COMP26120: Algorithms and Imperative Programming

Basic sorting algorithms

Ian Pratt-Hartmann

Room KB2.38: email: ipratt@cs.man.ac.uk

2016–17
• Reading for this lecture (Goodrich and Tamassia):
 • Secs. 8.1, 8.2, 8.3 (pp. 241–258).
 • Sec. 1.1.5 (pp. 11–16).
Outline

Quicksort

Mergesort

A lower bound?
• Consider the problem of sorting a list of numbers (in ascending order).

• Quicksort is a sorting algorithm which works well in practice.

 quicksort(L)
 if length of $L \leq 1$
 return L
 remove the first element, x, from L
 $L_{\leq} :=$ elements of L less than or equal to x
 $L_{>} :=$ elements of L greater than x
 $L_{\ell} :=$ quicksort(L_{\leq})
 $L_{r} :=$ quicksort($L_{>}$)
 return $L_{\ell} + [x] + L_{r}$
 end

• The element x is sometimes referred to as the pivot.
Example:

```plaintext
quicksort([x|L])
    if length of L \leq 1
        return L
    remove x from L
    compute L\leq, L> 
    \color{red}{L_\ell := quicksort(L\leq)}
    \color{red}{L_r := quicksort(L>)}
    return \color{red}{L_\ell + [x] + L_r}
end

quicksort([2,9,1,3,4,0])
quicksort([1,0])
quicksort([0])
quicksort([[]])
quicksort([9, 3, 4])
quicksort([3, 4])
quicksort([[]])
quicksort([4])
quicksort([[]])
```
Example:

```plaintext
quicksort([x|L])
if length of L ≤ 1
    return L
remove x from L
compute L_≤, L_>
L_≤ := quicksort(L_≤)
L_r := quicksort(L_>)
return L_≤ + [x] + L_r
```

- `quicksort([0])` yields `[0]`
- `quicksort([2,9,1,3,4,0])` yields `[0,1,2,3,4,9]`
- `quicksort([9, 3, 4])` yields `[3, 4, 9]`
Example:

quicksort([x|L])
if length of L ≤ 1
 return L
remove x from L
compute L_≤, L_>
L_ℓ := quicksort(L_≤)
L_r := quicksort(L_>)
return L_ℓ + [x] + L_r
end

quicksort([2,9,1,3,4,0])
quicksort([1,0])
quicksort([0])
quicksort([9,3,4])
quicksort([3,4])
quicksort([4])
quicksort([])
- Example:

```plaintext
quicksort([x|L])
    if length of L ≤ 1
        return L
    remove x from L
    compute L≤, L>
    Lℓ := quicksort(L≤)
    Lr := quicksort(L>)
    return Lℓ + [x] + Lr
end
```

```plaintext
quicksort([2,9,1,3,4,0])
quicksort([1,0]) [0,1]
quicksort([0]) [0]
quicksort([ ]) []
quicksort([9, 3, 4])
quicksort([3, 4])
quicksort([ ]) []
quicksort([4])
quicksort([ ]) []
quicksort([ ]) []
```
Example:

```plaintext
quicksort([x|L])
  if length of L ≤ 1
    return L
  remove x from L
  compute L_≤, L_>
  L_ℓ := quicksort(L_≤)
  L_r := quicksort(L_>)
  return L_ℓ + [x] + L_r
end
```

```
quicksort([2,9,1,3,4,0])
quicksort([1,0]) [0,1]
quicksort([0]) [0]
quicksort([ ]) []
quicksort([9, 3, 4])
quicksort([3, 4])
quicksort([ ]) []
quicksort([4])
quicksort([ ]) []
```
Example:

```
quicksort([x|L])
  if length of L \leq 1
    return L
  remove x from L
  compute L_{\leq}, L_{>}
  L_\ell := quicksort(L_{\leq})
  L_r := quicksort(L_{>})
  return L_\ell + [x] + L_r
end
```

```
quicksort([2,9,1,3,4,0])
quicksort([1,0]) [0,1]
quicksort([0]) [0]
quicksort([ ]) []
quicksort([9, 3, 4])
quicksort([3, 4])
quicksort([ ]) []
quicksort([4]) [4]
quicksort([ ]) []
```
• Example:

```plaintext
quicksort([x|L])
    if length of L ≤ 1
        return L
    remove x from L
    compute L_≤, L_>
    L_≤ := quicksort(L_≤)
    L_≥ := quicksort(L_>)
    return L_≤ + [x] + L_>
end
```

```
quicksort([2,9,1,3,4,0])
quicksort([1,0])
quicksort([0])
quicksort([[]])
quicksort([9, 3, 4])
quicksort([3, 4])
quicksort([4])
quicksort([[]])
```
• Example:

quicksort([x|L])

if length of \(L \) ≤ 1
 return \(L \)

remove \(x \) from \(L \)

compute \(L_{\leq}, L_{>\rangle} \)

\(L_\ell := \text{quicksort}(L_{\leq}) \)

\(L_r := \text{quicksort}(L_{>\rangle}) \)

return \(L_\ell + [x] + L_r \)

end

quicksort([2,9,1,3,4,0])

quicksort([1,0]) [0,1]

quicksort([0]) [0]

quicksort([]) []

quicksort([9, 3, 4]) [3, 4]

quicksort([3, 4]) [3, 4]

quicksort([]) []

quicksort([4]) [4]

quicksort([]) []
• Example:

```plaintext
quicksort([x|L])
    if length of L ≤ 1
        return L
    remove x from L
    compute L_≤, L_>
    L_≤ := quicksort(L_≤)
    L_r := quicksort(L_>)
    return L_≤ + [x] + L_r
end
```

quicksort([2,9,1,3,4,0])
quicksort([1,0]) [0,1]
quicksort([0]) [0]
quicksort([]) []
quicksort([9, 3, 4]) [3, 4, 9]
quicksort([3, 4]) [3, 4]
quicksort([]) []
quicksort([4]) [4]
quicksort([]) []
Example:

```latex
\text{quicksort}([x|L])
\begin{align*}
\text{if length of } L &\leq 1 \\
\text{return } L \\
\text{remove } x \text{ from } L \\
\text{compute } L_{\leq}, L_{>}
\end{align*}
\begin{align*}
L_{\ell} &:= \text{quicksort}(L_{\leq}) \\
L_{r} &:= \text{quicksort}(L_{>}) \\
\text{return } L_{\ell} + [x] + L_{r}
\end{align*}
end
```

- \text{quicksort}([2,9,1,3,4,0]) \rightarrow [0,1,2,3,4,9]
- \text{quicksort}([1,0]) \rightarrow [0,1]
- \text{quicksort}([0]) \rightarrow [0]
- \text{quicksort}([]) \rightarrow []
- \text{quicksort}([9,3,4]) \rightarrow [3,4,9]
- \text{quicksort}([3,4]) \rightarrow [3,4]
- \text{quicksort}([]) \rightarrow []
- \text{quicksort}([4]) \rightarrow [4]
- \text{quicksort}([]) \rightarrow []
Let’s see how much work is done:

The worst case occurs when, for each recursive call, one of \(L_\leq \) or \(L_\geq \) is empty.

Here \(n \) recursive calls are made (ignoring calls with []), with the argument one element shorter each time.

Before each recursive call, \(L_\leq \) and \(L_\geq \) must be calculated, requiring \(O(|L|) \) steps.

So if \(|L| = n \), total work is order

\[
 n + n - 1 + \cdots + 1 = \frac{1}{2}n(n + 1)
\]

i.e. \(O(n^2) \) (because \(O\left(\frac{1}{2}n(n + 1)\right) = O(n^2)\)).
Outline

Quicksort

Mergesort

A lower bound?
Here is an algorithm with lower complexity.

First, consider the problem of merging two sorted list to form a third sorted list.

merge([1, 3, 5], [0, 2, 4, 6, 7]) \Rightarrow
[0, 1, 2, 3, 4, 5, 6, 7]

This algorithm will work.

\[
\text{merge}(L_1, L_2) = \\
\text{if } L_1 = [] \\
\quad \text{return } L_2 \\
\text{if } L_2 = [] \\
\quad \text{return } L_1 \\
\quad x_i = \text{first element of } L_i \ (i = 1, 2) \\
\quad L_i' = L_i \text{ minus first element } (i = 1, 2) \\
\quad \text{if } x_1, \leq x_2 \\
\quad \quad \text{return } [x_1] + \text{merge}(L_1', L_2) \\
\quad \quad \text{return } [x_2] + \text{merge}(L_1, L_2') \\
\text{end}
\]
- When \(\text{merge}(L_1, L_2) \) is called, at most one recursive call is made, in which \(|L_1| + |L_2| \) decreases by 1.
- Therefore, at most \(O(n) \) recursive calls are made, where \(n = |L_1| + |L_2| \) is the length of the input.
- A constant number of operations is executed for each recursive call.
- Therefore, at it takes most \(O(n) \) time to run.
• We can now present our sorting algorithm

\[
\text{mergeSort}(L)
\]

\[
\text{if } |L| \leq 1
\]

\[
\text{return } L
\]

Split \(L \) into two roughly equal halves \(L = L_\ell + L_r \)

\[
\text{return merge(mergeSort(L_\ell),mergeSort(L_r))}
\]

end

• This algorithm clearly returns a sorted list with exactly the original elements.
• How many times is the algorithm called recursively?
• The following analysis gives a rather disappointing bound:
 • Each recursive call gives rise to two others at at one greater depth of recursion.
 • Thus, each depth of iteration, there are twice as many recursive calls.
 • The maximum depth of recursion is $\lceil \log_2 n \rceil$.
 • Therefore, the number of calls is $2^{\lceil \log_2 n \rceil} \leq 2n$.
 • (Actually, a better bound is $n - 1$: can you see why?)

• The time taken to merge is at most $O(n)$, so this suggests (prima facie) a complexity bound of $O(n^2)$.
But in fact it’s not that bad.

The total lengths of lists processed at each level of recursion is constant at $|L| = n$.

And the total amount of work done for each call is linear in the lengths of the arguments.

The number of times L can be halved is $O(\log n)$.

Hence, the time complexity of mergeSort is $O(n \log n)$.
• Or do some algebra. Let the time taken by `mergeSort` on any list of length \(n \) be bounded be (worst case), \(t(n) \). Then, ignoring constant factors

\[
t(n) = 2t \left(\frac{n}{2} \right) + n
\]

and, without loss of generality, we may as well assume that \(t(2) \leq 2 \).

• A simple induction shows that

\[
t(n) \leq n \log_2 n.
\]

For, \(n > 2 \) (and cheating quite a lot), we have

\[
t(n) = 2t \left(\frac{n}{2} \right) + n
\]

\[
\leq 2 \frac{n}{2} \log_2 \left(\frac{n}{2} \right) + n \quad \text{(ind. hyp.)}
\]

\[
= n \log_2 n.
\]
Outline

Quicksort

Mergesort

A lower bound?
• Can we do any better than $O(n \log_2 n)$?
• In the study of algorithms, lower complexity bounds are in general extraordinarily hard to obtain.
• In the case of sorting, however, we have a qualified lower bound:

> Any algorithm which sorts a list using only number-comparison operations requires time at least $n \log_2 n$ to run.

• Let us see why this is so.
• First some basic facts about trees.
• Suppose we have a full binary tree of depth \(d \) with \(n \) vertices in total, of which \(\ell \) are leaves.

\[d = 3 \]

In this example, \(d = 3 \), \(n = 15 \) and \(\ell = 8 \).
• Starting with the root at level 0, the number of vertices on each level \(k \) is \(2^k \). Hence

\[\ell = 2^d \]
\[n = \sum_{k=0}^{d} 2^k = 2^{d+1} - 1. \]

• Otherwise expressed:

\[d = \log_2 \ell \]
\[d = \log_2(n + 1) - 1. \]
• If the tree is binary branching, but not full, then these equalities are replaced by inequalities.

\[d = 3 \]

• Here we are missing some vertices. Hence:

\[\ell \leq 2^d \quad n \leq 2^{d+1} - 1. \]

• Otherwise expressed:

\[d \geq \log_2 \ell \quad d \geq \log_2(n + 1) - 1. \]
• Now suppose we have an algorithm which sorts a list by making comparisons and branching as a result of that comparison.

• The possible runs of that algorithm may be arranged as a binary tree.

• Assume without loss of generality, that the input of length n are the integers 1–n in some order $\pi(1), \ldots, \pi(n)$, where π is a permutation.

• The algorithm will then apply the inverse permutation π^{-1} to sort the list.
- There are $n!$ permutations of the numbers 1–n, each requiring a different output, and hence $n!$ leaves in the computation tree.

- The maximum running time, $t(n)$, on inputs of length n is the (maximum) depth of the tree.

- From our inequality $d \geq \log_2(\ell)$ we obtain, assuming n even:

$$t(n) \geq \log_2(n!) \geq \log_2 \left(\left(\frac{n}{2} \right)^{\frac{n}{2}} \right)$$

$$= \frac{n}{2} \log_2 \left(\frac{n}{2} \right) = \frac{1}{2} n(\log_2(n) - 1).$$
• The following is a very handy way of talking about lower bounds.
• If \(f : \mathbb{N} \rightarrow \mathbb{N} \) is a function, then \(\Omega(f) \) denotes the set of functions:

\[
\{ g : \mathbb{N} \rightarrow \mathbb{N} \mid \exists n_0 \in \mathbb{N} \text{ and } c \in \mathbb{R}^+ \text{ s.t. } \forall n > n_0, g(n) \geq c \cdot f(n) \}.
\]

• Thus, \(\Omega(f) \) denotes a set of functions, intuitively, the functions that grow essentially at least as fast as \(f \).
• Notice that for \(n \geq 4 \), \(\frac{1}{2}n \log_2(n) \geq n \).
• In particular, for sufficiently large \(n \),

\[
\frac{1}{2} n (\log_2(n) - 1) \geq \frac{1}{4} n \log_2(n).
\]

• That is,

\[
\frac{1}{2} n (\log_2(n) - 1) \in \Omega(n \log_2(n))
\]

• Thus, we are guaranteed that any sorting algorithm based on comparisons has running time (in) \(\Omega(n \log_2(n)) \).
• Warning, this doesn’t provide a guarantee of the complexity of any algorithm whatsoever. On the other hand, no one has done any better so far . . .