Lecture 5: Some Odds and Ends concerning Weighted Graphs

Ian Pratt-Hartmann

Room KB2.38: email: ipratt@cs.man.ac.uk

2016–17
Outline

Weighted graphs: Dijkstra’s algorithm

All-pairs shortest paths: dynamic programming
• A (non-negative) **weighted graph** is a triple \((V, E, f)\), where \((V, E)\) is a graph and \(f\) is a function \(f : E \to \mathbb{R}^+\).

• The length of a path in \((V, E, f)\) is simply the sum of weights on its edges.

• If \((u, v) \in E\), we write \(f(u, v)\) rather than \(f(((u, v)))\), and if \((u, v) \not\in E\), we write \(f(u, v) = \infty\).

• Consider the computation task:

UNDIRECTED SHORTEST PATH

Given: A weighted graph \(G = (V, E, f)\) and nodes \(s, t \in V\)

Return: The shortest path from \(s\) to \(t\), or \(\infty\) if \(t\) is not reachable from \(s\).
The following algorithm, known as Dijkstra’s algorithm, computes UNDIRECTED SHORTEST PATH.

begin Dijsktra(V, E, f, s)
 set $D(s) = 0$.
 for all $u \in V$
 if $(s, u) \in E$,
 set $D(u) = f(s, u)$
 else
 set $D(u) = \infty$
 until $D(u) = \infty$ for all $u \in V \setminus V^*$ do
 choose a $u \in V \setminus V^*$ with $D(u)$ smallest
 add u to V^*
 for all (other) $v \in V \setminus V^*$ do
 set $D(v) := \min(D(v), D(u) + f(u, v))$
 return $D(t)$.
end
To see that this works:

- let length of shortest path from x to x' be $d(x, x')$
- suppose u is first node added to V^* with $D(u) > d(s, u)$.
- Consider a shortest path s to u first leaving V^* on the edge (y, z).

\[
V \\
V^* \\
\quad s \\
\quad D(y) = d(s, y) \\
\quad y \\
\quad f(y, z) \\
\quad z \\
\quad d(z, u) \geq 0 \\
\quad u
\]
Weighted graphs: Dijkstra’s algorithm

\[D(y) = d(s, y) \]

\[D(z) = D(y) + f(y) = d(s, z) \]

\[u \]

\[d(z, u) \geq 0 \]

- \[D(y) = d(s, y) \], since \(u \) is first ‘incorrect vertex’ added to \(V^* \).
- \[D(z) = D(y) + f(y) = d(s, z) \], since drawn path from \(s \) to \(u \) is shortest, whence drawn path from \(s \) to \(z \) is shortest.
- But then \(D(u) \leq D(z) = d(s, z) \leq d(s, u) < D(u) \), a contradiction.
Outline

Weighted graphs: Dijkstra’s algorithm

All-pairs shortest paths: dynamic programming
• The following algorithm computes, for a weighted graph
\((V, E, f)\), the shortest distance between any pair of vertices \(u\) and \(v\).

• The idea is simple:
 • first record the distance between every pair of vertices \textit{via no intermediate nodes}, taking that distance to be \(\infty\) if there is no connecting edge;
 • now, supposing that we have correctly recorded the distances between all pairs of node \textit{with intermediate nodes limited to} \(v_1, \ldots, v_k\), do the same \textit{with intermediate nodes limited to} \(v_1, \ldots, v_k, v_{k+1}\).

• In the following algorithm, we assume that the graph is presented as a pair of arrays:
 • \texttt{connectionArray[i][j]}: \(\top\) if there is an edge from \(v_i\) to \(v_j\);
 • \texttt{distanceArray[i][j]}: weight of edge from \(v_i\) to \(v_j\) in this case.
First, we initialize some arrays:

```java
for(i= 0;i< size;i++)
    for(j= 0;j< size;j++)
        if(i == j)
            distanceArray[i][j]= 0;
        else if(!connectionArray[i][j])
            distanceArray[i][j]= Integer.MAX_VALUE;
        else
            distanceArray[i][j]= inputArray[i][j];
for(i= 0;i< size;i++)
    for(j= 0;j< size;j++)
        if((i != j) && connectionArray[i][j])
            routeArray[i][j]= j; // No detours
        else
            routeArray[i][j]= -1; //Never used
for(i= 0;i< size;i++)
    for(j= 0;j< size;j++)
        accessArray[i][j]= connectionArray[i][j];
```
Now for the actual algorithm:

```c
for(k= 0;k< size;k++)
    for(i= 0;i< size;i++)
        if(i != k)
            for(j= 0;j< size;j++)
                if(i != j ){
                    tempAccess= accessArray[i][k] && accessArray[k][j];
                    tempDistance= distanceArray[i][k]+distanceArray[k][j];
                    if(tempAccess &&
                        tempDistance < distanceArray[i][j]){  
                        distanceArray[i][j]= tempDistance;
                        accessArray[i][j]= true;
                        routeArray[i][j]= routeArray[i][k];
                    }
                }
```
• Reading:
 • G+T: Ch 14, sec. 14.5.1, pp. 412–413.