An extreme example of FPGA applications can be found in the “raw” project at the Massachu-
setts Institute of Technology (MIT) (http://www.cag.csail.mit.edu/raw/).

The PCB (figure 2) has a few I/O devices and number of expansion connectors around the
board. Two connections are needed for basic operation: a 5V DC supply must be connected to
the power inlet and serial port 0 is used as the host link for controlling Komodo. There is a
reset button towards the back of the board but this should not often be needed. The DIP (Dual
In-line Package) switches determine the operating mode of the board and should be set to 0001
for the Komodo boot.
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The other buttons, LEDs and LCD are introduced as they are required.

The connectors at the top and bottom allow expansion via the Microcontroller and the Spartan-
3 FPGA. In this lab only the connectors at the front of the board {S0, S1, S2, S3} are signifi-
cant. These are identical; each has sixteen I/O lines and two each of power (3.3V) and ground
outlets.

Figure 2:  The Laboratory PCB connections

USB

S2

DIP Reset

ST3

ST1

LCD module

0

1

0

1

0

1

0

1

S3S0 S1

S
erial 0

Power

ST2

S4

M1 M0M3 M2

FPGA
ARM

RAM S
erial 1
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Lab. board memory map

The RAM occupies a space beginning at address
00000000. The lab. boards have 159Kbytes of RAM
which means the highest (word) address is 00027BFC.

Remember that the ARM is a 32-bit processor with byte
addressing. This means that the addresses of adjacent
words are different by 4. Words must be aligned with the
memory (i.e. the lowest two bits of the address must be
zero).

The microcontroller’s internal I/O inhabits the space
from 10000000 to 1FFFFFFC. This is 8-bits wide and so
only appears in the least significant byte {10000000,
10000004, etc.}. The peripheral devices do not fill this
space but are mapped repeatedly through the page.

The FPGA occupies addresses 2xxxxxxx and is other-
wise similar to the internal I/O space. However it is
accessed via an 8-bit bus and addresses are adjacent.

I/O port map

The internal I/O region map (base address 10000000) is:

The bit maps for the I/O ports are as follows:

Offset Direction Register Remarks

00 R/W PIO_A Bidirectional data for LCD, LEDs etc.

04 R/W PIO_B Sundry bits plus PIO_A direction control

08 R/W Timer 8-bit free running, incrementing at 1 kHz

0C R/W Timer compare Interrupt asserted when timer equals this register

10 RO Serial RxD

10 WO Serial TxD

14 R0 Serial status Bit 1 = Tx ready; Bit 0 = Rx ready

18 R/W Interrupt requests Raw interrupt requests, active high

1C R/W Interrupt enables Active high

2C, 28, 24, 20 RO Board serial number A unique identifier for the particular PCB

20 WO Halt port Any write to this address will stop processor execution

3C, 38, 34, 30 — — Do not use

00000000

00027C00

RAM

10000000

20000000

I/O

FPGA

(Not to scale)
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Hardware Development Environment

The CAD environment should be familiar. You should create a Cadence project for this labora-
tory using the usual setup script (i.e. “mk_cadence COMP22712”) and invoke it as appropriate
for this laboratory (i.e. “start_cadence COMP22712”).

The hardware designs required in this laboratory will need to be integrated with software too.

For rapid, successful debugging use ofsimulation is highly recommended.

Thesynthesisprocess is the same as in COMP12111. However downloading the FPGA con-
figuration is not possible from here. The synthesized design can be picked up by the FPGA
browser inKomodo and can bedownloaded into the FPGA from here. It is advisable to halt
any programme execution before doing this; if the programme tries to access a part-loaded
FPGA the load process will fail.

Bit Use

7 Button (lower) 1 = pressed Read only

6 Button (upper) 1 = pressed Read only

5 LCD backlight 1 = on

4 LED enable 1 = on

3 Extra button (top left) 1 = pressed Read only

2 LCD R/W 1 = read also PIO_A direction

1 LCD RS 1 = data register

0 LCD E 1 = active

Bit Use

7 Button (lower)

6 Button (upper)

5 Serial transmitter ready

4 Serial receiver ready

3 Ethernet IRQ

2 Virtex IRQ

1 Spartan IRQ

0 Timer compare

PIO_B

Interrupt Request/Enable:

The interrupt request bits are set or cleared by external events, but may also be written to by software.
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Testing Individual Bits in a Byte/Word

Suppose you have a byte into which are packed the inputs from a set of eight switches.
For convenience regard these as active high inputs with Button_0 corresponding to bit
zero, Button_1 to bit 1, etc.

Thus, if Button_3 (only) is pressed, the byte (say, in R0) will be &08.

Let’s say you want to test if Button_3 is pressed or not. One way to do this would be:

CMP R0, #&08
BEQ Button_3_pressed

This works if only Button_3 is pressed, but what happens if Button_1 (for example) is
pressed at the same time?

How many comparisons would you need to ensure correct operation?

CMP is anarithmetic function (a subtraction, in fact). In arithmetic functions there can
be interactions between bits at different positions; this is useful in some circumstances,
but not in others. On the other hand (“bitwise”)logical functions treat all their bits indi-
vidually. Logical functions are usually more appropriate when manipulating individual
bit values.

The ARM has sixteen data processing operations: eight of these are arithmetic functions,
the other eight are logical functions. See if you can classify these in the following table:

What two instruction sequence can you write to replace the code fragment above, but
which will detect Button_3 being pressed irrespective of the state of the other bits?

Instru
ction

Arith./
logical

Instru
ction

Arith./
logical

Instru
ction

Arith./
logical

Instru
ction

Arith./
logical

ADC CMN MVN SBC

ADD CMP ORR SUB

AND EOR RSB TEQ

BIC MOV RSC TST
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Programming Style & Practice

Structure

Some inexperienced “programmers” think that the choice of language affects the quality of the
programming. They bandy terms like ‘structure’ and sneer that assembly language is, some-
how, intrinsically ‘unstructured’. One of the main arguments is that there are no “IF … THEN
… ELSE”s and “REPEAT … UNTIL”s, only the equivalent of “IF … GOTO”. These people
will typically quote Dijkstra1 as a reference. They are wrong!

To be fair to Dijkstra this is misapplication of his thesis; he cites the ability to jump randomly
from place to place in a (high-level) programme as “an invitation to make a mess”.If this is the
case it is an invitation which should be politely declined. Here we get to the point of this sec-
tion.

Programming is not a function of a language; it is much more than that. The majority of the art
lies in analysing a problem and devising an algorithm which will solve that problem, which is
implementable, and which is reasonably efficient. This is independent of the language chosen
(or imposed).

The danger in assembly language programming is that it is much less restricted than operating
in the confined syntax of a language; remember the language is compiled into machine instruc-
tions too! It can be much easier to write bad code in assembler than in many languages. It can
also be easier to write good code. The point is that it is up toyou to ensure that your code has
an underlying structure.

There is not the time or space here for a course on structured programming. However here are
a few tips:

• Useprocedures(a.k.a. “functions”, “subroutines”, “methods”) to isolate differ-
ent identifiable operations. This allows a ‘top down’ ‘divide and conquer’
approach which is useful even if the procedure is only called once. In general
procedures should communicate through passedparameters, which can travel
both ways.
Many high-level languages define functions which can have unlimited input
parameters but only return a single quantity; this can encourage bad practice. In
assembly language you can pass and return as many variables as you like.
A procedure should have a well-defined entry and exit in the code. If you are
being tempted to jump into the middle of a procedure take a cold bath and then
modify your structure. The use of conditional returns can also be frowned upon,
although they can prove a boon to efficiency.

• Keep careful control of thescopeof variables. This is easy within a procedure –
local variables are usually nestling in registers – but it requires self discipline not
to just read or alter a variable in memory because you can. Resist! Data struc-

1. Edsger W. Dijkstra, “Go To Statement Considered Harmful”, Communications of the ACM, Vol. 11,
No. 3, March 1968, pp. 147-148. (http://www.acm.org/classics/oct95/ – go look it up, it’s quite short.)
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tures should be maintained by their own library of access procedures. This
means that, when it is necessary to edit the code, changes can be handled locally.
It is perfectly possible to write object-oriented assembly code if you choose.

• Loop structures should normally have a well-defined entry and exit point. Unlike
most high level languages these may not be at the same point in the loop.
If they are in the same place it is usual to enter at the top and exit at the bottom
(when failing to close the loop back to the top again). If the entry and exit points
differ it is usually more efficient to jump in and keep the exit point at the bot-
tom1.

• Beyond the obvious issue of the length of a data item assembly language does
not have explicittypes. It is therefore your job to ensure that your variables obey
your own typing rules. It is very unusual to require floating point (float, real, …)
numbers in assembly language but integers, bytes, characters, pointers and more
complex structures are common. An integer and a pointer may both berepre-
sentedin a 32-bit word, but they aredifferentthings; for a start it makes sense to
add integers, whereas adding addresses is nonsensical!
You may choose to adopt a convention to help identify the type of items; for
example prefixing pointer names with “p_” makes them fairly obvious.

Style

Although style is a personal thing, there are some practices which are worth observing to make
your source code more readable, robust and maintainable. These are not all specific to assem-
bly language either!

Firstly layout. You should be familiar with the general style of assembler source code, i.e.:-

Label MNEMONIC Addresses ; Comment

It is a good idea to adhere to this format – the source code looks neat and labels stand out and
therefore are easy to spot. It is also sensible to break up the code with blank lines to highlight
groups of related statements (very approximately equivalent to a line of source code in a high-
level language).

Within this framework it is possible to enhance readability in other ways. One obvious method
is to choosesensible label nameswhich reflect their function. As it is often difficult to think of
many different names it is usual to name theentry pointto a module (procedure etc.) sensibly
and then use derivatives of this by suffixing numbers for labels inside the module. This has the
added bonus of indicating the extent of the module.

Thecommentfield should be used to explain themeaningof the statement. It is usually possi-
ble to attach sensible comments to every line. An example of a nonsensical comment would be:

ADD R2, R2, #1 ; Increment R2

1. The reason for this is left as an exercise.
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However:

ADD R2, R2, #1 ; Increment loop index

conveys significantly more information as it reminds us what R2 currently holds.

The #1 in the preceding example is one of the few cases where it may be sensible to have
immediatenumbersappear in the address field. It is usually better to equate a number to a label
and use that instead. This both conveys added information (the value ‘FF’ could be used for
lots of things, but ‘byte_mask’ is clear) and allows definitions to be changed in a single place
(in a separate header file or at the top of the code) rather than trawling through looking for
numerous references and, probably, missing some.

Finally, as the whole programme (being structured) is broken into procedures these can also be
emphasised in the source code. Some more commenting can be added to document the proce-
dure’s function, its input and output parameters, any non-local data used, any registers which
are corrupted, etc. This is useful when trying to reuse or modify pieces of code, and it is the
best place to keep this information in that it cannot easily become detached from the code
itself.

Example

; This routine prints a string terminated by a “cTTR” byte
; pointed to by R0. All register values are preserved.

Print_string STMFD SP!, {R0,R1} ; Push working regs.

Print_str1 LDRB R1, [R0], #1 ; Get byte, auto-inc.
CMP R1, cTTR ; Test for terminator
SVCNE Print_char ; ... if not terminator
BNE Print_str1 ; and loop

LDMFD SP!, {R0,R1} ; Pop working regs.
MOV PC, LR ; Return

Note: this will not work in supervisor mode.

Why not?

How could you fix this?
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Copy-and-Paste is Deprecated!

Quite often, when programming, you discover that something you want to do is “rather
like” something you’ve already done, with just a few differences. Probably your immedi-
ate reaction is to make acopy of the earlier code,pasteit into the appropriate place and
edit in the differences.

Don’t do it!

If there is a lot of commonality between sections of code then they probably should be
the same piece of code. This usually means some changes to the ‘original’ to accommo-
date some parameters or options and make it more flexible, often involving the extraction
of a set of instructions into a procedure/function/subroutine/method/whatever. However
the result is almost always a ‘cleaner’, better product.

Avoiding Copy-and-Paste:

Advantages

• Readability improves because, having understood a procedure, it can then
be regarded as an abstracted function when it is encountered, rather than
being deciphered (with subtle differences) each time.
Improved documentation often results too - there’s less to document!

• Maintenance is much easier. If (when) you are given a set of (someone
else’s) source files and required to “find the bug in there” you will wel-
come short, obvious procedures rather than 101 ‘variations on a theme’.

• Programme will besmaller. This may be vital in embedded controllers,
where memory space is limited. Often speed increases too as a smaller
memory image means fewer cache misses, page faults1, etc.

Disadvantages

• The code may run slightly slower due to procedure call overheads.
(This can be countered by using amacro2 rather than a procedure.)

• Your productivity in number-of-lines-of-source-per-day falls significantly :-}
(Productivity in terms of (better) products-faster improves though.)

1. Don’t worry if you don’t know these terms; you will meet them in the future.
2. A macro is a substitution where you can define your own keywords; each time a macro name is
encountered the assembler (or compiler) substitutes the appropriate code.



COMP22712 - 17

University of ManchesterSchool of Computer Science

COMP22712 Microcontroller Laboratory Manual

Exercise 1
Simple Output

Objectives

• Hardware/software familiarisation exercise

• Bit manipulation

• Simple I/O

Equipment

The laboratory equipment comes in two parts. First there is a software ‘front end’ which is pro-
vided by the Komodo software, together with the ARM software development tools and the
Cadence/Xilinx hardware development tools. Secondly there is a hardware ‘back end’ which is
provided by the experimental board (a computer in its own right), its embedded software and
any daughter boards for specific, later exercises. These two parts are connected by a serial link.

Ensure that the serial line is in place (serial port 0 on PCB, serial port 2 on the PC) and the
power supply is connected. First switch on the board to start the back end, then type
“start_komodo 22712” in a shell window to start the front end. The two parts of the system
should synchronise and a window with various controls should appear

The Komodo window (figure 3) has a number of areas which allow the memory and registers
to be displayed and manipulated, the processor’s execution to be controlled and programmes to
be downloaded into both the memory and the FPGA. These are described below.
N.B. in this laboratory, you should be in “Serial” mode; check the bottom left corner.

Manipulating memory

Komodo has several independent subwindows which allow the display of memory and proces-
sor registers. A register window displays a particular view of the ARM’s register set. The
default view is of the current register set, i.e. the mode is specified by the value in CPSR. These
are the registers which will be accessed by almost all instructions as they execute. However it
is possible to display a register view in any mode.

Memory subwindows

Execution controls Download controls

Flag subwindow
Console

Figure 3: The Komodo front-end

Register subwindow

Status bar
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Clicking on a register copies is contents to the top of the subwindow, where its value can be
changed by the user.

Memory views show a small area of the address space and can display the memory in various
forms, primarily as different length hexadecimal numbers, ASCII and as disassembled ARM
instructions. Hexadecimal is most useful for viewing data space whereas disassembly is con-
venient for following programmes. Extra (larger) memory windows can be created if needed.

It is possible to scroll the memory window around the address space, or move it to a particular
address by typing this at the top of the window. It is also possible to define the window address
in terms of a register’s contents. For example, an expression such as “PC-8” will maintain a
widow which begins eight bytes (two instructions) before the current PC value – this is partic-
ularly useful in association with disassembly, as the window will then scroll as the programme
executes.

Note:all numbers are hexadecimal and no prefices/suffices are required.

Developing code

There is no special text editor associated with this laboratory. Develop your source files using
your own preferred tool. It is, however, recommended that you first create a directory to keep
your files together. Assembler source files should be identified with a “.s” extension.

Don’t forget tosave the file before proceeding.

Assembling

Assemble using the ‘compile’ facility provided with Komodo. This is available via the browser
in the top right-hand corner. This runs a script which will assemble a single, specified file. By
default the file will be loaded at address 00000000, but this may be altered for all, or part of the
object code by using the ORG directive. The output can be downloaded directly using the
browser immediately below.

This utility only allows a single file to be assembled. Later it is possible that you may want to
link several source files into a singleobject programme. One way of doing this is to
“include” other source files into the specified file using the directive:

INCLUDE <filename> ; “GET” is synonymous

More sophisticated linking should not be needed in this lab. but if required can be done inde-
pendently from Komodo using the ARM SDT, GNU tools, or any other tool you may choose.

Downloading

The assembled output is in “list” file with the suffix “.kmd”; this is a human-readable, ASCII
form. This can be located by the Komodo filebrowser and loaded into memory by pressing
‘Load’.

If a new file is created in a directory the browser needs to be refreshed to pick it up. Use “./”.

Komodo can also accept other input formats, notably a standard, portable binary form known
as ELF (Executable and Linking Format) can be read.
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Executing code

When the system is started the back end is in a ‘Reset’ state. This state can also be reached
using the reset button (near the back of the PCB) or, more ‘cleanly’, with the reset button on
the Komodo window. When the ARM is reset the PC is set to 00000000 and the CPSR is set to
000000D3, which indicates that interrupts are disabled and the processor is in supervisor
mode. Normally the ARM would immediately begin executing (from address 00000000) but in
this case the processor is halted so that the state can be observed.

There are several ways in which a programme can be executed. The simplest is to use ‘Run’
which simply begins normal execution. This is suitable for debugged programmes but gives
very little help if there are bugs present. Another mechanism is to use the ‘single step’ func-
tion, which executes a single instruction before halting the processor again. This makes it con-
venient to observe exactly what each instruction does. When single stepping it is often
convenient to display a disassembly listing of the code in a memory window.

With longer programmes stepping each instruction individually can be tedious; Komodo also
allows a programmable ‘multi-step’ facility which is useful, for example, in stepping through
larger areas of debugged code. It is also possible to ‘walk’ through code by multi-stepping
(could be set to “1”) at a user definable step rate; automatically running a few instructions per
second can make some tasks much easier to follow.

A set of option buttons (which default to off) allow some compound operations to be consid-
ered as a single step. Initially the only useful ones will be BL and SVC which treat procedure
and system calls as one step, respectively. Warning: these detect the end of the call by checking
for the return address; although they should handle nested calls (including recursion) correctly
a ‘badly behaved’ call (one that does not return to the expected address) will not terminate1. If
this is encountered the processor will “run” and the ‘stop’ button will be needed to regain con-
trol.

Any of these operations can be stopped using the relevant on-screen button.

Komodo supports other methods of suspending execution which will be described later.

Input and Output Ports

To be at all useful a computer system must have some input and output (I/O) capability. The
simplest I/O is provided by aparallel port which essentially maps a memory location into
some real hardware. In the case of an output port this means that the state of the bits stored in
this ‘memory’ are used to control some external hardware, such as an LED (Light Emitting
Diode). In the case of an input port the ‘memory’ is some outside world device – for example a
single bit’s state could come from a push button switch. The devices which inhabit this space
are known asperipherals.

In some processors there is a special I/O address space (outside the normal memory map) with
special instructions which can be used for I/O peripherals. However on most RISC processors,
including the ARM, there is only a single address space and so some memory locations are
sacrificed for I/O; this is not a significant problem when there is 4Gbytes of addressable space.

1. An example would be the “print following string” routine.
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It is frequently the case that peripheral devices do not use the full 32-bit bus; most common
devices have only an 8-bit interface. This is reflected in this laboratory where all the I/O
devices will be accessed eight bits (or fewer) at a time. When communicating with I/O ports
you should therefore remember to usebyte load and store instructions (LDRB /STRB).

Bit manipulation

Although some I/O devices are byte wide (or, occasionally, larger) many inputs and outputs are
smaller – often single bits. For example the position of a switch or button can be represented
with a single bit. It is usual to cluster several (functionally connected) I/O bits together into
partial or full bytes to simplify the hardware requirements; an example is used in this exercise.
Because the smallest quantity which can be addressed is (usually) a byte the issue ofbit
addressingmust be handled in software. Bits are normally addressed such that bit 0 is the least
significant bit.

The ARM can alter a single byte in memory with a STRB instruction. However if it needs to
change a single bit it cannot modify it without, potentially, changing the other seven bits in the
byte. To avoid this the other bits must be written to their original value.

To do this the programmer must first find the original value of the byte. Usually this can be
done by first loading the byte and altering the bit(s) concerned in a register. Individual bits can
be set by ORing the value with the appropriate bit mask; bits may be cleared by ANDing with
the complement of this mask or, on the ARM, using the BIC (BIt Clear) instruction. It is a sim-
ple and worthwhile exercise to learn the basic bit mask as shown in table 2.

A bit can be ‘toggled’ (changed) – without knowing its initial value – by XORing it with a “1”.

Thus to set bit 5 of an 8-bit port the following sequence could be used:

LDRB R0, [ port_address ]
ORR R0, R0, #&20
STRB R0, [ port_address ]

(Remember that all ARM memory addressing must be relative to a register!)

Bit Number OR (BIC) mask AND mask

7 80 (1000 0000) 7F (0111 1111)

6 40 (0100 0000) BF (1011 1111)

5 20 (0010 0000) DF (1101 1111)

4 10 (0001 0000) EF (1110 1111)

3 08 (0000 1000) F7 (1111 0111)

2 04 (0000 0100) FB (1111 1011)

1 02 (0000 0010) FD (1111 1101)

0 01 (0000 0001) FE (1111 1110)

Table 2:  Hexadecimal (binary) bit masks
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In this first exercise a single 8-bit port is used for output. The bits within this port each corre-
spond to an individual LED and areactive high(i.e. a “1” turns the LED on). The port bits are
read/write so the value written can always be read back.

Modern computers execute millions of instructions per second. It only takes a few instructions
to change the state of a few LEDs. In order to make the exercise viewable by a human the steps
must have ‘reasonable’ intervals between them. This could be done by using adelay loop– a
construct that repeats wasting a little time many times over – but this is usuallybad practice
for several reasons1.

Bit LED

7 Blue (Right)

6 Red (Right)

5 Amber (Right)

4 Green (Right)

3 Blue (Left)

2 Red (Left)

1 Amber (Left)

0 Green (Left)

Table 3: ‘Traffic light’ bit assignments (port address = 10000000)

1. These should become apparent later.

Action on bit AND with … XOR with …

None 1 0

Clear 0 0

Set 0 1

Toggle 1 1

A trick worth knowing is that
anybit manipulation can be per-
formed using two successive bit
mask ANDed and XORed with
the byte in question

This is also useful when design-
ing hardware
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Practical

Write a programme that cycles a set of ‘traffic lights’ attached to the output port
at address 10000000. Each light is controlled by a single active-high bit where
0 = light off, 1 = light on. The cycle should follow the same sequence that two sets
of lights controlling a crossroads would do, and it should run continuously at a
rate comfortably viewable by a lab. demonstrator (e.g. table 4).

Note that states #0 and #4appear the same, but are actually different states.
(The bit patterns are left for you to fill in!)

For this first experiment the timing reference can be a delay loop (an empty loop
iterated about &80000 times should suffice). However, to allow this to be
upgraded later, it is sensible to define a ‘delay’ procedure which can be called
with an appropriate parameter.

A much more stable timing reference can be obtained by using a hardware timer
which will be introduced in a later exercise.

Note: the lab. board is a stand alone computer. You can prove this by pulling out the serial
cable, logging off etc. after your programme has been started.

ARM procedure calls

Procedures are called using theBL (“Branch and Link”) instruction. This branches to a speci-
fied label but saves thereturn address (i.e. the address of the following instruction) in R14 –
also known as theLink Register (“LR”). Any existing contents of the link register are lost.

To return from the procedure this saved value must be returned to the Programme Counter
(“PC”). This may be done with the following instruction:

MOV PC, LR ;

State Left hand lights Right hand lights Bit pattern Hold for about …

0 Red Red 1s

1 Red & Amber Red 1s

2 Green Red 3s

3 Amber Red 1s

4 Red Red 1s

5 Red Red & Amber 1s

6 Red Green 3s

7 Red Amber 1s

Table 4: ‘Traffic light’ sequence
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Advanced

Modify you programme to imitate a ‘Pelicon’ pedestrian crossing, which has a
different number of states and usesflashing lights to indicate some states.

Traffic lights are not always ‘dumb’ and may react to input stimuli. Modify your
programme so that an input can ‘trip’ the lights to the appropriate state. Two
input buttons are available towards the lower right of the circuit board for this
function, which can be read as active high bits in a port at address 10000004 (see
table 5). Attempts to write to these bits will be ignored.

If attempting this remember that the inputs may change the traffic light timing,
but not the sequence (that would be dangerous!) and that the button presses may
be momentary, and on either (or both) buttons at any time.
A modified state diagram might help here.

Bit(s) Button

7 Lower

6 Upper

5 - 0 Unused in this exercise

Table 5: Input button bit assignments (port address = 10000004)

ARM immediate constants

ARM data operations have access to immediate fields which are formed by rotating an 8-
bit pattern by an even number of bits around the 32-bit word; the other bits are all zeroed.
Some example values are shown below. (Note that not all constants are obtainable.)

A useful pseudo-instruction

The ARM assembler provides a pseudo-instruction to allow easy access to arbitrary
immediate numbers. The operation:

LDR Rd, =expression

can plant a 32-bit value in memory (the evaluated expression) and an instruction to load
this into the specified register. Note that this requires two words and is slower than a
MOV, but may be useful for getting at ‘awkward’ constants.

A case in point may be the address of an I/O port.

&FF ⇒

&1200 ⇒

&3FC00000 ⇒

&F000000F ⇒
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Accessing I/O ports

All ARM memory accesses are made relative to a register. I/O is mapped into the mem-
ory space, thus a register is needed to point to the I/O port. Usually several different I/O
ports inhabit a small area of memory.

Rather than loading a register with the exact address of the port each time a different port
is used, consider pointing a register somewhere ‘nearby’, and using predefined offsets to
get at the ports. For example:

Port_area EQU &10000000
LED_port EQU &0
Buttons EQU &4

...
MOV R8, #Port_area
LDRB R0, [R8, #Buttons]
STRB R0, [R8, #LED_port]

This is faster and usually more legible. It also uses fewer registers if several ports are in
use.
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Data-driven and Code-driven Algorithms

In the previous exercise you implemented a finite state machine
in software.

You probably did this as a ‘code-driven’ algorithm. This means
that the current state is marked by the position in the code or, if
you prefer, is implied by the value of PC. A code driven algo-
rithm is illustrated below; this probably makes more decisions
than your traffic lights.

state_0 do things
IF inputs = 0 THEN GOTO state_1
ELSE IF input = 1 THEN GOTO state_5
ELSE GOTO state_2

state_1 do other things
...

An alternative method is to write a ‘data-driven’ algorithm where the state is held in a state
variable:

loop CASE state
0: CALL state_0_code

state := state_table_0[inputs]
1: CALL state_1_code

state := state_table_1[inputs]
2: ...

GOTO loop

state_table_0 DEFW 1, 5, 2, …
state_table_1 DEFW ...

In this second example one short piece of code coversanystate machine and the behaviour is
looked up in data tables.

The code-driven example is probably more intuitive and is easier to write – at first. It will prob-
ably also be shorter (no large data tables) and faster (no indirecting through memory).

The data-driven example is more regular and is thus easier to modify, expand and maintain.

Which is the “correct” solution depends on the task in hand and the programmer’s own preju-
dices. They are presented here simply as alternatives for consideration.

0

2

1

4

6

5 3

7
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Look-up tables

A look-up table is a data table (array) placed in memory which can be indexed by an input var-
iable. The state tables on the preceding page are examples of look-up tables.

Look-up tables are very useful for certain tasks. For example this would be by far the most effi-
cient method of translating a 4-bit number into a bit pattern for a seven-segment display.

AND R0, R0, #&F ; Ensure input in range
ADR R1, Seg_table ; Point at table
LDRB R0, [R1, R0] ; Load pattern
...

Seg_table DEFB &3F, &06, &5B, &4F
DEFB &66, &6D, &7D, &07
DEFB &7F, &6F, &77, &7C
DEFB &39, &5E, &79, &71

This is also quite fast because an arbitrary function can be calculated with a single memory
load.

The look-up can be more complex than a single entry. For example a character set may be
specified as a set of pixels with one byte (8 bits⇒ 8 pixels) per line, and the character number
would need to be multiplied1 by the number of bytes in each character. For an 8x8 character
matrix:

Char_set DEFB &00, &00, &00, &00 ; Character 0
DEFB &00, &00, &00, &00 ; (cont.)
DEFB &80, &40, &20, &10 ; Character 1
DEFB &08, &04, &02, &01 ; (cont.)
...

This may be useful if you want to explore further in the next exercise.

Look-up tables can also be useful in evaluating functions. For example “X/Y” – where X and
Y are 8-bit numbers – can be looked up as:

LDR R0, X ;
LDR R1, Y ;
ADD R0, R1, R0 LSL #8 ; Calculate index
ADR R1, Div_table ; Point at table
LDR R0, [R1, R0] ; Get result

This is fast, but expensive in memory requiring a 28 x 28= 216 = 64 Kbyte look-up table.
Worse, a 16-bit division would require 8 Gbytes, more than the ARM can address. Long divi-
sion is therefore usually done iteratively.

1. Easiest if the number is a power of two so the multiplication is simply a left shift.
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Exercise 2
Less Simple Output

Objectives

• Parallel output/handshake sequencing

• Procedures and parameter passing

• A ‘real-world’ device

The Liquid Crystal Display (LCD)

Character-based liquid crystal displays (LCDs) contain some ‘intelligence’ and use a (reasona-
bly) standard interface. The interface is a parallel bus interface which comprises data and con-
trol signals. The data bus can be 4-bits or 8-bits wide; the 4-bit mode is used when there is a
very limited number of I/O signals available and need not concern us here.

The interface signals are:

The interface gives access to two 8-bit registers on-board the LCD controller. These are desig-
nated ‘control’ and ‘data’ and are selected by the state of the RS output.Note: these registers
are notdirectly visible to the processor.

Like many I/O devices reading an LCD register may not give back the value last written to it.
The type of operation performed is controlled by the R/W output.

In order to communicate with the display the control lines must be set to the appropriate values
and thenstrobedusing the enable line. If the enable signal is inactive the other signal states do
not matter. During a transfer the signals should be stable and the usual constraints of set-up and
hold times must be met.

When writing to an output port the bits will change approximately at the same time. In order to
provide the correct timing the transfer will therefore require at least three separate output com-
mands:

Name I/O Function

DB[7:0] I/O 8-bit bidirectional data bus

RS O Register select (address line)
0 = control, 1 = data

R/W O Read not Write
0 = write, 1 = read

E O Enable
High to validate other signals

Table 6: HD44780 LCD Controller Interface Signals
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1 Set up data and command

2 Set enable line active

3 Set enable line inactive

Note that it is not necessary to ‘remove’ the data; it can remain until overwritten by
the next command. However it may not be possible to complete step 1 with a single
operation if, for example, only one eight bit port can be accessed at a given time (as
there are ten bits to change).

It is also necessary to ensure that there is enough timebetweenthese steps for the LCD control-
ler to detect and respond to the command; for example, if step 3 follows step 2 too closely the
enable pulse may not be detected at all. It may be that the time between instructions is great
enough to ensure this, if not the driving software must provide the appropriate delay. Fortu-
nately, in this case, the time between adjacent instructions is longer than the minimum write
pulse width.

The LCD controller is a HD44780, a standard part. It is smart enough to obey a small set of
instructions. The simplest of these are:

• Print a character (and move cursor to next space)

• Clear the screen

A few other commands enable the cursor to be moved, the display to be scrolled and user
defined characters to be downloaded. Data on the display controller may be found on the
WWW if required1.

Each command takes time to process. The LCD controller will generally be somewhat slower
than the processor controlling it. It is potentially quite easy to try to send the next character
before the previous one has been printed. As this will cause confusion it is important to wait
until one command is finished before sending the next. There are two ways of achieving this:

1. Try: http://home.iae.nl/users/pouweha/lcd/lcd.shtml or find a site that suits you.

RS

R/W

E

Data

Don’t care

Value

1 = data

0 = write

Figure 4: LCD data write cycle

holdset-up
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• Wait for at least the minimum command time

• Wait until the display controller is not busy

The first option is the less efficient because:

- absolute times are relatively hard to measure

- the CPU could be doing something else for some (or all) of this time

The second option is better because:

- the CPU only waits as long as necessary

- it is self-adjusting to varying times for different commands, different LCD
modules or different processor speeds

However the second option does require some feedback from the LCD. To obtain this the LCD
control register must be read and bit 7 will then indicate the controller’s status (0=idle,
1=busy).

To read the control register the appropriate command must again be sent, in this case {RS=0,
R/W=1}. Before enabling the display the data bus – which will normally be an output – must
be set to be an input. This then ‘floats’ the bus (i.e. it becomes tristate) so that, when it is ena-
bled, the LCD controller may drive it. If this is not done two different values may be driven
from each end of the bus which will lead to an undefined value, excessive power dissipation
and, possibly, damage to the components.

The sequence for writing a character now becomes:

The action of this on the interface signals is illustrated in figure 5. It all sounds like a lot of fid-
dling about, but each step is only one or two instructions. Of course once the routine is written
it can be used to output all the characters you’ll ever need.

1 Set to read ‘control’ with data bus direction as input
{R/W=1, RS=0} (Port B)

2 Enable bus (E :=1) (Port B)

3 Read LCD status byte (Port A)

4 Disable bus (E :=0) (Port B)

5 If bit 7 of status byte was high repeat from step #2

6 Set to write ‘data’ with data bus direction as output
{R/W=0, RS=1} (Port B)

7 Output desired byte onto data bus (Port A)

8 Enable bus (E :=1) (Port B)

9 Disable bus (E :=0) (Port B)

Wait until LCD
controller is idle

Write character
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Writing a control byte is similar – the only difference is the register addressed in step #7 (for
the control register RS=0). The command for “clear screen” is 01. There are plenty of WWW
sites which will help you find out about other commands if you want to do more; searching for
“HD44780” is a good place to start.

The LCD interface

The LCD uses eleven interface signals: eight of these form the data port1, the other three being
control as shown in table 7. These are connected to two 8-bit ports which we will call ‘port A’
and ‘port B’. To reduce the number of I/O signals required port A (the LCD data port) is the
same 8-bit port that is used for the on-board LEDs; port B (address:10000004) (Table 7) pro-
vides the other required bits. Figure 6 shows the hardware configuration used.

In this exercise the data port isbidirectionalso there must be a means of disabling its output.
The (active low) output enable for all eight bits is connected to port B bit 2 (LCD R/W); this
ensures that port A can never be outputting at the same time as the LCD module.

Reading port A returns the values at the device pins. Thus reading port A when it is enabled as

1. It is possible to programme the interface to use only four bit data. This saves signals (and the remain-
ing 7 fit neatly into a single 8-bit port) but means that two strobes need to be made for every transfer.

RS

R/W

E

Data Data in Data out

Repeat as required

Figure 5: LCD character output sequence

1 2 3 4 5 6 7 8 9

(control) (data)

Figure 6: LCD controller interface

10000004

10000000

H e l l o Wo r l d !
Port A

data

Port B

data

Output
Enable

DB[7:0]

R/W

Control
RS=0

Data
RS=1

R/W, E, RS
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an output should return the value written to the port. Reading it when the output is disabled can
return other values; if the LCD is also enabled this will drive the signals; if the LCD is disabled
the port will befloating and the value will beundefined.

Note that, if the LEDs flashing as the LCD is used is distracting, they can be turned off using
bit 4 of port B. The LCD backlight can be controlled using bit 5 of the same port.

When writing characters the LCD controller accepts standard ASCII printing characters (see
page 96) with a few variants such as “¥” instead of “\”. A Japanese characters set and a few
Greek/mathematical symbols are also included using codes from A0-FF; you may see some of
these if something goes wrong! You can also define some of your own characters.

Port Bit(s) Direction Signal(s) Active state

A 7-0 in/out data[7:0] -

B 7 in Button (lower) 1 = button pressed
Writes ignored

B 6 in Button (upper) 1 = button pressed
Writes ignored

B 5 out LCD
Backlight

0 = off
1 = on

B 4 out LED Enable 0 = off
1 = on

B 3 in Extra button
(top left)

1 = button pressed
Writes ignored

B 2 out LCD R/W 0 = write to LCD module
1 = read from LCD module

B 1 out LCD RS 0 = control register
1 = data register

B 0 out LCD E 0 = interface inactive
1 = interface active

Table 7:  LCD interface ports

Let the assembler do the work …

Some expressions are static – i.e. they can be evaluated at assembly (“compile”) time. If
this is the case they should be, saving instructions at run time (both time and space).

For example, to set two bits in a register:

ORR R0, R0, #(bit_6 OR bit_1)
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Practical

Write “Hello world!” (or some similarly trite message) onto the LCD display.

Suggestions

Write a routine to print a single character and call it repeatedly to print the string; the character
may be passed in a register as a parameter. You will need this routine (or a derivative) later, so
take care to comment the code.

The procedurefor outputting characters is common to all characters. Outputting control and
data is the same process except for the state of one bit. It may be sensible to combine these
operations into a single procedure with an extra parameter.

Advanced

Try outputting hexadecimal numbers using the same character output routine.

You might like to try writing to the bottom line of the display.

Try out some other features of the HD44780 controller, such as moving the cursor,
scrolling the display, or even defining and displaying your own characters.

Define some non-printingcontrol characterswhich, when ‘printed’, have some
effects on the display.

Commonly used control characters

Some common ASCII character functions are:

Note: writing these characters to the display will not achieve what you want. They must be
translated into code sequences which manipulate the HD44780 control register. However it is
often very useful to be able to (for example) place a ‘newline’ code directly into a string.

If you’re very serious you could look up the set ofANSI escape codes.

Byte Name Commonly used to …

08 Backspace (BS) Move the cursor left one place

09 Horizontal Tabulate (HT) Move the cursor right one place

0A Line Feed (LF) Move the cursor down one place

0B Vertical Tabulate (VT) Move the cursor up one place

0C Form Feed (FF) Clear Screen

0D Carriage Return (CR) Move the cursor to the start of the line
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Programming Hints

Code reuse is a very good idea; it saves you time and sweat in the future. However in order to
make code easily reusable it has to be easy to modify, even when you’ve forgotten the details
of how it works.

Here are some tips which will assist you in writing code now, that will help you in future.

Setting Constants

Most programmes will contain various immediate constants. For example a string printing rou-
tine may detect certain ‘control characters’ which cause actions to happen rather than charac-
ters to appear. A common example would be “carriage return” to start a new line.

A subset of the ASCII character set (see page 96) is reserved for such functions although many
of these are not now used for their original ‘intended’ purpose. CR is character 0D.

The statement:

CMP R0, #&0D

can check for such a character in a string. This works fine but can be unclear. It is much more
obvious to define a label at the start of a programme and use this consistently throughout.

CR EQU &0D

...

CMP R0, #CR

This makes the source code more readable, and distinguishes the “0D” used here from the
same value used elsewhere. Even better use your own name for the constant. This allows easy
modification if necessary; for example although many systems use ‘CR’ to move to a new line,
Unix uses ‘Line Feed’ (LF). The excerpt below illustrates how this could be set up so that a
single change can be used to modify all references in the code.

LF EQU &0A
CR EQU &0D

...
Newline EQU CR ; Define appropriate character

...

CMP R0, #Newline

Note that, although the source code is longer the object code generated is the same in all these
examples.

Search-and-replace with an editor is not a substitute for this. It is far too easy to modify some-
thing you didn’t mean to.
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Header Files

It is usual to have a large number of constant definitions at the start of a piece of source code.
These may include items such as control characters, your own enumerations (e.g. “TRUE” and
“FALSE”), processor specific features (e.g. “Supervisor_Mode EQU &3”), system specific
constants (e.g. “LED_port EQU &10000000”) and application specific numbers (e.g.
“Retry_count EQU 10”).

Many of these will remain the same for various projects and can be copied when starting a new
source file. However such lists grow in size and this ‘maintenance’ may well need applying to
all the source files. Therefore it is usually sensible to keep the majority of constants (all except
the application specific ones) in a separate file which can be included at assembly time.

In the ARM assembler these two directives are synonymous:

INCLUDE filename.s

GET filename.s

In practice more than one header may be sensible. One can contain items which are immutable
(such as the bit masks for the processor’s flags) while another has system information such as
the memory size and I/O port locations; that way the code can be ported to a different system
simply by changing a single inclusion name.

It may also be sensible to split your projects into more than one file. A sensible split is to divide
any ‘system’ code – which would encompass the ARMs exception ‘vectors’ and trap SVC
calls et al. – from the user-mode applications code. E.g.

Reset B Start_of_code ; Reset (address 0)
B Undef_handler ; Undefined instruction
B System_call ; SVC call
B Prefetch_abort ; Page fault
B Data_abort ; Page fault
NOP ; Unused ‘vector’
B IRQ_service ; Interrupt
B FIQ_service ; Fast interrupt
...

Several of these will be used in future exercises.

Numeric constants

Komodo displays everything in hexadecimal; this is typical in a debugger.

Like most development tools the default base (or “radix”) for numbers in the assembler
is 10, i.e. “decimal”. This is because it is the default for (most) people. However, in your
source code you should usewhichever base makes your code most readable: some-
times this will bedecimal (“250”), sometimes it will behexadecimal (“&F0”) and,
sometimes,binary  (“:11110000”).
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Stacks: “Why” and “How”

This section should be revision!

Procedure calls

We have already mentioned how a procedure can be called using the “BL” (Branch-and-Link)
instruction: this is similar to a branch but it leaves a ‘return address’ in R14, also known as the
“Link Register” (LR). The branch can therefore be ‘undone’ by moving this value back into the
PC. This behaviour is illustrated in the following (rather pointless) code fragment.

11BC ...
11C0 ADD R1, R2, R3 ;
11C4 MOV R4, #6 ;
11C8 BL &1234 ; Leaves LR = 11DO
11D0 SUB R1, R1, R0 ;
11D4 MOV R4, #-1 ;
11D8 BL &1234 ; Leaves LR = 11DC
11DC ADD R7, R7, R0 ;
11C0 ...

...
1230 ...
1234 MOV R0, R6, LSL #1 ;
1238 MOV PC, LR ; Return
123C ...

An execution trace of this code would show the instructions executed as follows:

11BC ...
11C0 ADD R1, R2, R3 ;
11C4 MOV R4, #6 ;
11C8 BL &1234 ; Leaves LR = 11DO
1234 MOV R0, R6, LSL #1 ;
1238 MOV PC, LR ; Return (to LR)
11D0 SUB R1, R1, R0 ;
11D4 MOV R4, #-1 ;
11D8 BL &1234 ; Leaves LR = 11DC
1234 MOV R0, R6, LSL #1 ;
1238 MOV PC, LR ; Return (to LR)
11DC ADD R7, R7, R0 ;
11C0 ...

Notice that the procedure (or “subroutine”) has been ‘inserted’ twice, at different points in the
parent code.

Also notice that a parameter has been passed (in R4) which is different for the two invocations
and a result is also returned (in R0). Procedures which return values are often called “func-
tions”. An example of parameter passing would be a character to a ‘print’ routine.
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Stacks

A potential problem with the ARM’s procedure calling mechanism is that the BL instruction
simply overwrites the contents of the LR. This means that the called procedure cannot itself
call another procedure (a process known as “nesting”) without overwriting this value.

Nesting procedures is extremely useful. To enable this the return address must first be copied
from LR to somewhere where it will be preserved. The usual place is a memory location; a
convenient temporary store is on astack.

A stack is a data structure which is used for temporary variables. It is a “last-in, first-out” struc-
ture where (in principle) only the top item is available1. A stack is just a data structure and you
can build as many as you want. However they are so useful that there is often support in a proc-
essor’s instruction set architecture (ISA) to help with stack operations.

In principle when an item is stacked all the other elements move one ‘slot’ further away, and
they all move back one ‘slot’. In practice moving data about would be hopelessly inefficient;
instead the data remain stationary and the address of the top of the stack moves. This address
therefore needs to be maintained and it is kept in astack pointer. Typical systems only dedi-
cate a single register to this function and to the same stack will be used for several functions,
usually just known as ‘the stack’.

Of course before it is used the stack pointer must be set up at the ‘start’ of a free area of mem-
ory. This will typically be done as part of the system initialisation. A programme which is run-
ning doesn’t care what value the address in its stack pointer is.

1. Many card games employ such structures.

Komodo tip

It’s possible to display labels instead of addresses in a Komodo memory window; it’s
also possible to use labels as part of anexpression. This can make it much easier to find/
display particular memory locations of interest.

Recursion

Stacking is particularly convenient because it allows a procedure to call itself. This proc-
ess – known as “recursion” – is sufficiently useful to allow for. (Naturally there must be
some condition to terminate this!)

For the ‘classic’ example of recursion look up “Tower of Hanoi” (sometimes known as
the “Tower of Brahma”).
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Exercise 3
Nesting Procedure Calls

Objectives

• Revise the ARM call/return mechanism

• Set up a process stack

Stack operations on an ARM processor

Because it has so many different addressing modes it is possible for an ARM to build stacks in
a number of different ways. It is important to know which model is in use because – unlike
many processors – there is no explicit “PUSH” or “POP” operation; instead these are done
using load and store operations. However the mnemonics have been made available, as
described below.

It is recommended (though not compulsory) that the stack model known as “full descending” is
used (figure 7). In this model the Stack Pointer (SP) contains the address of the last item
pushed, and subsequent ‘pushes’ store data in lower-numbered addresses.

In this mode the operation “PUSH R0” becomes:

STR R0, [SP, #-4]!

i.e. SP is decremented before the data transfer. Note the ‘!’ to preserve the modified SP value.

Conversely the “POP R0” operation would be:

LDR R0, [SP], #4

Push and Pop

This is computer jargon.

• “Push” means ‘add a quantity to the stack’

• “Pop” means ‘remove a quantity to the stack’ (occasionally called “pull”)

• The values on the stack do not move; instead the stack pointer changes to
indicate the new position of the ‘top of stack’.

SP
SP

PUSH ⇒

Figure 7: Stack push: before and after (Full Descending stack model)

Higher addresses

Lower addresses
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i.e. the load occurs from the current SP address which is post-incremented. Note the SP value
is implicitly written back here too (despite the absence of the “!”).

In typical ARM code it is quite common to wish to push/pop several registers at the same time.
This can be done using the LDM and STM (LoaD Multiple & STore Multiple) instructions.

STMFD SP!, <registers>
...
LDMFD SP!, <registers>

The list of <registers > is specified something like this: “{R0, R3, R6-R9}”

The implication with a “full descending” stack is that the stack pointer should be initialised to
the addressimmediately abovethe area reserved for the stack; the first stack push will then pre-
decrement the address into the allocated region. For example if addresses up to 00003FFF are
allocated for a stack the (full descending) SP should be initialised to 00004000 so the first
word will be pushed to 00003FFC.

The assembler also accepts the synonyms:

PUSH <registers>
POP <registers>

Procedure returns in ARM code

If an ARM procedure is a ‘leaf’ procedure1 which calls no other procedures then the return
address may be left in the link register.

If an ARM procedure calls one or more other procedures then the return address must be pre-
served preferable by stacking (“pushing”) the return address. A typical instruction to do this
would be:

STMFD SP!, {LR} ; Push return address

If this is done the value must later be recovered by unstacking (“popping”) the value in the cor-
responding manner:

LDMFD SP!, {LR} ; Pop return address
MOV PC, LR ; and move to PC

This return operation can of course be optimised to a single instruction by loading the return
address directly into the programme counter, thus:

LDMFD SP!, {PC} ; Return

Of course STR/LDR can also be used, however STM/LDM are usually preferred because:

• other registers can be saved/restored without needing additional instructions

• it’s easier to remember the correct addressing modes

1. i.e. a furthest point in the ‘call tree’.
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It is likely that a procedure needs some “scratch” registers for its private workspace. To create
space it is possible to push the original contents of these registers on entry to the procedure (at
the same time as the LR) and pop them back at the end. The STM/LDM instructions are
designed to make this easy.

Practical

Structure your solution to exercise 2 so that it contains two subroutines, one of
which prints single characters and the other which prints a string. The string
should be defined by a pointer1 passed into the latter routine and should be out-
put by calling the print character routine repeatedly.

Use these routines to print two (or more) different strings in the same pro-
gramme.

The routines should be callable by a user who knows nothing about their contents
– i.e. they should beutilities. This means that, when called, they should leave all
registers unchanged and only “do what they say on the can”, i.e. print a character
or string.

Don’t forget that you must allocate some memory for the stack and you must ini-
tialise the stack pointer before using it.

Memory can be allocated using (for example):

DEFW 0, 0, 0, 0 ; Reserve four words

or, more practically:

DEFS 100 ; Reserve 100 bytes

(Note that this reserves bytes, not words.)

Advanced

Try one or more of the following:

Print different strings on different lines of the display.

Print “top” or “bottom” as a response to pressing the buttons on the board.

Submission

You should submit this exercise for assessment and feedback. The submission should include
code using a stack to nest procedure calls and bit manipulation to operate the LCD module. A
legible, appropriately commented source file will be appreciated and credited appropriately.

1. i.e. an address
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Example Programme Header

Whilst it may not matter for small programmes, as projects grow it saves time if you can
identify what is in a given file, and when it was last modified. This is an example of the
sort of information which is useful.

;------------------------------------------------------
; Traffic lights programme
; J. Garside
; Version 1.0
; 1st January 2003
;
; This programme emulates a set of traffic lights
; using the on-board LEDs
;
;
; Last modified: 2/1/03 (JDG)
;
; Known bugs: None
;
;------------------------------------------------------

This is also useful when it comes to collecting your listings from the printer.

As complexity increases it is a good idea to document each procedure etc. in a similar
way. This is especially useful when collaborating on projects where, for example, you
can check if someone has changed a routine since you last used it.

EQU vsDEFW

There is sometimes some confusion between the uses of the ‘EQU’ and ‘DEFW’ (and
allied) directives; these have different purposes.

EQU DEFW

Syntax:
label equ <expr>

Syntax:
{label} defw <expr> {,<expr> …}

Defines acompile time symbol with the
specified value.

Defines a (several)word(s) in memory with
the value(s) set by the expression(s).

Label is set tovalue of expression. Label (if present) set to theaddress of
(the first) used location.

No presence in object code. Word(s) present in object code.

Used to defineconstants etc. Used toreserve spacefor andinitialise varia-
bles, look-up tables etc.



COMP22712 - 41

University of ManchesterSchool of Computer Science

COMP22712 Microcontroller Laboratory Manual

Code Organisation

What belongs where?

To some extent, how you organise your code is up to you. However there are certain rules
which should be observed and others which will help you (and others) in the long run. This
section briefly describes three different places where code can be located and outlines what is
appropriate in each place.

Operating systemfunctions are run in a privileged mode. These will usually be invoked via a
system call, but could also be invoked by another exception such as an interrupt (q.v.). The
operating system deals with the hardware and all direct hardware reads and writes should be
contained within. It also provides anabstraction layer which is specific to the particular
machine at one ‘side’ but has a generic interface for the user. This allows the same user code to
work on many different machines.

Libraries contain commonly used functions which may be called by a number of different
programmes. Keeping these functions in a library saves writing them more than once. To be
generic, library functions are often quite ‘plain’ and often require several parameters. They run
in user mode but may (and often do) call operating system routines.

User codeis the ‘real’ application programme which contains all the ‘custom’ code for the
particular job. It runs in user mode and calls both libraries and the operating system as neces-
sary.

Library contents

What sort of things should go in a library? This should be user mode code – i.e. no mod-
ification of hardware except via the defined system interfaces – which is used frequently.
An example here would be printing a string of ASCII characters: printing an individual
character to the LCD requires hardware manipulation and is therefore an operating sys-
tem task; iterating along a string can be done in user mode and, as it is often required,
maybe should be a library function.

Printing a number in ASCII is another example. Here you could consider whether
another parameter to specify the radix (e.g. decimal, hexadecimal, etc.) would be worth-
while.

For some other examples try typing “man string” (for example) at a Unix prompt. If the
manual is installed this will list some of the standard C language libraries. You don’t
have to interpret all of them here!
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What belongswhen?

There should also be a clear distinction as what can be donewhen. Some calculations are
dynamic: they rely on run-time information. For example the particular entry in a jump table is
only loaded after you know which entry you want … this time.

However, other calculations may be donestatically,i.e. at compilation time. For example, if
you want to know how many entries there are in a table (of, say, 4 byte words) this will be a
fixed quantity in the object code and the assembler (or compiler) can work it out for you.

e.g.“#(table_end - table_start) / 4”
Although you may sometimes edit the code, you must always reassemble (recompile) it before
use, when this number can be calculated; it never changes in between compilations.

Clearly it is more efficient to precalculate values (once, and ‘off line’) whenever this is possible
to avoid performing the same calculation repeatedly at run time. Always consider what might
be possible at compile time and try and ensure that it is done then.

Building a library

First consider if a function is likely to be used in several different programmes. If it is
then it is a good candidate for being placed in a library.

Next think about how that function may be applied in the future. Are your first ideas
more generally applicable or would the addition of an extra parameter (even if ignored
for now) make it more useful later. Remember, once in use several programmes may rely
on the same function so the interface should be fixed.

Define the interface. What goes in and what comes out? What registers (or memory loca-
tions) are used for these? Document this!

Put the function in a separate source file, with other, similar functions.

Include the library source file in your programme.

INCLUDE <filename> ; “GET” is synonymous

This will instantiate the codeat that position. It may therefore be best to ‘include’ librar-
ies at the end of your main source file. Call the function as normal.
[Note that you are including the library functions as if you had copied them in; therefore
labels should all have unique names.]

ARM programming puzzle

Determine the magnitude of R0 … i.e. ABS(R0). No other registers may be changed.

Target: 2 instructions
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ARM Operating Modes

The ARM processor has seven operating modes. Of these six areprivileged and are provided
for operating system support whilst the seventh isuser modeand is used for application pro-
grammes.

Up to now everything has probably been run insupervisor modethe default start-up mode.
This mode is provided for software set up and servicing SVC calls, which are the subject of the
next exercise. Ideally applications should be run in user mode.

The current mode is defined by the lower five bits of the CPSR. In order to change mode the
processor must change these. For security these cannot be changed directly from user mode, so
once you’re there ‘there’s no way back’.

Note: the other bits in the CPSR are also significant and should not be changed frivolously!

To change from (say) supervisor to user mode the following sequence may be used:

MRS R0, CPSR ; Get current CPSR
BIC R0, R0, #&0F ; Clear low order bits
MSR CPSR_c, R0 ; Rewrite CPSR
NOP ; Bug fix on some ARMs

The last line is a precaution against the change being delayed as it was on some early ARMs.
The NOP (“No operation”) mnemonic translates to a safe “MOV R0, R0”.

Of the others, only (one of) the twointerrupt modes are likely to be useful in this laboratory;
these are described in more detail later in this manual.

Abbreviation Mode
CPSR code

(Binary)
CPSR code

(Hex)

USR User 1 0000 10

FIQ Fast Interrupt 1 0001 11

IRQ Interrupt 1 0010 12

SVC Supervisor 1 0011 13

ABT Abort 1 0111 17

UND Undefined 1 1011 1B

SYS System 1 1111 1F

Table 8: ARM operating modes
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Abort mode is present to support memory faults which are not of interest here.

Undefined modeis entered when an undefined instruction is encountered. It allows the operat-
ing system to look at the offending instruction and – maybe – take remedial action. One com-
mon example is the software emulation of floating point instructions if the floating point
hardware is absent. Of course you may enter this mode inadvertently if your programme
crashes and ingests something that isn’t a legal instruction.

Multiple stack pointers

Each mode1 has its own private copies of R13 (SP) and R14 (LR) which can be used to set up
private stacks. Before using a mode it is advisable to set up a separate space for each stack and
to initialise R13 appropriately. Initially only the supervisor and user mode stacks will need to
be set up, but this will grow later. Allocate ‘enough’ space for any anticipated stack usage; this
will probably be fairly small for the supervisor stack and ‘open ended’ for the user stack.

As there is no return from the user mode there is another way of setting the user R13.System
mode has the same registers as user mode but is privileged; it is therefore possible to switch
into system mode, set the user stack pointer, and switch back to supervisor mode if necessary.

1. except system mode.

R13_SVC

R13_USR

Supervisor
stack
space

User
stack
space

‘CALL’ and ‘RETurn’

Most CISC (Complex Instruction Set Computer) processors provide specialised instruc-
tions for entering and exiting procedures. These normally stack and unstack the return
address automatically. There are both advantages and disadvantages to this mechanism.



COMP22712 - 45

University of ManchesterSchool of Computer Science

COMP22712 Microcontroller Laboratory Manual

Aborts

To add security to a computer it is desirable to offerprotection to certain parts of the address
space. For example, if there are two users of a machine, one should not be able to sabotage the
code of the other. In particular, nousershould be able to access the I/O space directly as this
could cause all sorts of undesirable effects. In a desktop computer the I/O devices will always
be protected by an Operating System (OS) – trusted code which the user cannot hack (either
accidentally or deliberately) – which will have adevice driver for the particular hardware.

At the machine level this means that certain memory accesses, in particular certain accesses
attempted in user mode, may be disallowed. The most likely circumstance in which you may
encounter an abort in this lab. are:

• code crashes and runs ‘off the end’ of the RAM ⇒ prefetch abort

• attempt to read or write an I/O port while in user mode⇒ data abort

What happens if I try and access a protected area?

Firstly the access cannot be allowed so the memory (or I/O) state is not changed. Secondly
something ‘wrong’ is happening so the processortraps (enters an exception) to what is
assumed to be safe, operating system code.

In an ARM there are two aborts defined: these are called ‘prefetch abort’ and ‘data abort’.

• A prefetch abort occurs if the processor tries to fetch aninstruction from a
memory area which is disallowed.

• A data abort occurs if the processor tries to transferdata (i.e. load or store)
to or from a memory area which is disallowed.

In both cases the ARM’s behaviour is similar: normal execution is suspended, abort mode is
entered, the (abort mode) link register is left pointingnear the failing operation and execution
resumes at an address near the beginning of the address space. This behaviour is similar to
other ARM exceptions SVCs, interrupts, etc. which are dealt with later.

What is available here?

In the lab. system some very crude memory protection has been implemented. This causes the
appropriate abort if an access to I/O space is attempted in user mode.

What might I see?

Look for the processor entering abort mode. You will not normally get into abort mode unless
you have caused an abort so this indicates that you have tried to access I/O space from user
mode. The PC will have jumped to either address 0000000C (prefetch abort) or 00000010
(data abort) which may have caused a crash. If you want to diagnose the fault better you could
put something such as “B . ” at these addresses to ‘halt’ the processor.

LRabort will indicate the position of the faulting instruction. For exact details ask the lab. staff.

What should I do about it?

Find what went wrong and make sure you only access I/O space from a privileged mode
(i.e. use a SVC as described in exercise 4).



COMP22712 - 46 COMP22712 Microcontroller Laboratory Manual

School of Computer ScienceUniversity of Manchester

Aborts continued: Some tougher questions

How might a ‘real’ operating system handle an abort?

This may be quite complicated; there is not space to go into all the implications here so see
your operating systems course (maybe next year). The simplest option is to abandon a particu-
lar programme; in a multi-tasking system this would not halt the machine as it would be able to
switch to another job.

An illegal attempt by a user to ‘fiddle’ with I/O devices will always result in that process being
abandoned. However memory protection can also be used to supportvirtual memory systems.
In a virtual memory system there may be no memory present at the requested address but it is
possible toremapthe address space (using more, specialised hardware) to put some there. This
is usually known aspaging. If this is the case then it is possible to correct the ‘fault’ indicated
by the abort and rerun the instruction, this time successfully. This is why the processor must
save the address of the faulting operation.

Note that, on an ARM, recovery from a data abort involves alot of work for the OS: it must
identify the failing instruction, decode it (it may be, for example, an LDM which has aborted
half way through), undo any side-effects (such as base address modification, whichmayhave
happened already) work out where the failing address was and swap in the relevant page. Only
then can it go back and try again. It is not for the faint hearted!

Are there other options for memory protection?

Typically, yes. A common function is to allow parts of the memory to be read-only. Instruction
space can be protected from modification in this way; this can help prevent a crashed pro-
gramme from modifying its own behaviour and, possibly, doing further damage. Data is some-
times made read-only so that the OS can detect if it has been modified: the first write causes an
abort, the OS notes this, enables writes and reruns the aborting instruction. The advantage is
that data known to be unmodified does not need saving when that memory is recycled.

Some questions for you

With the lab. system, imagine you are running a user-mode programme. What could you do to
enable the direct manipulation of an I/O port? (Hint: you’ll need to get into a privileged mode.)

What changes to the memory protection system are needed to prevent you from escaping the
bounds of user mode?
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Exercise 4
System Calls

Objectives

• Introduce system calls

• Supervisor/user mode operation

• Structure & reuse of calls

System Initialisation

When a system is switched on a large amount of its state isundefined. ROM will hold its con-
tents (of course) but modern RAM relies on a power supply to retain data so it will be in an
unknown state (unless battery-backed). More relevantly the processor’s registers (including the
PC) will be undefined which means the processor’s behaviour cannot be predicted.

This would clearly be unacceptable! Therefore at power-on (and possibly at other times) a sub-
set of the system state isreset to predefined values. It is not normal to attempt to define all the
state (for example the RAM contents) as this would be too expensive, but registers such as the
PCare defined, so that the processor will execute a known piece of code. If more initialisation
is required (it usually is) then the software can perform this function.

ARM initial state

Following reset the ARM’s register state is undefined except for:

• PC (a.k.a. R15) which is set to 00000000

• The control bits of the Current Program Status Register (CPSR) which is set to:

- Interrupts {FIQ, IRQ} disabled

- Normal ARM instruction set (not “Thumb”)

- Supervisor operating mode

If these terms are unfamiliar, don’t worry just yet.

Mode

The ARM has a number ofmodesof operation. These define, in part, the register map and the
operating privilege level. ARM has a simple privilege model in that all modes are privileged
except the user mode. Privilege grants the ability to do certain things (such as alter the operat-
ing mode) which cannot be done from user mode. In a system with memory management only
privileged tasks have access to certain areas of memory, such as the operating system work-
space and the input/output (I/O) devices. User programmes are run in user mode which means
that they cannot directly interfere with the hardware. The other restrictions ensure that they
cannot change the interrupt settings or change mode to escape from these restrictions.
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In the lab. system there is some limited memory management. This means that when user code
wants, for example, to print something out it cannot do it directly. In order to do this it must
enter a privileged mode (typicallySupervisor mode). But how?

The answer is asystem call. These are also known, according to taste as traps, restarts, soft-
ware interrupts, etc.; ARM uses the term supervisor call (SVC for short) so we will adopt this
name within this course. You may have met these by their former name of software interrupt
(SWI); you can use this if you prefer, but ARM now recommend ‘SVC’. Same thing!

You should have used some simpleSVC services– such as printing a character –
before (in COMP15111). Note that these were provided by the emulator on your
workstation andare not available here.You must now write your own.

The behaviour of a SVC depends on the processor being used, but is always something akin to
a procedure call; the difference is that the procedure is entered with full supervisor privilege.
To prevent abuse, restrictions on the procedure address mean that the instruction is not general
and must jump to a (or one of a small set of) predefined adddress(es).

In an ARM a SVC instruction has the following behaviour:

• The current status (CPSR) is saved (to the supervisor SPSR – see later)

• The mode is switched to supervisor mode

• Normal (IRQ) interrupts are disabled

• ARM mode is entered (if not already in use)

• The address of the following instruction (i.e. the return address) is saved into the
link register (R14); note this is R14SVC

• The PC is altered to jump to address 00000008

Some of the terminology here may still be unfamiliar!

The upshot is that all the necessary status has been saved so that the calling programme can be
returned to and the processor is running a well-defined piece of (operating system) code in
supervisor mode.

To complete and exit a SVC call all this must be reversed. The normal “MOV PC, LR” does
not affect the mode or flags so a special variant must be used; more on this later.

Exception vectors

These ‘vectors’ are jumped to when the relevant exception occurs. Because each has only a
single word it is usual to place a branch instruction here to a space where the real code can be
placed. (Note that this is notnecessaryfor FIQ, the exception requiring the fastest response!)
The different vectors are given in table 9.

Clearly the reset vector must be initialised to point to the start of the code. However it is usual
to initialise all the exception vectors ‘just in case’.
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What behaviour should be observed if an unexpected exception occurs? Ideally there should be
an attempt at error recovery, or at least reporting to the operating system. At this point however
this would be over sophisticated. Some possible behaviours are:

• Restart the code (i.e. same as Reset)

• Halt

• Return, ignoring the exception

These can be varied for the different vectors of course. If you want to try and return from an
exception (such as a spurious interrupt) discuss your solution first; there are some subtleties
which are not immediately apparent.

ARM system initialisation tasks

When the processor is reset its mode and PC are initialised buteverything elseis undefined. It
is therefore usual to run some initialisation code before control is passed to a user programme.
This can do numerous things but here we are only concerned with a small set of operations

• Initialising exception vectors

- Various trap routines – such as interrupt handlers – may need installing.
At present these can all be downloaded with the programme.

• Initialising stack pointers

- At some time it is likely that the software will require a stack. An area of
memory must be allocated for this purpose and the stack pointer must be
set to one end of this area.
In practice it is normal to have a separate stack for user and supervisor
code. Furthermore ARM has provision for a separate stack (i.e. a separate
stack pointer, R13) in (almost) all of its operating modes. Any stack
pointer that may be required in future should be set up now.

Exception Mode
Vector
(address)

Link made

Reset Supervisor 00000000 None

Undefined instruction Undefined 00000004 R14und = undef. instr. + 4

SVC Supervisor 00000008 R14svc = SVC instr. + 4

Prefetch abort Abort 0000000C R14abt = aborted instr. + 4

Data abort Abort 00000010 R14abt = aborted instr. + 8

– – 00000014 –

IRQ IRQ 00000018 R14irq = interrupted instr. + 4

FIQ FIQ 0000001C R14fiq = interrupted instr. + 4

Table 9: ARM exception ‘vector’ table
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• Initialising any peripherals required

• Entering user mode

- Before a ‘user’ programme is executed user mode should be entered.
This should be the last thing on the agenda because user mode code cannot
switch back into a privileged mode.

Context and Context Switching

Thecontextof a programme is the environment in which the code runs. One component of this
environment is the register contents; clearly when switching from programme to programme
each needs its own set of values. (Another component is the memory map, but we are not deal-
ing with memory management here.)

In a multi-tasking system it is usual to provide one stack for every process; duringcontext
switching the stack pointer will be moved from one process’ stack to another. Whilst we do
not (yet) want to do this, the ‘obvious’ context switching – between user programmes – is not
the only context change which the system will undergo. For example interrupts (coming in a
later exercise) will normally have their own context; ARM even provides separate stack point-
ers for the two classes of interrupt.

More germane here is the fact that the ARM has separate contexts for user programmes and the
operating system. Thus there are two stacks whichneedinitialising here (and more coming
later). These already have separate stack pointers built into the architecture see figure 1, on
page 7.

As each mode has its own, banked, stack pointer – all of which appear as R13 – it is necessary
to change mode to set up the SP appropriate to each context. This is done by altering the mode
bits in the CPSR. Note that altering these bits is aprivileged operation and cannot be done
from user mode. As there is therefore ‘no return’ from user mode system mode is provided
which gives access to the user register map whilst retaining operating system privileges.

Whilst any privileged process can write to the mode bits it is not usual to simply overwrite the
entire CPSR. As a general rule only the bits which are of interest should be modified; other bits
(such as the interrupt disable bits) should bepreserved. As the programme will be unaware of
their values (in general, if not in this case) they must first be read. The following code fragment
illustrates a switch to IRQ mode:

MRS R0, CPSR ; Read current status
BIC R0, R0, #&1F ; Clear mode field
ORR R0, R0, #&12 ; Append IRQ mode
MSR CPSR_c, R0 ; Update CPSR

‘MRS’ & ‘MSR’ are special MOV instructions which can access the status registers; in the
case of the MSR here the action is limited to the control byte (“_c”), although this is really
superfluous here. The action of masking (‘BIt Clear’) and ORing leaves the other fields in the
word unaltered.
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Peripheral initialisation

In this example there is only one peripheral which needs configuring before the user code can
be started, namely the LCD. This should be cleared and the interface signals left in a defined
state. This is done by a hardware reset (such as power up) but you may wish to reinitialise the
display each time your programme starts.

In general there may be a number of different devices which should be configured at this time.
For example if interrupts are to be used (which will generally be the case) all the devices which
could generate an interrupt must be initialised before interrupts on the processor can be ena-
bled. More on this later.

Starting the user programme

When initialisation is complete the processor can be switched to user mode and dispatched to
an application programme. This simplest method of doing this is to simply change the CPSR
and jump to the code.

A more ‘sophisticated’ method is to treat the reset as simply another SVC call. This can set the
parameters appropriately and ‘return’ to the user code. This is slightly more complex, but sim-
plifies the scheduler when that is required. Basically this involves inserting the ‘return’ address
into LR (R14) and the correct status (user mode, etc.) into the SPSR and returning as described
below. The SPSR in the current mode (only) can be read and written in the same way as the
CPSR, using MRS/MSR.

MOV R14, #&D0 ; User mode, no ints.
MSR SPSR, R14 ;
ADR R14, User_code_start
MOVS PC, R14 ; ‘Return’ to user code

SVC dispatcher

It will soon become apparent that more than one different OS call is required. The ARM has
only a single SVC instruction which must be used to perform all its system functions. It is
therefore necessary for the called routine to determine which service is required and dispatch
to the appropriate handler.

Two methods have been used to differentiate ARM SVC calls:

Parameter passing

A predetermined register (such as R0) can be preloaded with the number of the service
required. This sacrifices a user register but is easier to process. This method is now preferred
for compatibility with the Thumb instruction set (not discussed here).

• Advantages: Simple to write & decode

• Disadvantages: Extra parameter needed, destroys a register
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Numbered SVC

The SVC instruction (“SVC xxxx ”) has a 24 bit field which is ignored by the processor.
This can be used to indicate the type of SVC. To determine the contents of this field it is neces-
sary to read the op. code from the service routine.

It should be remembered that the return address is in R14 (LR) and this points one instruction
(4 bytes) beyond the SVC instruction …

STR LR, [SP, #-4]! ; Push scratch register

LDR R14, [LR, #-4] ; Read SVC instruction

BIC R14, R14, #&FF000000 ; Mask off opcode

R14 can then be used to select the required function.1

In addition to a SVC number most OS calls will require one or more other parameters. For
example, a call to print a character will require the character to be printed. This would nor-
mally be passed in another register. The number and type of parameters passed is a function of
the particular call made.

• Advantages: Simple to write, compact, needs no extra register

• Disadvantages: SVC number needs to be ‘discovered’ by the SVC handler

SVC Service Routines

SVC entry

The following assumes that the SVC service number is already in R0. Note that no register
contents are changed here. This code is only suitable for a small number of SVC calls due to
the limits on the range of immediate numbers.

SVC_entry CMP R0, #Max_SVC ; Check upper limit

BHI SVC_unknown ;

CMP R0, #0 ;

BEQ SVC_0 ;

CMP R0, #1 ;

BEQ SVC_1 ;

...

This method is serviceable for a small number of different SVC calls. However as the number
of possibilities grows it is more sensible to despatch through ajump table (see page 55).

1. Note: once saved R14 (= LR) can be used as a ‘scratch’ register.

FE xx xx xx
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SVC_entry CMP R0, #Max_SVC ; Check upper limit
BHI SVC_unknown ;

XYZ ADD R0, PC, R0, LSL #2 ; Calc. table address
LDR PC, [R0, #0] ; #0? - see below

Jump_table DEFW SVC_0 ;
DEFW SVC_1 ;
...

This code fragment exploits some features of the ARM instruction set. The ADD instruction is
one of those rare cases where the in-line shifter can be used; in this case it multiplies the SVC
number by four to convert it to a word address. This instruction adds this, theoffset into the
table, to the R15 value. Because R15 is the address of the current instructionplus eight, the off-
set is added to the address of the start of the jump table. This allows the PC to be loaded
directly in the following instruction with an additional offset of zero. If the jump table were
located elsewhere this offset could be used to correct the value. It would be good practice1 to
calculate this value at assembly time rather than inserting the “0” explicitly. This would be
done as “Jump_table - (XYZ + 8) ” and would keep the value correct if editing (delib-
erately or inadvertently) changed the code.

SVC processing

“Thou shalt not corrupt the user’s state.”

Like any procedure a SVC service routine will have a function, some input parameters and
some output results. These should be clearly defined (this is what the comment field is for,
okay?). Whilst it is possible for a service routine to corrupt other state it is generally a bad idea
– it stores up trouble for later when the user has forgotten this. The best thing to do is to pre-
serveall the values that the service routine uses except those that explicitly return a value.

This is what the stack is for.

Note in particular that aSVC which calls a procedure(BL) must first preserve its link register
and aSVC which calls another SVCmust first preserve its link registerand its SPSR. These
values must also be restored, of course. You will need to use the MRS and MSR instructions.

Ask, if you are uncertain about this!

SVC exit

The SVC instruction has changed the CPSR, generously saving a copy in SPSR_svc. When
exiting from the SVC this must be restored. This can be done with the instruction:

MOVS PC, LR

The inclusion of the “S” (‘set flags bit’) in an operation with thedestination as PCis a special
case which is used to copy the SPSR back to the CPSR (see also "Interrupt Service Exit" on
page 68).

1. almost essential!



COMP22712 - 54 COMP22712 Microcontroller Laboratory Manual

School of Computer ScienceUniversity of Manchester

All the different kinds of SVC will have their own service routines. Using the despatcher above
it is possible simply to return at the end of a service routine; however it is worth considering
exiting through a short section of return code which is common to all the service routines. This
is less efficient (i.e. more instructions needed in jumping into this code) but may provide lower
maintenance in the future if, for example, the SVC entry routine is changed.

Terminate programme

A SVC can be used to declare the completion of a user programme. Obviously this should not
return. For now it is adequate to have a simple ‘loop stop’ (i.e. “B .”) to ‘suspend’ execution.
In a multi-tasking system, other processes would take control.

Practical

Modify your “Hello World” programme to run as an ‘application’ within a prim-
itive operating system (OS). The ‘OS’ should initialise itself (including the super-
visor stack) and anything the application might need (specifically the user stack)
before dispatching control to the user code. The user code should communicate
with the peripherals using operating system calls (i.e. SVCs).

Calls which may be useful now might include:

• Print character

• Print string

• Terminate programme

Clearly a ‘print string’ call makes the user programme somewhat trivial (you
might like to print more than one message to bulk out the code) however it may
be useful in future. If you do provide it note that it is sensible (structured!) for it
to call the ‘print character’ routine to save code duplication.

Later we can, by modifying only the print character routine, redirect the message
to a completely different place.

(The programming hints on page 55 may be useful here.)

Komodo tip

As programmes get longer it gets inconvenient to try to follow their progress manually.
Instead of entering the address in a memory sub-window you can use a register name; the
window will then update to start at this pointer and move if the register value changes.

An expression can be used instead, thus (say) “PC - &C” will show the last few instruc-
tions as well and is a convenient way to follow programme execution.

Similarly, R13 (or “SP”) may be used to follow the stack pointer, etc.
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Programming Hints

Multi-way branches

A common construct in programming is the so called “case” or “switch” statement which is a
multi-way branch depending on some variable or expression. This is also useful in assembly
language, where it is normally implemented as ajump table. An example in ARM code is
given below:

CMP R0, #Table_max ;
BHS Out_of_range ;
ADR R1, Jump_table ;
LDR PC, [R1, R0, LSL #2]

Jump_table DEFW Routine_0
DEFW Routine_1
DEFW Routine_2
DEFW Routine_3
DEFW ...

Note that:

• the offset (in R0) is multiplied by 4 (LSL #2) when indexing the table to allow
for the addresses in the table being four bytes long.

• this code jumps to the routines which must know where to jump back to.
To change these into procedure calls (“BL”) it is necessary to save a ‘return
address’ before loading the PC, e.g.

ADR LR, Place_to_return_to_afterwards

Such a code sequence is useful, for example, indispatching different SVC calls to the appro-
priateservice routines.

Nesting system calls

Occasionally you may wish to nest system calls. This makes sense if (for example) a call
to open a file printed out the filename1: there, clearly, a system function nests inside
another. It is important that all the return information is preserved so that the original
context can, eventually be restored. Usually this is done by pushing it onto the stack.

On an ARM a user call (using BL) may need to preserve the link register (LR) value
before a nested BL overwrites it. A SVC has its own LR so this is not needed for a single
SVC call from user mode, but if SVCs are nested the supervisor LR must be preserved
before the second SVC occurs.

However a SVC has also saved its caller’smode(et al.) in its SPSR. The next SVC over-
writes so this, too, must be saved before SVCs can be nested. If this is omitted the even-
tual return could be in the wrong mode and that could result in mayhem.

1. Okay, it’s unlikely that you’d want to do this. It’s just an example, okay?
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Allocating variables

Variables can be held in registers or in memory. The act of ‘declaring’ a variable is necessary to
reserve some space in memory to hold that particular value. The easiest way to reserve space in
assembly language is simply to ‘define’ the relevant item (usually a 32-bit word) in the source
file using “DEFW”. Typically – as the value is initially unknown – the word would be defined to
be zero, but this is arbitrary.

LDR R1, thingy ; Load variable
ADD R1, R1, #1 ; increment
STR R1, thingy ; and store back
...

thingy DEFW 0 ; Arbitrary variable

(In practice this uses PC-relative addressing … if you care!)

If an explicit pointer to the variable is required the following directives should serve:

ADR R1, thingy ;’nearby’ variables
ADR1 R1, thingy ; synonymous
ADR2 R1, thingy ; more distant (2 words)
... ... ; etc.

ADRL R1, thingy ;’distant’ variables

Breakpoints

A breakpoint is a ‘marked’ instruction which stops execution when it is encountered.
Execution is stoppedbeforethe instruction can change the state of the system. They are
used as a debugging aid; for example a breakpoint set just before a suspect piece of code
allows the programme to be ‘run’ to that point and then single stepped. Alternatively a
breakpoint could be used to stop execution if the processor has jumped to an address it
should not have reached.

The ARM boards support up to 8 breakpoints and each has three possible states:

• deleted (or never set)

• active (can cause a trap if encountered)

• inactive (will not cause a trap but the programmed values are retained)

In addition a global flag must be set before any breakpoints are considered.

The easiest method of setting/clearing a breakpoint is to ‘double click’ on an address in a
memory window. (They can also be controlled from a pop-up window.) Breakpoints are
shown in orange in the memory display.

Note that a breakpoint is ineffective if it is the first instruction encountered after a user
‘run’ command; this allows the user to elect to ‘continue’ from a breakpoint without it
causing interference unless it is encountered again.
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ARM Processor Flags

In the ARM code sequence: CMP R0, #10
BLT sandwich

the branch depends on the outcome of the comparison. How does the second instruction know
what the first has done? The answer lies in a small set of statusflagswhich reside in the CPSR.

There are four basic status flags (see below) and these inhabit the four most significant bits of
the CPSR. In Komodo these can be viewed (and changed) either as part of the CPSR or indi-
vidually as buttons (underneath).

These can be tested individually (e.g.BEQbranches if the Z flag is set) or in some predefined
logical combinations. You can look up how (e.g.) ‘LT’ is evaluated if you’re sufficiently inter-
ested, but it doesn’t matter much at the moment.

The primary method of testing the flags is by using conditional evaluation. ARM allows such
predicationon any instruction; many processors only allow conditional branches. Note that the
flags indicate the status as if the calculation isbothsigned (e.g. ‘GT’) andunsigned (e.g. ‘HI’);
you can choose the interpretation afterwards.

A second use of the carry flag is to act as the 33rd bit in a calculation when needed. For exam-
ple, if adding two 64-bit numbers R1:R0 and R3:R2, the carry allows an ‘overflow’ from the
lower 32 bits to be included in the second half of the calculation.

ADDS R0, R0, R2 ; Must set flags
ADC R1, R1, R3 ; Add with Carry

The carry flag can also be used as the 33rd bit in shift operations.

Unlike most processors – which typically set flags on any evaluation – ARM gives you the
option of setting flags on any data operation, by adding an ‘S’ to the mnemonic. The only
exceptions are the operations which have no register result {‘CMP’, ‘ CMN’, ‘ TST’, ‘ TEQ’}
which would do nothing if they didn’t set the flags.

Not all processors use flags to contain this information: some use general purpose registers or
specialised comparison operations. However flags in a status register are not uncommon:
another example is Intel’s ubiquitous IA-32.

Name Abbreviation CPSR bit Meaning

Negative
(sign)

N 31 Set if the result was negative
(two’s complement, i.e. bit 31 of result)

Zero Z 30 Set if the result was zero

Carry C 29 The carry output of the ALU following anarithmetic
(ADD, SUB, CMP, …) operation; or
The last bit to ‘fall off’ the shifter if a shift is used in a
logical (AND, ORR, TST, …) operation

Overflow V 28 Set if the result is ‘wrong’ due to exceeding the repre-
sentable number range, assuming two’s complement
signed numbers. e.g. 2147483647 + 1⇒ -2147483648
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ARM condition codes

For reference, the ARM’s condition codes are tabulated below. (Don’t try and learn them all!)

You may observe that these are in complementary pairs (e.g. EQ and NE). This makes imple-
mentation easier. [In detail, bit 28 of the opcode need only be XORed with the rest of the com-
parison so the hardware is kept simple.]

The ALways code is assumed if no code is specified in the assembly language. Because the
codes come in pairs, there is also a NeVer code; this wastes of the instruction space. (On the
most recent ARM devices this code has been redefined as another ALways code with some
new instructions, which thereforecannot be conditional).

Opcode
[31:28]

Mnemonic
extension

Interpretation Status flag state for execution

0000 EQ Equal/equals zero Z set

0001 NE Not equal Z clear

0010 CS/HS Carry set/unsigned Higher or same C set

0011 CC/LO Carry clear/unsigned lower C clear

0100 MI Minus/negative N set

0101 PL Plus/positive or zero N clear

0110 VS Overflow V set

0111 VC No Overflow V clear

1000 HI Unsigned higher C set and Z clear

1001 LS Unsigned lower or same C clear or Z set

1010 GE Signed greater or equal N equals V

1011 LT Signed less than N is not equal to V

1100 GT Signed greater than Z clear and N equals V

1001 LE Signed less or equal Z set or N is not equal to V

1110 AL Always any

1111 NV Never none

1
16
------

ARM programming puzzle

Multiply the word in R3 by 7. No other registers may be used.

Note: MUL won’t work because all its operands must already be in registers.

Target: 1 instruction
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Exercise 5
Counters and Timers

Objectives

• Introduce the timer as a peripheral device

- Some more peripheral programming

• Frequency division by software

• Cursor control on LCD

When operating under real-time1 constraints it is important to be able to measure the passage
of time. Time can be measured (and delays imposed) by totalling the time it takes a section of
code to execute. This is a very poor way of producing a delay because:

• Execution time may vary, for example due to cache hits or misses

- this may be very unpredictable

• Interrupts (see later) could insert extra ‘invisible’ delays into the code

• If in a multi-tasking environment the code could be suspended for an arbitrary
time

• The code may be ported to a machine with a different clock frequency

Thus if a real time reference is needed the programme must have access to a separate, fixed-
frequency clock which will not be affected by other system activity. This is normally provided
by a hardware peripheral known as a ‘timer’.

Definitions:

• Counter: a hardware circuit which increments (or decrements) according to an
external stimulus.

• Timer : a counter circuit which counts the pulses of a regular, clock input

• Prescaler: a divider (modulo N counter) used to reduce the number of counts a
timer needs to make

A single peripheral often functions as both a counter and a timer (figure 8). In practice timers
are far more common than simple event counters, so the following description applies prima-
rily to them. A timer can be seen as a subsystem which counts a known (but – likely – pro-
grammable) number of clock pulses to indicate a defined interval of time. Because clocks in
computer systems are often significantly faster than that required a prescaler – typically divid-
ing by a power of two2 – is often an option to slow the counter down to a ‘sensible’ rate.

1. i.e. the response of the system must meet some real, worst-case constraints.
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Because the hardware required is relatively simple, timers are often supported in hardware.
There are several possible implementations, some examples of which are:

Free-running: a value is incremented or decremented on each clock pulse. This integer will
have a fixed length (typically 8- or 16-bit) and will cycle modulo its word length. Usually the
value will be readable by software and thus an interval can be calculated from the difference
between the current and previous readings (beware the wrap-around). Note that there will
always be some uncertainty due to the clock resolution, but this isnot cumulative because the
timer runs freely. Sometimes the counter will be writeable by the processor, although this may
introduce cumulative errors.

Often free-running timers have one or more comparison registers; these can be set up to a value
that the counter will reach in the future and will produce an output (usually an interrupt) at that
time. The lab. board has such a system.

One-shot: a slightly more sophisticated timer which counts a preprogrammed number of clock
pulses and then signals the fact and stops. Typically the counter will count down and stop at
zero. Usually it is able to provide an interrupt. This is useful when some activity is required a
known time after an input; for example timing the ignition in a car engine at a known, but prob-
ably variable, time in the engine’s cycle.

Figure 9 shows both a free-running and a one-shot timer in ‘continuous’ use. In each case the
timer requests attention and waits for the processor to detect this and service it. Note how the
free running timer is able to maintain a regular rhythm whereas the one-shot loses time whilst
waiting for the processor.

Reloadable: similar in function to a ‘one-shot’ but they do not stop at zero; instead they load
themselves with a value retained in a separate register. This means that they can be pro-
grammed as modulo-N counters and then can be left to run freely. (The count can, of course, be
changed.) They have an advantage over ‘one-shot’ timers in applications where time should be
measured continuously in that they continue without processor intervention.

As well as providing processor inputs such as regular interrupts reloadable counters are used
for programmable clocks within the system. For example one such timer can be used to divide
a system clock down to thebaud (q.v.) clock used on a serial line. This subsequently runs
without further (direct) interaction with the processor.

2. A good example is the common 32 kHz ‘watch’ crystal – its true frequency is 32.786 kHz which, if
divided by two 15 times gives a 1 Hz output.

Oscillator

Counter

Prescale

Pin

M
U

X

M
U

X

Figure 8: Typical counter/timer circuit

counter/timer
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Practical

1 Write a programme which increments a memory location every 100ms (one tenth
of a second) using the hardware timer as a reference. Make this into a ‘stopwatch’
such that the lower button on the circuit board starts the count and the upper
button causes it to pause. Holding the upper (stop) button down for more than
one second should reset the counter to zero.
Hint: a state diagram might help here.

The timer provided (10000008) is free-running and increments at 1 kHz; it is 8
bits wide. This frequency therefore needs to be divided down by 1000 to achieve a
1 Hz output.
Note that an 8-bit counter only has 256 different states.

2 Display a four digit decimal counter running at one increment per second using
the LCD as an output. It is recommended that you store the count in BCD
(Binary Coded Decimal) to make printing easier – just use a standard hexadeci-
mal print routine. Alternatively a binary-to decimal conversion routine is pro-
vided in /opt/info/courses/COMP22712/Code_examples/bcd_convert.s

To provide ‘hardware abstraction’ – i.e. to divorce the software from the particu-
lar hardware used – the timer should only be read using a system call (i.e. a SVC).
This means that if the programme can be ported to a different system only the
SVC calls need to be changed.
As an alternative approach you might consider having a SVC which waits for a
certain time, passed as a parameter.

In this exercise the counter can bepolled until a desired value is reached.

Submission

You should submit this exercise for assessment and feedback. The submission should include
access to the timer using system calls, plus any appropriate techniques from earlier exercises.

Figure 9: Free-running and one-shot timers compared

Free-running

One-shot
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Hexadecimal Print Routine

Probably the easiest way to print a number (in, say, R0) in hexadecimal is to first assume a rou-
tine to print the least significant digit. This is then called the required number of times with the
appropriate value shifted/rotated into the correct position. Try it on paper, first.

PrintHex8 Rotate R0 right 4 places
CALL PrintHex4
Rotate R0 left 4 places (i.e. restore it)
CALL PrintHex4
RETURN

PrintHex4 Save R0
Mask off everything except lower 4 bits
IF R0 > 9 then add ‘A’ - 10
ELSE add ‘0’ (ASCII conversion)
CALL PrintCharacter
Restore R0 and RETURN

Note: the ASCII ‘6’ isnot the byte 6, but the byte &36. See p.96 for a complete ASCII table.

Decimal Printing

The difficulty with printing in decimal is that the number to be output must be divided down
first. (This is also true in hex, but dividing by 16 is much easier). The ARM does not have a
general-purpose “DIV” instruction so you would need to write a function to do this.

Assuming division is available, here are two different ways of printing a 16-bit unsigned
number in decimal. Step through these (on paper) to see how they work.

Decimal print – method #1

Start with a table representing the digit positions; for a 16-bit number (0-65535) this would be:

DEFW 10000 ; Note these are decimal
DEFW 1000 ; numbers
DEFW 100
DEFW 10
DEFW 1

Divide the number to be printed by the first entry in the table, keeping both quotient and
remainder. Print the quotient, whichmustbe a single digit. Repeat the process successively
using the remainder as input with subsequent lines until the end of the table.

Decimal print – method #2

Divide the number by 10; stack the remainder and repeat until the number reaches zero. This
pushes the digits to be printed onto the stack in reverse order. Now pop and print the stacked
digits so they appear in the correct order. This method has the advantage that it will work on an
arbitrary sized number; it is also easier to suppress leading zeros if that is required. If you try
this, make sure that the number 0 prints correctly though!
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Calling Conventions

To enable routines – possibly built by different tools or even in different languages – to work
together a common interface standard must be employed. This is simply a software convention
which programmers or compilers are expected to obey.

For example, you could decide that all processor registers will hold the same values on exit
from a ‘BL’ that they had on entry; tis would usually entail saving (probably stacking) and
restoring the values so that the routine could use registers internally. There is a cost in time and
energy in each operation.

There is no compulsion to use any particular convention in this lab; this is simply mentioned
for future interest.

ARM Procedure Call Standard (APCS) – simplified version

APCS is still a software specification, used by ARM’s own compilers. Because languages such
as C typically pass (a ‘few’) arguments into procedures and functions it takes this into account
and reserves some registers for the job. Because the number of arguments is not bounded it
cannot necessarily pass them all in registers.

If the procedure uses more than four arguments, the excess are pushed onto the stack before the
call (‘BL’) is made; they must be deallocated after the return.

You can find the complete and up-to-date APCS document (ARM Ref. “ARM IHI 0042”) on
line if you’re sufficiently interested.

Register(s) On entry On exit

R0 First argument Function return value else unde-
fined

R1-R3 Second to fourth arguments Undefined

R4-R11 Caller’s own variables Preserved

R12 Scratch register Undefined

SP  Stack Pointer (Full Descending) Restored

LR Set as return address Undefined

Flags Not defined Undefined
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How to stop the processor from a programme

The ARM’s behaviour under Komodo is normally controlled by the ‘front panel’. How-
ever, occasionally, you may want to a programme to stop the processor itself.

To allow for this a port at address &10000020 is provided; a write to this port will imme-
diately halt execution; the value written is irrelevant.

ARM programming puzzle

Test if the value in R0 is an exact integer power of 2. Other registers may be used.

Target: 2 instructions (quite difficult!)
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Exercise 6
Interrupts

Objectives

• Introduce interrupts

• Read buttons to change display

• Invention of user interface

What are Interrupts?

Interrupts are a mechanism by which hardware can ‘call’ software.

The usual model of computer operation is that the user’s algorithm is implemented in software.
Typically this is broken down into procedures which are called to perform ever simpler func-
tions. The lowest level of calls – such as executing instructions – can be thought of as being
implemented in the hardware.

An interrupt is initiated by a dedicated hardware signal to the processor. The processor moni-
tors this signal and, if it is active, is capable of suspending ‘normal’ execution and running an
Interrupt Service Routine (ISR). Effectively it is as if a procedure call has been inserted
between two instructions in the normal code.

ARM has two separate, independent interrupt inputs called “Interrupt Request” (IRQ) and
“Fast Interrupt Request” (FIQ). These exhibit similar behaviour although they have their own
operating modes. FIQ is a higher priority signal, so it will be serviced in preference to IRQ or,
indeed, may preempt an IRQ already being serviced.

Why use Interrupts?

Most processors will only run a singlethread (stream of instructions) at a given time. It is
often desirable to try to do two or more tasks at the same time (or at leastappearto do so).
Often this facility can be added with a very small hardware cost.

To illustrate by example think of an office worker writing a letter, a single task. He would also
like to answer incoming telephone calls. One way to do this would be to pick up the telephone
after typing each line to see if anyone is waiting; he could check to see if anyone is outside the
door at the same time …

This periodic checking is known aspolling and is clearly inefficient. Firstly it involves a lot of
unnecessary effort; most of the time there will be no one there. Secondly a caller could be
ignored if our author gets stuck on a particular sentence. Thirdly the ‘write letter’ process has
to ‘know’ about all the other possible tasks that could happen in advance.

By adding a bell to the telephone it is possible to allow it to interrupt other tasks. Our heroine
can concentrate on her composition without considering callers, but can still know immedi-
ately when one wants attention.
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Examples of Interrupt Processes

Waiting . As has already been seen it is quite common for a processor to have to wait for hard-
ware to become ready. This might be for a fixed time or whilst waiting for external hardware to
become ready (e.g. printer off line). In any case polling the hardware is a waste of time the
processor could spend doing something else.

Clocks. A clock interrupt can provide a regular timing reference whilst other processes are
running. more on this below.

Input . An interrupt can allow the machine to register an ‘unexpected’ input, such as the user
pressing a key or moving the mouse.

ARM Interrupt Behaviour

If the IRQ signal is active – and enabled – the interrupt service routine will be called after the
current instruction has completed. The ARM inserts interrupts cleanly between instructions,
just as if a procedure call had been inserted into the instruction stream.

The following actions are then performed:

• R14irq := address of the next instruction + 4

• SPSRirq := CPSR

• CPSR mode is set to IRQ mode

• IRQ is disabled in the CPSR (note a bit isset to disable the interrupt)

• The Thumb bit is cleared (if set)

• PC := 00000018

(The FIQ response is similar to the IRQ response (for “IRQ” read “FIQ”) except thatbothIRQ
and FIQ are disabled and the PC is set to 0000001C.)

Normally address 00000018 will contain a branch to the actual service code because the subse-
quent address is the entry point for the FIQ ISR1.

Note: the only user-accessible registers changed are PC and CPSR, copies of both of which are
preserved in special interrupt registers2. Note that, unlike a “BL” which changes only the PC,
an interrupt is an exception – like a “SVC” – and changes the operating mode too. Both must
be restored to exit the ISR correctly.

1. The FIQ is the last ‘vector’ in the table and therefore its ISR can begin at address 0000001C rather
than branching first. This can save time for the most urgent interrupt(s).
2. In fact the PC has been modified, but the original value is recoverable.
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Interrupt Enable/Disable

It is occasionally desirable to be able to ignore interrupts. The ARM processor contains two
bits which, when set, prevent IRQ and FIQ from having any effect, i.e. they act asinterrupt
disablebits. These are visible in the CPSR as bits 7 and 6, respectively. Because they are in the
control byte of the CPSR the processor can only modify these when in a privileged mode.
(Note: the ARM is unusual in having the “1” state as interrupts disabled; most processors have
these bits in the opposite sense.)

As the hardware state is undefined at start up these bits are set by a processor reset. No inter-
rupts will be serviced until they are cleared in software.

These bits reside inside the processor. In addition to these it is usual to have separate interrupt
enable bits to control the individual interrupt sources which prevent an interrupt request reach-
ing the processor at all (figure 10).

On the laboratory board the interrupts and their enables are implemented on the microcontrol-
ler although they can be expanded through the FPGAs. There are eight interrupt sources as
shown in table 10, although some of these are of no interest here.

Bit number Function

0 Timer compare

1 Spartan FPGA

2 Virtex FPGA (Not fitted here)

3 Ethernet interface  (Not fitted here)

4 Serial RxD ready

5 Serial TxD available

6 Upper button

7 Lower button

Table 10: Interrupt Bit Assignments

Figure 10: Typical Interrupt Configuration

IRQ0

IRQ1

IRQ2

IRQ3

IEn0

IEn1
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Interrupt!
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The interrupt bits are visible through port 10000018 and the (active high) interrupt enable bits
through port 1000001C. If any interrupt request and the corresponding interrupt enable are
active then a processor interrupt (IRQ) will be requested. The processor will service this only if
it too has interrupts enabled, i.e. bit 7 of the CPSR is 0 (note unusual sense).

State Preservation

“Thou really shalt not corrupt the user’s state.”

The interrupt entry sequence preserves the minimum of the processor’s state necessary.
Although the interrupt mode has some of its own, private registers (more in the case or FIQ) it
is essential that the service routine does not change any of the state visible to the user process
(for example the contents of R0).

Usually an interrupt service routine will require some working registers; if this is the case the
values in these registersmust first be saved (the IRQ routine can have its own stack for this
purpose) and restored before the user programme is resumed. If this is not done the ISR will
still work but the user programme will begin to behave erratically as its variables are randomly
corrupted.

Sooner or later interrupt stacks will be required so the SP (R13) in the IRQ and FIQ modes
should be initialised to point to their own reserved areas within the start-up code.

Interrupt Service Routine

During the interrupt service routine it is necessary toacknowledgethe interrupt source. If this
is not done then the interrupting device will continue to clamour for attention and will cause
another interrupt as soon as interrupts are re-enabled – typically immediately on return from
the ISR.

Some processor/hardware combinations will acknowledge the interrupt automatically when
the ISR is entered; the ARM does not do this, so acknowledgement must be performed by soft-
ware within the ISR. This involves clearing the bit in port 10000018 which corresponds to the
bit being serviced.) Other bits should be left alone until their request is also serviced.)

Interrupt Service Exit

When the interrupt service is complete the machine state must be restored. Any registers which
have been corrupted must be reloaded by the code itself; finally the interrupt entry sequence
must be reversed.

Note that the address saved in R14irq is not the address of the next instruction. In order to
return to the correct place the saved PC must be decremented by 4. In addition the mode must
be restored, interrupts reenabled etc. This is all achieved with the instruction:

SUBS PC, LR, #4

The subtract copies the corrected return address back to the PC. The inclusion of the “S” bit,
normally used to set the flags, has a special meaning when the instruction destination is the PC
and it causes the current mode’s SPSR to be copied back to the CPSR. Because this was saved
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on interrupt entry it restores the remainder of the processor state. (Remember that the interrupt
could have occurred in any mode, not just user mode.) Compare this with "SVC exit" on
page 53.

An alternative method of restoring the CPSR using “LDM^” can also be used. In this case it is
sensible to correct the return address before stacking it.

ISR_entry SUB LR, LR, #4 ; Correct return addr.
STMFD SP!, {R0-R2,LR} ; Save working regs.

; and return address
...

LDMFD SP!, {R0-R2,PC}^ ; Restore & return

If the “hat” (‘^’) is appended to an LDM with the PC in the register list the current SPSR is
copied to the CPSR during the instruction. (If PC is not in the list, or if the instruction is an
STM the behaviour is different.)

Practical

1 Experiment with interrupts before running them ‘real time’ by single-stepping
(or ‘walking’) through an Interrupt Service Routine (ISR). The two user buttons
can be used to assert the interrupt signal if they have been enabled. This can then
be used to illustrate how an external stimulus can cause a change in a pro-
gramme’s behaviour. Don’t forget to enable interrupts on the processor too!

Note that, if running at full speed, a button press may cause several interrupts
due to key bounce.

2 Convert your counter (displayed on the LCD) to an interrupt-driven system.
When running this should be independent of any user programme which can be
run separately.

Timer Compare

The board includes a timer compare register (visible at address 1000000C) which can be set to
any desired 8-bit value. Each time the counter is incremented the appropriate interrupt bit is
modified; therefore when the counter matches the compare register an interrupt may be gener-
ated. This will ‘naturally’ occur once every 256 ms although the compare register can be
changed to shorten the interval to thenext interrupt request.

Note that the interrupt request register can be modified by software to clear the request when
the interrupt has been serviced (e.g. during the ISR).

Frequency division

The timer interrupts arrive at a maximum frequency of 1 kHz (i.e. 1 ms intervals) and a mini-
mum frequency of about 3.9 Hz (i.e. 256 ms intervals). The counter or clock should onlyvisi-
bly increment at 1 s intervals. However there is nothing to say that you can’t keep a more
accurate clock without displaying the less significant digits!
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Debugging Checklist

Did you remember to:

• set the interrupt ‘vector’ to the interrupt service routine?

• set up an interrupt stack (if required)?

• enable the required interrupt?

• enable interrupts on the processor (i.e.clear the interrupt disable flag)

• preserve all the processor state during the ISR?

• clear the interrupt so it is serviced only once?

• restore the mode (and hence re-enable interrupts) when returning from the ISR?

Advanced

Reformat the output to make a digital clock. Allow the user to set the time using
some input buttons (devise your own way to do this).

Don’t forget the buttons may ‘bounce’, so read through the next exercise first.

Komodo tip

In the same way that a BL or SVC can be treated as a single step, an interrupt service
routine can be made transparent to the user. By enabling the relevant option in Komodo
(“Active: IRQ”) an interrupt will be serviced invisibly, even if the processor is otherwise
halted.

This may be useful in debugging ‘foreground’ code where interrupts must remain active
in real time. For example a clock setting programme may be single-stepped even while
the clock continues to be updated.

Multistep bug?

When interrupts are used ‘multistep’ sometimes does not count all the steps asked for.
This is because a requested step may become an interrupt entry action which is not a real
instruction.

Is this a bug? What do you think?

Note that the difference in the number of steps requested and instructions executed gives
the number of interrupts taken during the sequence. This may be useful in itself.

Multistep bug?

When interrupts are used ‘multistep’ sometimes does not count all the steps asked for.
This is because a requested step may become an interrupt entry action which is not a real
instruction.

Is this a bug? What do you think?

Note that the difference in the number of steps requested and instructions executed gives
the number of interrupts taken during the sequence. This may be useful in itself.
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Interrupt ‘Chains’

Typically a system will have a number of interrupts which are linked into a ‘chain’. This occurs
(for example) as peripheraldevice drivers are added to a system; each may require its own
interrupt.

A common method of dealing with this is to have a code fragment which can grab a recognised
interrupt and service it, or pass on control if it is not recognised.

Check my hardware interrupt status
IF interrupt_active THEN GOTO service routine
ELSE GOTO next interrupt possibility

Eventually the interrupt should be recognised, serviced and cleared. Cautious programmers
may choose to finish with an unrecognised interrupt service routine which will allow for an
interrupt input which may have glitched.

Although to date the code has been static this is not the case in a real system. Normally the OS
will have initialised the interrupt ‘vector’ to anything it requires first and subsequent modifica-
tions should not disable these functions. To add another interrupt service routine the following
operations must be performed:

Install our handler in memory

Read the current ‘vector’
Make this the ‘next possibility’ in our handler

Change the vector to point to our handler

An interrupt will then first come to the new handler – where it may be recognised and proc-
essed – and subsequently passed to the ‘original’ handlers.

N.B. Adding (or removing) interrupt handlers is a privileged operation and should be provided
as an operating system call.

Note that, on an ARM, the ‘vectors’ are actually instructions not addresses and thus may
require some additional work to synthesize. For example the offset in a branch instruction (the
lower 24 bits) is multiplied by 4 (to make a word address), sign extended and added to the PC
(address of branch instructionplus 8) to find the destination. This process must be reversed to
build the instruction.

Branch instructions are not the only (or even most common) instructions which occupy the
‘vectors’ however. “LDR PC, vector ” is quite common. Although this requires another
32-bit word to act as a (true) vector this can be more useful because it is not restricted in its
address range like a branch instruction.

Optional paper exercise

Design a piece of code which links into an existing interrupt chain when the existing ‘vector’
could beeither a branch or LDR PC instruction – and you have to discover which.

(You don’t need to produce a perfectly correct implementation of this, just solve the problems.)
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Shifts and Carries

When a data processing operation is executed the flags may be set. It is typically clear what is
meant by ‘Zero’ (a.k.a. ‘equals’ when comparing); the sign bit (‘N’ for Negative in ARM ter-
minology) is also obvious – a copy of the most significant bit.

Overflow (‘V’) and Carry (‘C’) have meaning only forarithmetic operations (ADD, SUB,
CMP etc.) where the values are treated as numbers; they have no meaning inlogical operations
(AND, ORR, MOV etc.) where each bit in the word is processed independently.

In ARM, even when setting the flags, the overflow flag is unchanged on a logical operation.

However many processors – including ARM – use the carry flag as an extension when employ-
ing shifts. Here it is the last bit to have ‘fallen off’ the register in the shift or rotation operation.

Because ARM can shift and apply an ALU operation at the same time there must be a rule to
dictate the source of the carry. Assuming a flag-setting operation, the carry flag will be set as
follows:

if arithmetic operation //ADD, SUB, CMP …
carry is taken from the ALU

else //logical operation)
if no shift takes place

carry is unchanged
else

carry set to bit ‘falling off’ shift

The ability to ‘catch’ the carry flag enables some other programming ‘tricks’ which can lead to
more efficient code. Here’s an alternative bit test sequence:

movs r0, r0, ror #5 ; Bit 4 into carry
bcs its_a_one ; and Branch Carry Set

Puzzle: what does this fragment do?

mov r1, #0 ; Initialise result
loop movs r0, r0, lsr #1 ; LSB into carry

adc r1, r1, #0 ;
bne loop ; if R0 != 0

Puzzle: or how about this one?

mov r1, #0
mov r2, #32

again movs r0, r0, lsr #1
adc r1, r1, r1 ; Think about this one!
subs r2, r2, #1
bne again
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Exercise 7
Key Debouncing and Keyboard Scanning

Objectives

• Programming around ‘real world’ problems

• I/O matrix techniques

Key Bounce

Key bounce is a mechanical effect which causes switch contacts to open and close repeatedly
as the switch’s state is changed from open to closed, or vice versa. The number of bounces and
the time taken for the bounce to die out are not deterministic, but the total time of bouncing is
bounded. The maximum bounce period depends on the switch being used and the amount of
wear it has had, but a typical period would be about 5 ms. This is a short time in human terms,
but a long time for a computer. It is therefore generally not possible to simply sample a
switch’s state and note every change from open to closed as a button press. The switch must be
debounced.

In other labs. key debouncing has been performed in hardware. This works, but
increases the cost of the interface. Software debouncing is a cheaper solution.

Debouncing

Debouncing typically involves waiting for the relevant time; for example it could be noted that
a button which was formerly open is now closed and a delay could be imposed before that but-
ton is sampled again. This is a fairly simple mechanism to conceive, but requires a time stamp
for each button to say when it can/cannot be examined.

Another method of debouncing in software involves the repeated sampling of the key – at
decent intervals – but only considering it to have changed state when it has been in a new state
for a certain number of consecutive samples. For example a key state could be read as a bit
every 1 ms which is shifted into a byte to keep a rolling sample of the last 8 ms of state. The
key is ‘pressed’ when the byte is FF and released when it is 00. For any other state the key is
regarded to not have changed.

Another variant of this method is to keep a counter for each key, incrementing it if the key is
pressed and decrementing it if it is not. The counter can ‘saturate’ at 00 and a maximum pre-
chosen to indicate when the bounce period has finished. Other variations are also possible.

With any of these methods it is also necessary to note the state of the key before the operation
begins. This value changes only when debounce is complete; in the first debouncing method it
would be set when the byte reached FF and would remain set until the byte had returned to 00.
This provided the necessaryhysteresis. When the key is first pressed an event may be gener-
ated to cause some effect (such as printing a character).
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Can you devise a more efficient method to tell if the key has just been pressed? Discuss possi-
bility with the lab. staff (and others) and see if you can find an elegant solution.

The process outlined above needs to be instantiated for every key. The result is a ‘map’ of the
debounced key state which is kept in memory (often sacrificing one byte per key for conven-
ience). This is useful for certain purposes – such as games where key-pressed-or-not is all that
is required – but to type into the machine it is also necessary to detect the ‘edge’ of a key being
depressed for most keys1.

The user interface to the keyboard normally comes down to a “get character” call which waits
for the next key press and returns the appropriate code. This is a system call.

In a very simple system (such as here) it may be possible to begin scanning the keyboard on
demand. Thus, when input is required, a number of scans (sufficiently separated in time) can
be performed and repeated until a key code is returned.

Keyboards

A simple keyboard would have each switch connected to its own input port bit. However for a
typical computer keyboard (which has over one hundred keys) this is too expensive in both sil-
icon and wiring.

Instead it is normal to place keys on a two dimensional matrix; 100 keys can be placed on a
10x10 grid and serviced with 20 I/O lines instead of 100, a considerable saving! Figure 11
shows the principle of this on a smaller scale. Note: all the inputs and outputs to this circuit are
active high.

To scan a row of the keyboard the corresponding input is activated and all others are inacti-
vated. This means that exactly one of the ‘horizontal’ wires is driven low.

1. Exceptions are keys such as Shift, Ctrl, Alt, … which act in concert with other keys.

Figure 11: Keyboard Matrix

Key switches

3 6 9 #

2 5 8 0

1 4 7 *

5 6 7 0 1 2 3

Port A1 bit number
address = 20000002
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If no keys are pressed then all the ‘vertical’ wires are pulled high by the resistors. However if
one or more keyson the selected rowis pressed the corresponding output will be activated via
the switch. This provides the state of some of the keys.

A completekeyboard scanis performed by activating each of the inputs in turn (all others are
set inactive) and latching the output pattern for each row.

Note that this scan is done electrically and is not affected by the mechanical bouncing of the
switch contacts. It is perfectly possible to sample a particular key on successive scans and
debounce it appropriately, as described in the preceding section.

FPGA Peripherals

The Spartan-3 FPGA is used to provide the majority of the I/O in this lab. The FPGA can be
loaded with a user-selected configuration so that the I/O can be customised for particular appli-
cations. However this is not yet necessary as there is a default configuration loaded on start up.

The default configuration has eight, bit programmable 8-bit PIOs which are connected to the
central eight connections of each row of the I/O connectors at the front of the board. The key-
board interface should be plugged into the left, front connector which corresponds to PIO #S0.

The FPGA is mapped into an 8-bit wide area of memory occupying the address space
2xxxxxxx. Only byte transfers are sensibly defined. Seven address lines – A[6:0] – are pro-
vided and all bytes are significant, so the address space repeats every 32 bytes.

The default PIO address map is:

Each PIO is programmed via two registers (fig. 12): one holds data which should be output, the
other defines the direction of the pin. A bit value of “0” in the direction latch programmes the
corresponding bit in that PIO to be an output; a value of “1” programmes the bit in that PIO to
be an input. The direction latch resets (at hardware reset) to a value “FF” so that all the pins
default to being inputs. This register can be read back.

Offset Register Offset Register Connector Port

0 Data 1 Control S0 Front, left outer, lower

2 Data 3 Control S0 Front, left outer, upper

4 Data 5 Control S1 Front, left centre, lower

6 Data 7 Control S1 Front, left centre, upper

8 Data 9 Control S2 Front, right centre, lower

A Data B Control S2 Front, right centre, upper

C Data D Control S3 Front, right outer, lower

E Data F Control S3 Front, right outer, upper

Table 11: Default FPGA address map
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Why is defaulting toinputs (at reset) the sensible behaviour for the PIO bit?

The data register contents is output on any pins defined as outputs. Bits programmed as inputs
are ignored. When read this register returns the values at the pins themselves, so input bits
should give external input states whilst output bitsshould be as programmed.

Practical

Attach one of the small, matrix keyboards to the lab. board and use it to input
digits which appear on the LCD display.

Advanced

Modify your system to make a simple adding machine, totalling and displaying
the entered numbers.

Submission

You should submit this exercise for assessment and feedback. The submission should use inter-
rupts to scan the keyboard on a regular basis and not rely on software delays.

Key translation

Note that the ‘code’ you read by scanning the keyboard is related to the physical position of the
key and is not the number written on it. This code needs to be translated to a corresponding
ASCII code for printing. For a hint on an efficient way to do this, re-read "Look-up tables" on
page 26.

PIN

Figure 12: PIO Bit Logic
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‘Real’ Keyboard Scanning

In a ‘real’ system it is normal to scan the keyboard using regular (timer)interrupts (qv) to
decouple the keyboard from the application programme. During each scan the key states would
be read and fed to the debounce software. This would then update the keyboard map as
required.This allows characters to be typed even if an application is not ‘paying attention’, a
function known astype ahead.

If a key has just been pressed (and debounced) the corresponding code needs to be passed to
the relevant output stream. This is done by inserting the character into a software First-In,
First-Out (FIFO) buffer. In a typical keyboard driver the last key pressed and the time it was
observed would also be recorded to allowauto-repeat, i.e. the last key sent can be sampled
again and inserted again if it is still pressed (i.e. held down) at a certain future time.

Another function usually provided by the keyboard driver isrollover. This feature updates the
‘last key pressed’ when a new key is depressed, even if the first key has not yet been released.
This feature allows faster typing for those sufficiently proficient.

Try it on your workstation! Press and hold a key and then press another, the output
character should change. If the second key is released first the first key will not be
seen until it too has been released and pressed again.

With keyboards scanned under interrupts the system call to read a key reduces to getting the
next character from the FIFO (or waiting if the FIFO is empty) and returning to the application.

Software FIFOs

A FIFO (First-In, First-Out) buffer, or
“queue” is an ‘elastic’ pipe, capable of
storing items and releasing them in the
same order as they were entered.

In software FIFOs are normally imple-
mented as circular (or ‘cyclic’) buffers,
where the data is kept in an area of
memory which is logically wrapped
around so that walking off one end
brings you back in at the other. The
head and tail of the queue is indicated
by two pointers which obey these rules.
This form of buffering is efficient in that
the data never have to be moved in memory; if the head and tail were fixed the data
would constantly be shuffling down the memory – a very time consuming process.

In operation items (such as key codes) are inserted at the head and the head pointer is
advanced (wrapping if necessary). Items (if any is available) are removed from the tail
which advances in a similar fashion in the same direction. The buffer management soft-
ware must keep track of pointers so that the tail cannot overtake the head if the buffer is
empty. Furthermore the head must not ‘lap’ the tail because then items would be over-
written before they have been read.

Buffer

e
H

o
l
l

“Head”

“Tail”
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Loop Unrolling

Take a piece of code:

MOV R0, #0 ; Value
MOV R1, #8 ; Count

repeat STR R0, [R1], #4 ; Zero memory
SUBS R1, R1, #1 ; Several times
BHI repeat ;

Assuming (falsely) no prefetch this executes in 34 cycles – 8 of which are the actual data
store cycles. The ‘loop overhead’ accounts for 16 cycles.

If a prefetch depth of 2 is assumed (typical for many ARMs) the code’s execution time is
48 cycles (only the last iteration doesn’t waste cycles refilling the pipeline).

If this is time critical code it can be significantly speeded up byunrolling  the loop:

MOV R0, #0 ; Value
STR R0, [R1], #4 ;
STR R0, [R1], #4 ;

Loop Unrolling
Take a piece of code:

MOV R0, #0 ; Value
MOV R1, #8 ; Count

repeat STR R0, [R1], #4 ; Zero memory
SUBS R1, R1, #1 ; Several times
BHI repeat ;

Assuming (falsely) no prefetch, this executes in 34 cycles – 8 ofwhich are the actual data
store cycles. The ‘loop overhead’ accounts for 16 cycles.

If a prefetch depth of 2 is assumed (typical for many ARMs) the code’s execution time is
48 cycles (only the last iteration doesn’t waste cycles refilling the pipeline).

If this is time critical code it can be significantly speeded up byunrolling  the loop:

MOV R0, #0 ; Value
STR R0, [R1], #4 ;
STR R0, [R1], #4 ;
STR R0, [R1], #4 ;
STR R0, [R1], #4 ;
STR R0, [R1], #4 ;
STR R0, [R1], #4 ;
STR R0, [R1], #4 ;
STR R0, [R1], #4 ;

The cost is now 17 cycles, a 3x speed-up! The penalty is that the code has grown to about
twice its original length, and would be much longer for more iterations. The speed-up is
also less spectacular if the ‘body’ of the loop is longer. This can be exploited by partially
unrolling the loop; e.g. in the above example looping four times and storing two words
each time costs only one more instruction but only takes 32 cycles (on this model) – a
1.5x speed-up for a trivial cost.

Loop unrolling (or “in-lining”) is normally undesirable, but occasionally useful for small
loops in time-critical code.

Note that the number of iterations can still be varied … by calculating and jumping to the
appropriate entry point in the code.

** BEWARE **

Counting cycles in this manner is a simplistic approach to system timing. Timing can be
heavily influenced by other factors, especially memory speed.

For example, if the code is cached, unrolling a loop will use more cache space which
may cause more cache misses. As a cache miss could easily cost (say) 100 instruction
times, this ‘speed’ technique could make the system much slower instead.
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Relocatability

It is usually an advantage if code can be executed wherever it is located in memory, i.e. it is
relocatableor position independent. Depending on the processor used this is not always fea-
sible; for example a processor may only have jump instructions which transfer control to a
fixed address. However most modern processors are fairly unrestricted and, with care, code can
be fully relocatable. (Note that this doesnot imply that code can be movedduring execution.)

For example the ARM branch instructions are allrelative branches1, i.e. the target address is
calculated as anoffset from the current position. Thus whatever address the code is placed at
the branch will still be to the correct target. In fact a branch instruction could be written as:

ADD PC, PC, #offset

although the offset range is larger than that allowed in ‘normal’ immediate operands and is
sign extended to 32 bits. ‘Normal’ branches on an ARM are therefore relocatable.

Other forms of branches are usually position independent too; for example a subroutine return
will go back to the calling routine – wherever that was. The exceptions are when an address is
calculated or loaded from memory where extra care is needed if position independence is to be
maintained.

Example: the branch instruction only provides a 24-bit (word aligned) offset, allowing
branches backwards or forwards in the address space of about 32Mbytes (8Minstructions)).
This is enough for almost all purposes, but if a more distant branch is required one way of pro-
viding this would be:

LDR PC, long_branch ; Load target absolute
long_branch DEFW target

...

target ...

This creates a word ‘variable’ (really a constant) which contains the address of the distant rou-
tine. The value can be read in a position independent way – “long_branch ” will be trans-
lated by the assembler into “[R15, #-4] ” which refers to thenextlocation because R15 is
the current position + 8.However the value “target ” is an absolute number which is set by
the assembler and thus will not alter if the code is moved.

1. Although not universally observed the usual convention is that “branch” refers to a flow control
change made relative to the current position while “jump” refers to one to an absolute address.
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The following sequence gets around this, at a price:

LDR R0, long_branch ; Load target offset
branch_instr ADD PC, PC, R0 ;
long_branch DEFW (target - (branch_instr + 8))

...

target ...

Here therelativeoffset between the ‘branch instruction’ (ADD) and the target has been stored
and added to the PC explicitly; the “+ 8” is needed to allow for the ‘PC+8’ effect. This is relo-
catable although slightly slower and requiring an extra register.

As well as code, data should be position independent. Most data are stored in one of four
places:

• On the stack (dynamic)

• On the heap (dynamic)

• Within the code (static, often read only such as constants, strings, data tables, …)

• Another static space (e.g. global variables)

Dynamically allocated variables are not a worry here; by definition their addresses are defined
at run time, usually in some space allocated by the operating system.

Data may be embedded in the code. These can be accessed viaPC relative addressing as in the
previous example, so they need not present a problem. (Note however that there is a 4Kbyte
limit on the offset from the PC to the variable of interest which can encourage the slightly
dubious practice of interleaving data items between procedures1.)

It may be feasible to use this technique for variables as well as constants but this practice is
deprecated as it leads to problems in placing the programme in ROM.

To access to such constants (or variables) the programmer can write:

LDR R0, My_constant
ADD ...
SUB ...
ADD ...
MOV PC, LR

My_constant DEFW &12345678

1. For example, finely interleaving code and data can lead to inefficient cache usage if code and data are
cached separately, as they are on many high-performance processors.
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Which generates the code:

LDR R0, [PC, #&C]
ADD ...
SUB ...
ADD ...
MOV PC, LR

My_constant DEFW &12345678

The number “&C” when added to the value ‘PC + 8’ at the point the instruction is executed
will give the value “My_constant”. (Also see the boxed text on page 23.)

If a pointer to a label (such as a pointer to a string) is required instead then the directive “ADR”
can be used. This is not an instruction itself, but will assemble to something which will gener-
ate the correct address. For example:

Myself ADR R3, Myself

Could assemble to:

SUB R3, PC, #8

Where R3 is given the value (PC+8) - 8.

If the range of this operation is insufficient the directive “ADRL” allows a sequence of instruc-
tions to be substituted; the length of the sequence, in instructions, can be specified using ADR?
where ‘?’ = {1, 2, 3, 4}.

The ARM assembler also allows the position of the current instruction to be determined by the
value “.”. Thus, for example, a ‘loop stop’ – an instruction that branches back to itself – can be
written as:

B . ; Stop here!

The hardest problem is finding a place in RAM for the static variables which can be accessed
globally rather than – for example – relative to the stack pointer. There is no easy answer to
this. The commonest solution is probably to dedicate a register to point to a fixed area of mem-
ory (allocated by the OS when the programme starts) and use fixed offsets from that. Sadly this
‘loses’ a register.
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Exercise

This code sequence for a jump table was given on page 55.

CMP R0, #Table_max ;
BHS Out_of_range ;
ADR R1, Jump_table ;
LDR PC, [R1, R0, LSL #2]

Jump_table DEFW Routine_0
DEFW Routine_1
DEFW Routine_2
DEFW Routine_3
DEFW ...

This code isnot relocatable; the addresses in the table are theabsoluteaddresses of the various
routines and so the jump targets will not move with the rest of the programme.

Write some ARM code which dispatches from arelocatable jump table.

ARM programming puzzle

Given a word in R0, swap the byte order (i.e. endian swap).

E.g. change R = &12345678 to R0 = 78563412

Other registers may be used.

Target: 4 instructions (Very hard!)
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Exercise 8
System Design and Squeaky Noises

Objectives

• Configure and download hardware

• Introduce system-level buses and address decoding

• Introduce the piezo-electric buzzer

All the exercises up to this point have used pre-prepared hardware. This exercise requires addi-
tional circuitry to be designed and integrated with an existing system.

Computer Systems

The “three box” model of a computer (fig. 13) divides a system into a Central Processor Unit
(CPU), Memory and Input/Output (I/O ), all connected by abus. In this case the bus com-
prises address, data and control signals which may be bundled separately, thus inside this gen-
eral bus resides an address bus and a data bus – the other signals are sometimes referred to as a
control bus, but form a less coherent set and we will treat them individually.

In addition to these three large “boxes” there is a small amount of logic used in their intercon-
nection, often known as theglue logic. This performs mundane functions such as distributing
the system clock and decoding addresses.

To produce a complete System-on-Chip (SoC) all these boxes must be integrated into a single
design. However within this laboratory the CPU and memory “boxes” are already established
and only the I/O subsystem needs development. Much of the I/O is mapped into the Xilinx
‘Spartan’ FPGA and is therefore ‘soft’, although a simple configuration is pre-loaded when the
board is (hardware) reset.

Internally an I/O subsystem comprises a number of devices, together with some ‘glue’ to hold
them together1. A typical I/O subsystem is shown in figure 14. Here a particular area of the
address space has been decoded externally (within the system ‘glue’) and is used to enable one
of the various devices. Which device is selected depends on the particular address which is

1. The memory subsystem is very similar internally.

Figure 13: The “Three Box” Computer Model

CPU Memory I/O

Bus
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decoded within the internal ‘glue’. Note that it is not necessary to fill the entire address space.

A customised I/O system can be produced by first creating (or choosing from an existing
library) the peripherals which are required. Ideally these should have a common interface, such
as a tristate data bus with the same timing characteristics, to minimise the glue logic complex-
ity. A typical peripheral device will have several registers and so will require more than one
address in the available space; this corresponds to one or more address lines being required. It
is usual to choose the least significant address lines for this.

The remaining address signals, together with the qualifying ‘chip select’ can then be decoded
to produce the individual device select signals. Note that an unselected device should be com-
pletely passive, neither driving nor listening to data transactions!

An example configuration (the one loaded by default) is available in the ENGLAB_22712
library asPIO_8.

The Spartan I/O subsystem

The Spartan FPGA has a 8-bit interface to the ARM processor: the data bus is 8-bits wide and
this byte used for transfers atall addresses in the available range. Only LDRB/STRB instruc-
tions should be used within this region; any address can be used.

The bus interface signals are given in table 12 and are defined in a library component “Bus”.
The device is selected by any processor address in the range 20000000-2FFFFFFF although
only a (repeating) set of 32 bytes can be addressed as only five address signals are available.

Serial
Port

Figure 14: Typical Computer I/O Subsystem
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When CS andWr are active together the data bus value should be copied into the addressed
location (if such exists). When CS andRd are active together the addressed location (if such
exists) should drive the data bus and return a value to the processor. Typically the chosen
addresses for the ports would be {20000000, 20000001, … 2000001F}. It is areally good plan
to equate (EQU) these addresses to ameaningfullabel in a header file and use only the label
within the programme body. This confers the following advantages:

• References to the ports become more obviously understandable

• Only a single block of references needs updating if the system is reconfigured

Piezo-electric buzzers

Piezo-electric crystals are materials which change shape when an electric field is applied1. As
switching a voltage on an output is a relatively easy thing to do they are widely used by, for
example, mobile telephone manufacturers to make irritating squeaky noises. This can be done
most simply by grounding one terminal and switching an output bit from 0 to 1 and back to 0
again at the desired frequency. By changing the switching frequency different tones can be
played.

A louder noise can be produced by increasing the applied field. With purely digital electronics
this can be difficult, but a doubling in amplitude can be achieved by driving both terminals of
the device inantiphase2. A really sophisticated driver could use voltage steps to output some-
thing smoother than a square wave, although this requires considerably more effort.

Note that piezo-electric buzzers are not very responsive at low frequencies so sound ‘best’ at a
few kilohertz. (They also have particular resonant harmonics, which you may hear.)

Cadence Revisited

Because the laboratory boards have all their peripherals in an FPGA it is possible for the user
to define and customise these. Previous exercises have used precompiled peripherals; in this
exercise you add your own.

Signal Function Direction Notes

D(7:0) Data bus Bidirectional

A(6:0) Address bus Input

CS Chip select Input Active (high) when processor address is 2xxx xxxx

Wr Write enable Input Active low

Rd Read Enable Input Active low

Table 12: ARM/Spartan Bus Interface Signals

1. They also produce an electric field if they change shape, hence their use in spark igniters.
2. i.e. at the same time, but in opposite directions.
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Create a Cadence project for this laboratory using the usual setup script (i.e.
“mk_cadence COMP22712”) and invoke it as appropriate for this laboratory (i.e.
“start_cadence COMP22712”). The files created will be placed in their own hierarchy:

~/Cadence/COMP22712/...

ENGLAB_22712

A component library, “ENGLAB_22712” is available which defines a number of pre-existing
components. Amongst these is a standard, simplePIO (Parallel Input/Output device) which
allows the direction and value (if an output) of each bit of an 8-bit byte to be defined. The PIOs
are interfaced to an extension of the processor’s bus inside the FPGA and each instantiation
connects to a set ofI/O pins. Up to six PIOs can be employed as there are 48 uncommitted I/O
lines. The I/O pin symbols determine the physical connection of the I/O signal.

Some other pin definition symbols are available which overlap with the PIO I/O pins. These
may be useful for interfacing to various other devices; for example the buzzer output pins over-
lap with GppSA0 (used inPortSA0). Note that each pin can only be used once in a given
design; if it is duplicated the design will not synthesize.

In addition to the external connections there are some other I/O definitions. These are the sig-
nals used on the board such asclock inputs andinterrupt  outputs.

A bus interface is provided which allows the processor’s bus to be used inside the FPGA. A
tristate, bidirectional data bus is retained as a default.

The output pins connected to the piezo-electric buzzer pin are defined by the component
Buzzer.

Your Designs …

Your own customisation of the FPGA can be produced and simulated using the familiar
Cadence design suite. As in other labs. design synthesis is provided by the Xilinx Synthesis
option in the Verilog Simulation Environment; downloading can be performed with Komodo.

A correctly synthesized FPGA design will produce a file:

~/Cadence/COMP22712/xilinx_compile/<design_name>.bit

Remember, any synthesis/error reports may be found in:

~/Cadence/COMP22712/xilinx_compile/<design_name>.<ext>

Downloading is performed using the “Features” extension to Komodo. Clicking this pops up a
window which gives access to a browser where the relevant file can be selected. (Ensure the
selected device is “Spartan XCS10XL”, the default option.) Clicking “Download” will then
send the synthesized design down to the lab. board.
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Practical

1 Modify the existing I/O controller to include an output to drive the piezo buzzer.
Make this play a regular tone, or – preferably – a tune.

The simplestway to do this is to add an addressable output port (i.e. a latch) and
drive the relevant outputs in software, using a system timer. However, at the avail-
able frequencies the resolution (1 ms) is poor.

2 A slightly harder method (i.e. involving more hardware) is to use a programma-
ble clock divider which can be set at different frequencies by the CPU and will
then generate the tone on its own.

Such an element is provided in the ENGLAB library. This counter divides its
input clock by twice (the input value plus 1). Thus if programmed with the value
5 the outputperiod will be 2*(5+1) = 12 times the input clock period.

A 1 MHz clock and a 50 MHz clock are available on the “clocks” symbol
(Clk_1MHz and Clk_50MHz , respectively). A buzzer symbol is also available to
define the output pads.

Standard (1 kHz) timer interrupts can then be used to control the duration of the
note.

Komodo tip

Komodo not only runs your programme but also keeps the display updated. This second
process will interfere with the smooth running of the ‘real’ programme. If you try to time
your output tones in software you will probably be able to hear this.

Although this ‘display update’ is enabled/disabled automatically when a programme is
run/stopped it is also possible to control this independently using the ‘Refresh’ button on
the front panel.

ARM programming puzzle

Sign extend a 10 bit number in R8.

Target: 2 instructions
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ARM Shifts and Rotates

ARM supports four basic shift types (illustrated below):

Also, a single place right rotation extended through the carry flag (‘RRX’) is possible.
(A similar, 33-bit left rotation can be produced with “ADCS Rn, Rn, Rn ”.)

ARM is unusual in
that its shifter is in
serieswith the ALU;
it is thus possible to
perform a shift and an
ALU operation with a
single instruction. If a
shift (only) is desired,
that instruction can be
a ‘MOV’.

Shifts are useful in
isolating and moving
bit fields. They are
also used in multipli-
cation and division.
Multiplying or divid-
ing by 2N is particu-
larly easy (and,
hence, fast).

ARM’s ability to shift and operate also makes some other operations easy.

Puzzle: what is the effect of this operation?

ADD R0, R0, R0, LSL #2

Name Abbr. Distance Effect

Logical shift
left

LSL 0-31 Move the bit pattern towards the more significant end of the register.
Fill at the right with zeros. Lose some bits at the left.
The last bit lost can be caught in the carry flag.

Logical shift
right

LSR 1-32 Move the bit pattern towards the less significant end of the register.
Fill at the left with zeros. Lose some bits at the right.

Arithmetic
shift right

ASR 1-32 Move the bit pattern towards the less significant end of the register.
Fill at the left with copies of the original sign bit (i.e. bit 31). Lose
some bits at the right.

Rotate right ROR 1-31 Move the bit pattern towards the less significant end of the register.
Fill at the left with any bits ‘lost’ from the right.

0 00 00C

LSL #5

0 00 00 C

LSR #5

0 00 00 C

ASR #5

0

0 1 11 11 C

ASR #5

1

1

ROR #5

d eb ca

d eb ca =a

RRX

C

C

31 031 0

31 0 31 0

31 031 0
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Exercise 9
Project

Choose one of the following projects (or invent your own) and develop it as far as you can in
the time remaining, using techniques you have learnt in earlier exercises. Concentrate on dem-
onstratingprinciplesgleaned from earlier exercises rather than spending too much effort on
elaborateapplicationscode. For example, projects involving user-developed hardware as well
as software will be credited more favourably.

Whichever project you choose, use your own imagination to think of ways in which it can (sen-
sibly) develop and try to implement those too. Alternatively, define a project of your own of
similar scope. Remember the lab. staff are there to help and advise on project work so whatever
you plan to do, talk it over first.

Submission

You should submit this exercise for assessment and feedback. Submit everything that you have
done for this exercise; the moreappropriate techniques you can demonstrate, the better.

Calculator

Build a calculator capable of adding, subtracting, multiplying and dividing (and
maybe more?) decimal numbers.

If you’re short of keys you can add an extra keyboard or use the normal calcula-
tor “2nd function” approach.

Alarm Clock

Make a clock capable of displaying (and being set to the correct time). Include an
alarm facility which can be set by the user and will ‘go off’ at the correct time.

Morse Code Trainer

Modify your “Hello World” programme to ‘print’ its output as Morse code.

Extend your keyboard input routines to enable the sending of “text messages”.

Electronic Organ

Write a programme which plays notes as specified by buttons on the keypad.

Dimmer switch

Control the brightness of your LEDs using interrupts and Pulse Width Modula-
tion1 (PWM).

1. If you don’t know about this, Google will no doubt help.
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Music Player

Write an interpreter (‘virtual machine’) that reads a list of notes (pitch & dura-
tion – possibly volume too) from an input file and plays the tune so described.
Remember you will need codes for ‘rests’ and (hopefully!) ‘end of tune’.

For a quick test there are some files available in:
/opt/info/courses/COMP22712/Code_examples/Tunes/

Remember that you could add more buzzers to create “harmony”.

Hints for writing an tune interpreter

• Simplify your task by translating notes to frequency/period with a look-up table.
• Note that, as an octave is a factor of two, the frequency can be transposed by an

octave with a left or right shift.
• Remember that two notes of the same pitch may need a separator.
• Don’t forget a ‘silent’ setting, for rests and the end of the tune!

Acoustics for non-musicians

An “octave” is a factor of 2 in frequency and is divided into eight notes (but is really
twelvesemitone divisions). In modern tuning – known as “equal temperament” – each of
these divisions is the same on a logarithmic scale. This means each semitone has a fre-
quency about 6% different from an adjacent one.

Starting a scale at 1 kHz the semitones have the frequencies as shown in the table below.
The bold text denotes the notes of the major scale.

The period of the waveform (the time taken to complete a whole cycle) is also given.

Note Frequency (Hz) Period (µs)

Do′ 2000 500

Ti 1888 530

1782 561

La 1682 595

1587 630

So 1498 667

1414 707

Fa 1335 749

Mi 1260 794

1189 841

Re 1122 891

1059 944

Do 1000 1000

factor 2
1 12⁄

1.059≈=
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Component Libraries

ENGLAB_22712

The following components may be of interest to the system builder:

Bus_8 (_16) The processor interface to address and control inputs and bidirectional
(tristate) data signals.

Clocks Clock inputs including 50 MHz (CLK_sel) and 1 MHz derived from this.

Interrupts Two interrupt outputs {IRQ, FIQ} by which interrupts can be requested
on the CPU.

PIO_8 Simple I/O system with eight 8-bit PIOs (default FPGA configuration)

PIO The functional part of a simple PIO; not a stand-alone component.

Port<xx> Sets of I/O pads and their drivers, mapped to specific I/O locations.

Buzzer Buzzer pins;alternative to the PIO ‘S0A’.

Buttons Button inputs common with the microcontroller port.

Divider A programmable clock divider by 2 x (N + 1).

Decoder Apartial address decoder for building I/O systems in the FPGA.

Downcount8 8-bit down counter.

Timer8 8-bit timer with prescale.

One_shot Single shot timer which may be used to generate interrupts.

Where <xx> is from {0a, 0b, 1a, 1b, 2a, 2b, 3a, 3b} and each corresponds to a row of one of
thefront expansion connectors on the PCB.

There are also some components in this library which are used to support these cells. The
names of these should either be self-evident or from the Xilinx macro library (e.g. CB8CE =
Counter, Binary, 8-bit with Clear and Enable).

SPARTAN-3

This is the library supplied by the device manufacturer with the development tools. It includes
the standard set of simple gates (AND, OR etc.) and various variants on edge-triggered flip
flops. Some of the most commonly used examples are embolded in the list, below:

Basic gates (etc.)

GND, VCC, PULLDOWN, PULLUP
INV
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AND2, AND2B1, AND2B2, AND3, AND3B1, AND3B2, AND3B3, AND4, AND4B1,
AND4B2, AND4B3, AND4B4, AND5, AND5B1, AND5B2, AND5B3, AND5B4, AND5B5
NAND2, NAND2B1, NAND2B2, NAND3, NAND3B1, NAND3B2, NAND3B3, NAND4,
NAND4B1, NAND4B2, NAND4B3, NAND4B4, NAND5, NAND5B1, NAND5B2, NAND5B3,
NAND5B4, NAND5B5
NOR2, NOR2B1, NOR2B2, NOR3, NOR3B1, NOR3B2, NOR3B3, NOR4, NOR4B1,
NOR4B2, NOR4B3, NOR4B4, NOR5, NOR5B1, NOR5B2, NOR5B3, NOR5B4, NOR5B5
OR2, OR2B1, OR2B2, OR3, OR3B1, OR3B2, OR3B3, OR4, OR4B1, OR4B2, OR4B3,
OR4B4, OR5, OR5B1, OR5B2, OR5B3, OR5B4, OR5B5
XNOR2, XNOR3, XNOR4, XNOR5, XOR2, XOR3, XOR4, XOR5

Buffers, including clock buffers

BUF, BUFCF, BUFG, BUFGCE, BUFGCE_1, BUFGDLL, BUFGMUX, BUFGMUX_1,
BUFGP

Flip-flops & latches

FD, FDC, FDCE, FDCE_1, FDCP, FDCPE, FDCPE_1, FDCP_1, FDC_1, FDDRCPE,
FDDRRSE, FDE, FDE_1, FDP, FDPE, FDPE_1, FDP_1, FDR, FDRE, FDRE_1, FDRS,
FDRSE, FDRSE_1, FDRS_1, FDR_1, FDS, FDSE, FDSE_1, FDS_1, FD_1
LD, LDC, LDCE, LDCE_1, LDCP, LDCPE, LDCPE_1, LDCP_1, LDC_1, LDE, LDE_1, LDP,
LDPE, LDPE_1, LDP_1, LD_1

Arithmetic support

MUXCY, MUXCY_D, MUXCY_L, MUXF5, MUXF5_D, MUXF5_L, MUXF6, MUXF6_D,
MUXF6_L, MUXF7, MUXF7_D, MUXF7_L, MUXF8, MUXF8_D, MUXF8_L
XORCY, XORCY_D, XORCY_L
MULT18X18, MULT18X18S, MULT_AND

Memory

RAM16X1D, RAM16X1D_1, RAM16X1S, RAM16X1S_1, RAM16X2S, RAM16X4S,
RAM16X8S, RAM32X1S, RAM32X1S_1, RAM32X2S, RAM32X4S, RAM32X8S,
RAM64X1S, RAM64X1S_1, RAM64X2S, RAMB16_S1, RAMB16_S18, RAMB16_S18_S18,
RAMB16_S18_S36, RAMB16_S1_S1, RAMB16_S1_S18, RAMB16_S1_S2,
RAMB16_S1_S36, RAMB16_S1_S4, RAMB16_S1_S9, RAMB16_S2, RAMB16_S2_S18,
RAMB16_S2_S2, RAMB16_S2_S36, RAMB16_S2_S4, RAMB16_S2_S9, RAMB16_S36,
RAMB16_S36_S36, RAMB16_S4, RAMB16_S4_S18, RAMB16_S4_S36, RAMB16_S4_S4,
RAMB16_S4_S9, RAMB16_S9, RAMB16_S9_S18, RAMB16_S9_S36, RAMB16_S9_S9
ROM128X1, ROM16X1, ROM256X1, ROM32X1, ROM64X1

I/O pads, buffers and latches

IBUF, IBUFDS, IBUFG, IBUFGDS, IFDDRCPE, IFDDRRSE, IOBUF, IOBUFDS, IOPAD,
IPAD, KEEPER, OBUF, OBUFDS, OBUFT, OBUFTDS, OFDDRCPE, OFDDRRSE, OFD-
DRTCPE, OFDDRTRSE, OPAD

Debug, documentation & miscellaneous

BSCAN_SPARTAN3, CAPTURE_SPARTAN3, CONFIG, DCM
STARTBUF_SPARTAN3, STARTUP_SPARTAN3, TBLOCK, TITLE, FMAP
LUT1, LUT1_D, LUT1_L, LUT2, LUT2_D, LUT2_L, LUT3, LUT3_D, LUT3_L, LUT4,
LUT4_D, LUT4_L
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ARM Assembly Language Mnemonics and Directives

These are example mnemonics as a quick reference guide. This is not a fully comprehensive
list. “cc” shows the position of the condition code (if any).

Data Operations

ADDccS Rd, Rn, Rm/#nn
ADCcc Rd, Rn, Rm/#nn
SUBcc Rd, Rn, Rm/#nn
SBCcc Rd, Rn, Rm/#nn
RSBccS Rd, Rn, Rm/#nn
RSCcc Rd, Rn, Rm/#nn

ANDcc Rd, Rn, Rm/#nn
ORRcc Rd, Rn, Rm/#nn
EORcc Rd, Rn, Rm/#nn
BICcc Rd, Rn, Rm/#nn

MOVcc Rd, Rm/#nn
MVNcc Rd, Rm/#nn

CMPcc Rn, Rm/#nn
CMNcc Rn, Rm/#nn
TSTcc Rn, Rm/#nn
TEQcc Rn, Rm/#nn

MULcc Rd, Rm, Rs
MLAccS Rd, Rm, Rs, Rn

Loads and Stores

LDRcc Rd, [Rn] ; Reg. Indirect
LDRccH Rd, [Rn, Rm/#nn] ; Pre-indexed
LDRccB Rd, [Rn], Rm/#nn ; Post Indexed
STRcc Rd, [Rn, Rm/#nn]! ; Pre-ind. w/back

LDMccFD Rd, {register list} ; No w/back
STMccFD Rd!, {register list}; With W/back

Control Transfer

Bcc Label
BLcc Procedure_start
SVCcc Number
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Special Control Operations

MRScc Rd, CPSR
MRScc Rd, SPSR
MSRcc CPSR_f, #nn ; Sets flags
MSRcc SPSR_c, Rm ; Sets mode in SPSR

Assembler Supplied ‘Pseudo Operations’

NOP ; No operation
MOV Rd, #-nn ; assembles to MVN
CMP Rn, #-nn ; assembles to CMN

ADR Rd, label ; e.g. ADD Rd, PC, #nn
ADRL Rd, label ; ‘enough’ instructions

LDR Rd, =nnnnnnnn ; Load constant

Note: the last operation (LDR) places the constant (nnnnnnnn) somewhere ‘convenient’ in
memory (probably at the end of the code) and plants an instruction which loads this value. The
pseudo-operation therefore generates two words, which are unlikely to be adjacent in the mem-
ory map. If the constant is ‘short’ enough, the assembler will substitute a MOV instruction.

Directives

Directive mnemonics are case insensitive.

ORG &1000 ; Set assembly address
ALIGN ; Next 4-byte boundary
ALIGN N ; Next N-byte boundary

DEFB 0, 1, 2, “bytes” ; Define bytes
DEFH &ABCD, 2+2 ; Define halfword(s)
DEFW &12345678 ; Define word(s)

label EQU value ; Set value of “Label”
DEFS &20 ; Reserve &20 bytes

INCLUDE <filename> ; What it says!

Signed and Unsigned integers

The ARM handles 32-bit quantities in its registers. These may be interpreted as signed
(two’s complement) or unsigned integers (or other things too). Arithmetic operations
treat these identically; the processordoesn’t carewhat you think they are. Ifyou care
then they can be distinguished using different condition codes as part of the programme.

It’s easy to regard everything as signed integers but this is often poor practice. What
about the offset into that table/array? Can it be negative? Probably more integer variables
are unsigned than signed in a typical programme! Try to use the appropriate ‘type’.

Java integers are all signed but some languages (such as C) allow unsigned types.



Condition Codes

Expression Operators

It is possible, and often valuable, to allow the assembler to work out some values (such as the length of
strings and tables). Thus instead of a simple number an integer expression can be used. The following is a
summary of the most useful ones.

Unary operators:

+, -, ~

Binary operators, highest precedence first:

Logical shifts: { << LSL SHL } { >> LSR SHR }
Logical AND: AND
Logical ORs: { | OR } { ^ EOR }
Multiplication: * { / DIV } { \ MOD }
Addition: + -

Numbers

Numeric constants default to decimal (base 10).
Hexadecimal numbers should be prefixed with “&”, “$”, or “0x”.
Binary numbers should be prefixed with “:” or “0b”.
Octal numbers – if you really want these – should be prefixed with “@”

cc Meaning Coding Flag condition

EQ Equal 0 Z

NE Not Equal 1 Z

CS/HS Carry Set/Higher or Same (unsigned) 2 C

CC/LO Carry Clear/Lower (unsigned) 3 C

MI Minus (negative) 4 N

PL Plus (positive) 5 N

VS Overflow Set 6 V

VC Overflow Clear 7 V

HI Higher (unsigned) 8 C .Z

LS Lower or Same (unsigned) 9 C + Z

GE Greater than or Equal (signed) A N ⊕ V

LT Less Than (signed) B N⊕ V

GT Greater Than (signed) C (N ⊕ V) . Z

LE Less than or Equal (signed) D (N⊕ V) + Z

AL Always E TRUE



ASCII  Character  Set

00 ^@ NUL Null
01 ^A SOH Start of header
02 ^B STX Start of text
03 ^C ETX End of text
04 ^D EOT End of transmission
05 ^E ENQ Enquire
06 ^F ACK Acknowledge Idle
07 ^G BEL Bell block
08 ^H BS Back space
09 ^I HT Horizontal Tabulate
0A ^J LF Line feed
0B ^K VT Vertical Tabulate
0C ^L FF Form feed
0D ^M CR Carriage return
0E ^N SO Shift out
0F ^O SI Shift in

10 ^P DLE Data link escape
11 ^Q DC1 Device control 1
12 ^R DC2 Device control 2
13 ^S DC3 Device control 3
14 ^T DC4 Device control 4
15 ^U NAK Negative Acknowledge
16 ^V SYN Synchronous Idle
17 ^W ETB End of transmitted block
18 ^X CAN Cancel
19 ^Y EM End of medium
1A ^Z SUB Substitute
1B ^[ ESC Escape
1C ^\ FS File separator
1D ^] GS Group separator
1E ^^ RS Record separator
1F ^_ US Unit separator

20 SP Space
21 !
22 "
23 #
24 $
25 %
26 &
27 ’
28 (
29 )
2A *
2B +
2C ,
2D -
2E .
2F /
30 0
31 1
32 2
33 3
34 4
35 5
36 6
37 7
38 8
39 9
3A :
3B ;
3C <
3D =
3E >
3F ?

40 @
41 A
42 B
43 C
44 D
45 E
46 F
47 G
48 H
49 I
4A J
4B K
4C L
4D M
4E N
4F O
50 P
51 Q
52 R
53 S
54 T
55 U
56 V
57 W
58 X
59 Y
5A Z
5B [
5C \
5D ]
5E ^
5F _

60 ‘
61 a
62 b
63 c
64 d
65 e
66 f
67 g
68 h
69 i
6A j
6B k
6C l
6D m
6E n
6F o
70 p
71 q
72 r
73 s
74 t
75 u
76 v
77 w
78 x
79 y
7A z
7B {
7C |
7D }
7E ~
7F DEL,RUBOUT


