- Basic graph algorithms
 - directed and undirected graphs
 - DFS (depth-first search)
 - reachability
 - connectedness
- Connected components
 - union-find
 - optimizations
 - running time
- Matching and flow optimization
 - Flow networks
 - The Min-cut-max-flow theorem
 - How to compute optimal flows
 - Application to the marriage problem
- Stable marriage problem (Not examinable)
 - Gale-Shapley algorithm (Not examinable)
 - running-time
 - correctness
 - optimality (for boys!)
• String matching
 • Rabin-Karp
 • Knuth-Morris-Pratt
 • Boyer-Moore

• Linear programming
 • Problem definition
 • Geometrical analysis
 • The simplex method (bounded cases, feasible)
 • The integer-case (ILP)
• Turing machines and complexity
 • Definition of Turing machines
 • Definitions of recursive, recursively enumerable (r.e.)
 • The existence of a universal TM and simulations
 • Undecidability of the halting problem
 • Time and space complexity (deterministic, non-deterministic)
 • Complement classes
 • The time-bounded halting problem and $\text{PTime} \neq \text{ExpTime}$

• Propositional satisfiability
 • Basic propositional logic
 • The problem SAT
 • The Davis-Putnam algorithm
 • The problem k-SAT
 • The problem Horn-SAT
 • Phase-transition phenomena (high-level description only)
• Reductions, completeness and hardness
 • Many-one polynomial-time/log-space reductions
 • Transitivity of many-one log-space reductions
 • Cook’s Theorem (Cook-Levin Theorem)
 • 3-SAT is NP-hard

• Hard graph-theoretic problems
 • 3-colourability is NPTime-hard
 • Hamiltonian and Eulerian circuits
 • The travelling salesman problem
• Two important theorems
 • Savitch’s Theorem (both forms)
 • The Immerman-Szelepcsényi Theorem (both forms)
 • Configuration graphs for Turing machines

• The standard complexity hierarchy:

\[\text{LogSpace} \subseteq \text{NLogSpace} \subseteq \text{PTime} \subseteq \cdots \]

• Complexity of satisfiability: two well-known problems
 • Krom-clauses (2-SAT)
 • QBF
• Reading:
 http://studentnet.cs.manchester.ac.uk/ugt/2016/COMP36111/syllabus/

• Past exam papers:
 http://studentnet.cs.manchester.ac.uk/assessment/exam_papers/index.php

Note that the syllabus may vary slightly from year to year.