If you haven’t already, now would be a great time to fill in the Course Unit Survey via Blackboard (or an App apparently)
In my opinion, doing exercises (even if there is no model answer) is the best kind of revision.

The exercises in the notes, examples classes, and online tests are indicative of the kind of question you may be asked.

But be aware, some questions from examples classes are too big for an exam setting and some questions from tests rely on bookwork and would not be asked in an exam.

You should be able to generate more questions yourself. There are two kinds:

- Define/explain this concept, or is this statement true/false
- Apply this technique to this thing

For the former you should be able to extract all possible concepts, and for the latter you should be able to generate new things.
The Learning Outcomes reflect what I want you to learn, and therefore what I will examine.

Help each other. Exams are not competitive.

Plan your revision.

Avoid learning things verbatim, but concentrate on understanding what things mean.
Exam Tips

- The obvious things: be early, know where you’re going, have pens

- Read all the questions first and use the distribution of marks to assign rough timings to each question. Remember 1 mark = 2 minutes

- You do not need to answer the questions in order (but don’t miss any)

- Bring a watch with you. Note the time starting a question. When the time for that question is finished pause and consider whether it is worth continuing or to move on to the next question. Make a note of any left over time from previous questions to help make this decision.

- Remember, the first marks of any question are usually easier. It is usually better go get halfway through two than finish one.
• It can feel fun to leave an exam early, but is probably not worth it, recheck your answers

• Use the number of marks as indicator of the number of things you should be saying

• Where relevant, add explanations of what you have done so that you can get partial credit for the right method but wrong result

• Sometimes a question might be asking you to apply concepts in new ways. Start by identifying what concepts you need to apply and what kind of question it is similar to and state these assumptions.

• Ignore any of these tips that you don’t think will be useful
Exam Structure

- Two hours
- Four parts worth 15 marks each
- Two parts online, two parts on paper
- You can answer parts in any order and switch between the two mediums. You will have a desk with a computer and space for writing.
- Each part will contain a number of questions (not fixed)
- There is no choice, you must do all questions
- Answers for each paper part should go in different answer books (they will be marked by different people)
Overview of Topics

- Computation
 - The \texttt{while} language
 - Operational semantics and how to evaluate \(\langle S, \sigma \rangle \)
- Coding and Counting
 - Coding functions on pairs and lists
 - Effective countability of \texttt{while} programs
- Computability
 - Computable, Uncomputable, Decidable, Undecidable Functions
 - Cantor’s Diagonalisation argument for uncountable functions
 - Universal Program, Church-Turing Thesis, Halting Problem
- Correctness
 - Hoare triples as specifications
 - Partial correctness proofs using loop invariants
 - Total correctness proofs using loop variants
- Complexity
 - Big-Oh notation and proofs of its properties
 - Complexity of \texttt{while} programs
Review of Learning Outcomes (Part Level)

1. Explain how we model computation with the while language and the role of coding in this modelling
2. Write imperative programs in the while language and use the formal semantics of while to show how they execute
3. Prove partial and total correctness of while programs using an axiomatic system
4. Explain the notion of asymptotic complexity and the related notations
5. Use Big 'O' notation to reason about while programs
6. Explain notions of computability and uncomputability and how they relate to the Church-Turing thesis
7. Prove the existence of uncomputable functions
8. Describe why the Halting problem is uncomputable
Important

- The marks given in these example questions are just rough
- The phrasing of the questions
- Please use these questions to revise, but if something seems wrong then it’s probably my fault (let me know)

- Some solutions will appear before the end of next week

- A small extra note: often I will ask you to sketch or argue something, the point is that we don’t need the full details, we just need the structure of the argument. The solutions I give will make this clear.
Learning Outcomes: Computation/while

- Explain why a rigorous unambiguous approach to describing programming languages is necessary;
- Identify syntactically (in)correct while programs;
- Write simple programs in while;
- Describe how to extend the while language with simple features;
- Explain the notions of state and formal semantics and be able to use these to show how a while program executes on a given state.
1. Write a \texttt{while} program that takes three numbers in \(x\), \(y\), and \(z\) and places the maximum of those three numbers in \(\text{max}\). (1 mark)

2. Use the provided transition rules to execute the program written in question 1 on the state \([x \mapsto 2, y \mapsto 3, z \mapsto 1]\) (2 marks)

3. Use the provided transition rules to execute the following program on the state \([x \mapsto 1]\)

\begin{align*}
y & \leftarrow x; \quad \text{while } x < 3 \text{ do } y \leftarrow y+1
\end{align*}

(3 marks)

4. What do we mean by \textit{structural operational semantics}? (2 marks)
5. State, with explanation, whether the following are True or False.
 a. while $x := 1$ do $x := x + 1$ is syntactically incorrect (2 marks)
 b. $[[\text{if } b \text{ then } S]] = [[\text{if } b \text{ then } S \text{ else } S]]$ (2 marks)
 c. $\langle x := y, [x \mapsto 1] \rangle \Rightarrow [y \mapsto x]$ (2 marks)
 d. while true do skip will run forever on any state (2 marks)

6. Write a program S such that
 - $\langle S, [x \mapsto 1] \rangle \Rightarrow [x \mapsto 2]$
 - But $\langle S, [x \mapsto 2] \rangle \not\Rightarrow [x \mapsto 3]$ (2 marks)

7. Give a mathematical function describing the behaviour of the following while program.

\[
y := 1; \text{ while } x > 0 \text{ do } x := x - 1; \text{ y := 2 } \ast y
\] (2 marks)
Learning Outcomes: Coding and Counting

- Show how data structures (such as pairs, or syntax trees) can be coded as natural numbers; and
- Describe how programs can be encoded as natural numbers and how this result means that the set of programs is countable.
1. What is a bijection? Given that $\phi(n, m) = 2^n(2m + 1) - 1$ is a bijection from $\mathbb{N} \times \mathbb{N}$ to \mathbb{N}, define a bijection from $(\mathbb{N} \times \mathbb{N}) \times (\mathbb{N} \times \mathbb{N})$ to \mathbb{N}. Argue why your given answer is a bijection. (4 marks)

2. Show that character strings of arbitrary length (for characters a-z) are countable. (3 marks)

3. What is the Gödel number of a program and what is it used for? (3 marks)

4. Are there more Java programs or while programs? Explain your answer. (3 marks)

5. Imagine a program compiled into a sequence of machine instructions e.g. ARM instructions. Give a sketch of how you would approach coding this as a unique natural number. (3 marks)
Learning Outcomes: Computability

- Define what it means for a function to be *computable* or *uncomputable*.
- Recall the diagonalisation proof that there are uncountably many functions from $\mathbb{N} \rightarrow \mathbb{N}$.
- Describe the notion of *decidability* and how it relates to *computability* as well as the notions of *decision procedure*, *partially decidable*, and *characteristic function*.
- Prove simple properties of computable/decidable functions.
- Recall the definition of the *universal function* and *universal program*, what they mean, and their implications to the expressiveness of a language.
- Describe the *Halting Problem* and outline the proof that the problem is uncomputable.
- Recall the *Church-Turing Thesis* and its implications to the expressiveness of a language.
1. What are the differences between the sets of *computable* and *undecidable* functions? (2 marks)

2. What does it imply about the size of the set A if there is a bijection between A and \mathbb{N}? (1 mark)

3. Prove that there are an uncountable number of functions in $\mathbb{N} \to \mathbb{N}$ (4 marks)

4. Let f be a computable function. Argue that $g(x) = f(f(x))$ is computable (2 marks)

5. What does it mean for a program P to be a partial decision procedure for a function f? (2 marks)

6. Let p be a partially decidable predicate. Argue that $\neg p$ is not partially decidable. (2 marks)
7. State, with explanation, whether the following are True or False.
 a. There are uncomputable functions in $\mathbb{B} \rightarrow \mathbb{B}$ 	(2 marks)
 b. There are uncomputable functions in $\mathbb{N} \rightarrow \{0\}$ 	(2 marks)
 c. There are uncomputable functions in $\mathbb{Z} \rightarrow \mathbb{Z}$ 	(2 marks)
 d. The Halting Problem implies that no programs terminate 	(2 marks)
 e. The existence of total correctness proofs show that the Halting
 Problem is partially decidable 	(2 marks)
 f. The notion of computable function is not dependent on a particular
 programming language 	(2 marks)

8. Without reference to the Church-Turing Thesis, argue that Python
 and Java are equally expressive. 	(4 marks)

9. What is the Halting Problem? Briefly explain why it is
 undecidable. 	(4 marks)
Learning Outcomes: Correctness

- Write simple specifications in the form of pre and post conditions
- Describe the meaning and role of loop invariants and loop variants
- Describe the difference between partial and total correctness
- Apply axiomatic rules to establish the partial correctness of while programs
- Apply axiomatic rules to establish the total correctness of while programs (no longer examinable)
Sample Questions (marks are rough)

1. What is the meaning of $\{ P \} S \{ Q \}$? (2 marks)

2. State, with explanation, whether the following are True or False.
 a. A partially correct program can never be totally correct (2 marks)
 b. No program S satisfies $[true] S [false]$ (2 marks)
 c. No program S satisfies $\{ true \} S \{ false \}$ (2 marks)
 d. The triple $\{ x = 1 \land y = 1 \} S \{ x = 1 \}$ is always true if S does not update x (2 marks)
 e. $\{ x = 5 \} x := x + 1 \{ x > 5 \}$ (2 marks)
 f. If $\{ P \} S \{ P \}$ then $\{ P \} S; S \{ P \}$ (2 marks)
 g. Auxiliary variables in specifications are just convenient, they are never required (2 marks)

3. What is a loop invariant and a loop variant, and what are they used for? (3 marks)

4. Describe the role of preconditions and postconditions in partial correctness proofs. (2 marks)
5. By giving appropriate values for P and Q, complete the following partial correctness specification for a program that takes three numbers in x, y, and z and places the maximum of those three numbers in max.

\[
\{ x = a \land P \} \ S \ { \text{max} \geq a \land Q \}
\]

(2 marks)

6. Given the following while program, write a postcondition containing x, y and z (no auxiliary variables) that is satisfied by the program.

\[
(\text{if } x > z \text{ then } z := x \text{ else } z := y ;) \ z := 2 \ast z
\]

(2 marks)

7. Write a partial specification for a program that swaps the values of x and y.

(2 marks)
Sample Questions (marks are rough)

8. Prove \(\{ \text{if } x < 0 \text{ then } x := -x \{ x \geq 0 \} \} \) (2 marks)

9. Prove \(\{ x = a \} x := x + 1; x := x - 1 \{ x = a \} \) (2 marks)

10. Prove \(\{ x = 5 \land y \neq 0 \} x := x + y \{ x < 5 \lor x > 5 \} \) (2 marks)

11. a. Find a predicate \(P \) such that
 (i) \(\{ P \land x > 0 \} x := x - 1; y := y + 1 \{ P \land x \geq 0 \} \)
 (ii) \((x = a \land y = 0) \rightarrow P \)

 (1 mark)

 b. Prove that this holds for your given \(P \) (2 marks)

 c. Use the above to prove

 \(\{ x = a \land x \geq 0 \} y := 0; \text{ while } x > 0 \text{ do } x := x - 1; y := y + 1 \{ y = a \} \) (3 marks)
12. Consider the program, called S below.

\[\text{while } x > 0 \text{ do } x := x - 2; \ y := y + 2 \]

a. Prove that

\[P \equiv (x + y = a + 2n \wedge \text{is_even}(x) \wedge x \geq 0) \]

is a loop invariant for the loop in S \hspace{1cm} (2 marks)

b. Use the above to prove

\[\{ y = a \wedge x = 2n \wedge x \geq 0 \} \ S \ \{ y = a + 2n \} \]

(3 marks)

c. Find a loop variant for the loop in S. Use this to prove

\[[x = 2n] \ S [] \]

(3 marks)
Learning Outcomes: Complexity

- Be able to explain the ‘Big-Oh’ notation (and its relatives Ω and Θ);
- Be able to analyse and compare the asymptotic complexities of imperative programs; and
- Be able to describe the relationship between time complexity and space complexity and the notion of a complexity class.
Sample Questions (marks are rough)

1. What does it mean for \(f \in O(g) \)? (2 marks)

2. What is the relationship between \(O(f) \), \(\Omega(f) \) and \(\Theta(f) \)? (2 marks)

3. State, with explanation, whether the following are True or False.
 a. The space complexity of a program is always larger than its time complexity (2 marks)
 b. If \(f \in O(n) \) then \(f \in O(n^2) \) (2 marks)
 c. The complexity class NP stands for Not Polynomial (2 marks)
 d. A program with complexity \(O(1) \) is always faster than a program with complexity \(O(n) \) (2 marks)
 e. If \(f \in O(n) \) and \(g \in O(n^2) \) then \(f \circ g \in O(n^2) \) (2 marks)

4. Prove that \(f \in O(f) \) (3 marks)

5. Prove that \(O(1) \subset O(n^2) \) (strict inclusion) (4 marks)
6. Which of the following functions dominates the rest?

\[
\frac{n}{5} \quad n \quad \log(2^{n+1}) \quad n + 1000 \quad 1000n
\]

(2 marks)

7. Let program A have complexity \(\log_2(n)\) and program B have constant complexity 1000. Which program is more efficient, does this depend on the value of \(n\), and if so how? (2 marks)

8. Let \(P\) be a program with complexity linear in the size of \(x\) (e.g. \(O(x)\)) what is the Big-Oh complexity of the program

\[
y := 0; \quad \textbf{while} \quad y < x \quad \textbf{do} \quad (y := y + 1; \quad P)
\]

(2 marks)
Good Luck!