

COMP62342 Using Ontologies

Sean Bechhofer <u>sean.bechhofer@manchester.ac.uk</u>

Uli Sattler <u>uli.sattler@manchester.ac.uk</u>

✓ SKOS

- ✓ Linked Data
- Some clarifications of misunderstandings I saw in your essays
- More on Profiles
- OWL and Graphs
- Using Ontologies
 - for MCQ generation
 - in an information system
- Wrap Up

Clarifications

OWL, DL, semantics

- Check out this example
- Does this ontology entail

Furniture SubClassOf hasShape exactly I Shape

?

 Can we improve this ontology? Class: Square SubClassOf Shape Class: Circle SubClassOf Shape Class: Rectangle SubClassOf Shape

DisjointClasses: Square, Circle, Rectangle

Class: Shape SubClassOf (Square or Circle or Rectangle)

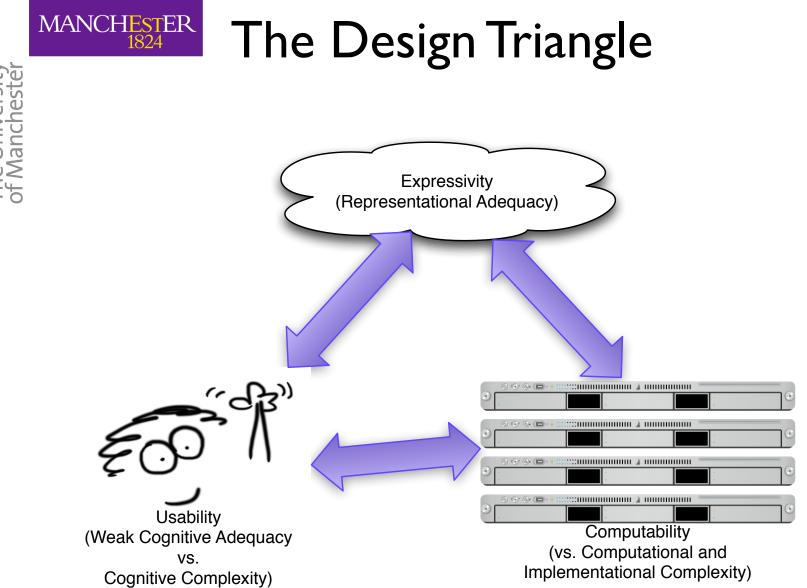
Property hasShape Range: Shape Domain: Furniture

Class: Furniture SubClassOf hasShape some Shape

Class: Chair SubClassOf Furniture and hasShape only Rectangle

Part-Whole Relation

- hasPart and isLocatedIn are 2 different properties.
- Which one relates
 - your lungs and your chest?
 - a bed and its bedroom
 - an apple and its tree
- How do they interact?


Part-Whole Relation

- hasPart and isLocatedIn are 2 different properties.
- Which one relates
 - your lungs and your chest?
 - a bed and its bedroom
 - an apple and its tree
- How do they interact?

ObjectProperty: hasPartOf InverseProperty isPartOf objectPropertyCharacteristic Transitive ObjectProperty isLocatedIn SubPropertyChain isLocatedIn o isPartOf

More on Profiles

The University of Manchester

OWL Expressivity

- OWL is an expressive ontology language providing a number of class forming operators and axiom types
 - full Booleans
 - and, or, not
 - Property Restrictions
 - some, only, min, max, exact
 - Enumerations
 - Explicit classes formed from individuals
 - Subclass and Equivalence
 - Property
 - Hierarchies
 - Chains
 - Characteristics: functional, inverse
- Expressivity comes with a (computational and cognitive) cost
 - Do we always need all this expressivity?

OWL Profiles

...are trimmed down sublanguages/fragments that trade

expressive power for efficiency of reasoning

- Restrictions are placed on the
 - operators, e.g., no or, no not
 - axiom types supported, e.g., no InverseObjectProperties(p q)
- Three profiles, EL, QL and RL are defined in the OWL Profiles Recommendation

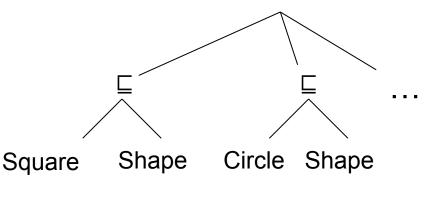
http://www.w3.org/TR/owl2-profiles/

- ...each of them is maximal for that profile's computation complexity, i.e., weakening any restriction results in increased computational complexity
- Other profiles could be defined

Profiles (from last week)

- OWL 2 EL:
 - only 'and', 'some', SubProperty, transitive, SubPropertyChain
 - it's a *Horn* logic
 - no reasoning by case required,
 - no disjunction, not even hidden
 - designed for big class hierarchies, e.g. SNOMED,
 - OWL 2 QL:
 - only restricted 'some', restricted 'and', inverseOf, SubProperty
 - designed for querying data in a database through a class-level ontology
 - OWL 2 RL:
 - no 'some' on RHS of SubClassOf, ...
 - designed to be implemented via a classic rule engine
 - For details, see OWL 2 specification!

Ontologies and (Knowledge) Graphs

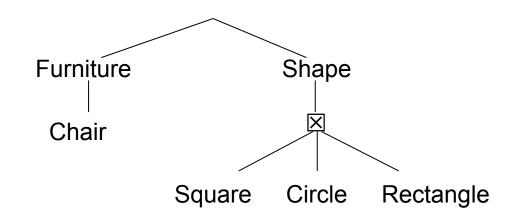

Ontologies and Graphs?!

- An OWL ontology O is a **set of axioms** that
 - is consistent or inconsistent
 - entails other axioms, e.g., inferred class hierarchy
 - can be the result of parsing an OWL file
 - in one of the many OWL syntaxes
 - can be viewed as a **graph**:

Ontologies and Graphs?!

- An OWL ontology O is a **set of axioms** that
 - is consistent or inconsistent
 - entails other axioms, e.g., inferred class hierarchy
 - can be the result of parsing an OWL file
 - in one of the many OWL syntaxes
 - can be viewed as a graph:
 - e.g., the parse tree of its axioms

Class: Square SubClassOf Shape Class: Circle SubClassOf Shape Class: Rectangle SubClassOf Shape DisjointClasses: Square, Circle, Rectangle Class: Shape SubClassOf (Square or Circle or Rectangle)


Ontologies and Graphs?!

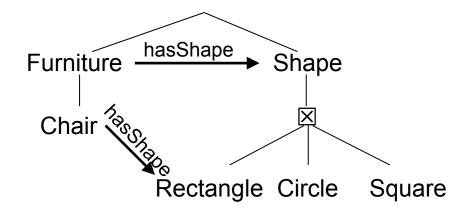
- An OWL ontology O is a **set of axioms** that
 - is consistent or inconsistent
 - entails other axioms, e.g., inferred class hierarchy
 - can be the result of parsing an OWL file
 - in one of the many OWL syntaxes
 - can be viewed as a graph:
 - e.g., the asserted class hierarchy (see Protégé)

Class: Square SubClassOf Shape Class: Circle SubClassOf Shape Class: Rectangle SubClassOf Shape DisjointClasses: Square, Circle, Rectangle

Class: Shape SubClassOf (Square or Circle or Rectangle)

Property hasShane Range: Shane

Ontologies and Graphs?!

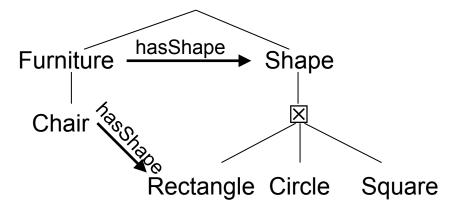

- An OWL ontology O is a **set of axioms** that
 - is consistent or inconsistent
 - entails other axioms, e.g., inferred class hierarchy
 - can be the result of parsing an OWL file
 - in one of the many OWL syntaxes
 - can be viewed as a graph:
 - e.g., some adorned inferred class hierarchy

Class: Square SubClassOf Shape Class: Circle SubClassOf Shape Class: Rectangle SubClassOf Shape

DisjointClasses: Square, Circle, Rectangle

Class: Shape SubClassOf (Square or Circle or Rectangle)

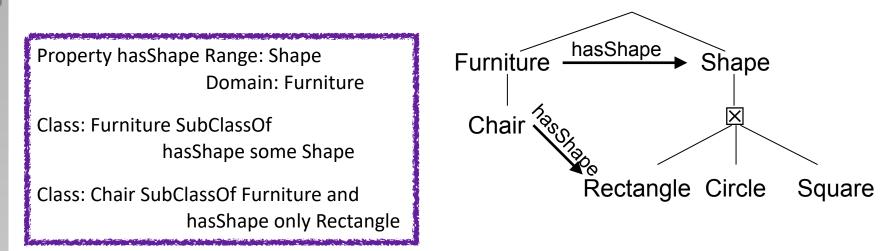
Property has Shape Range Shape



Which adorned graphs to build?

Property hasShape Range: Shape Domain: Furniture

Class: Furniture SubClassOf hasShape some Shape


Class: Chair SubClassOf Furniture and hasShape only Rectangle

How many arrows do we need? And where do we put them?

Which adorned graphs to build?

What is **the graph of an ontology?** Ask - different people mean different things!

Why Ontologies? What do we use them for?

Remember from last week:

- An OWL ontology O is a **document**:
 - therefor, it cannot **do** anything as it isn't a piece of software!
 - in particular, an ontology cannot infer anything (a reasoner may infer something!)
- An OWL ontology O is a **web document**:
 - with 'import' statements, annotations, ...
 - corresponds to a set of logical OWL axioms
 - the OWL API (today) helps you to
 - parse an ontology
 - access its axioms
 - a reasoner is only interested in this set of axioms
 - **not** in annotation axioms
 - See <u>https://www.w3.org/TR/owl2-primer/</u> <u>#Document_Information_and_Annotations</u>
 - <u>https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/#Annotations</u>

Remember from last week:

- An OWL ontology O is a **document**:
 - therefor, it cannot **do** anything as it isn't a piece of software!

with

these documents

ontologies?

- in particular, an ontology cannot infer anything (a reasoner may infer something) So, what to do
- An OWL ontology
 - with 'imp
 - correspon
 - the OWL A
 - parse a
 - access it
 - a **reasoner** is only interested in this set of axioms
 - **not** in annotation axioms
 - See <u>https://www.w3.org/TR/owl2-primer/</u> #Document Information and Annotations
 - https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/#Annotations

Using Ontologies to create MCQs

E.g., let's create MCQs!

- Given that some
 - ontology captures rich domain knowledge
 - assessment/MCQ generation is costly & relevant
 - in particular for healthcare & medicine
- why not auto-generate MCQs from ontologies?
- Building on research we have done so far,
 - in particular on how to make good MCQs, e.g., control difficulty
- we have been exploring this with Elsevier
 - towards more complex MCQs, e.g., patient cases
- interesting new app with new reasoning problems
 - similarity of concepts and cases

Which of these is **not a** mammal?

- 1. Dolphin
- 2. Whale
- 3. Tuna
- 4. Chimpanzee

Which of these is **not a** mammal?

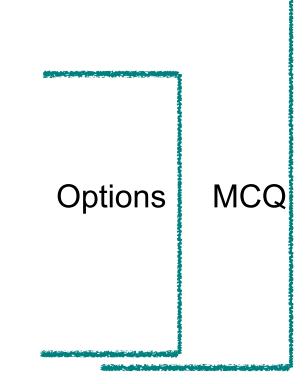
1. Dolphin

2. Whale

3. Tuna

4. Chimpanzee

MCC

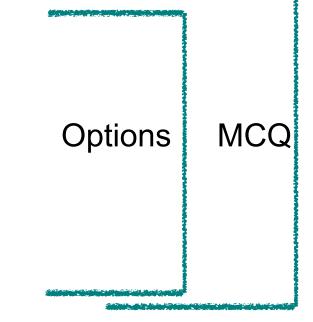

Which of these is **not a** mammal?

1. Dolphin

2. Whale

3. Tuna

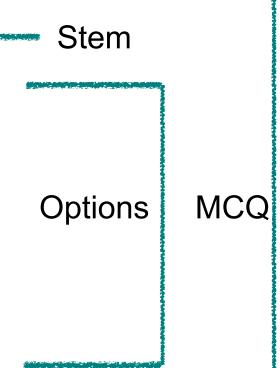
4. Chimpanzee

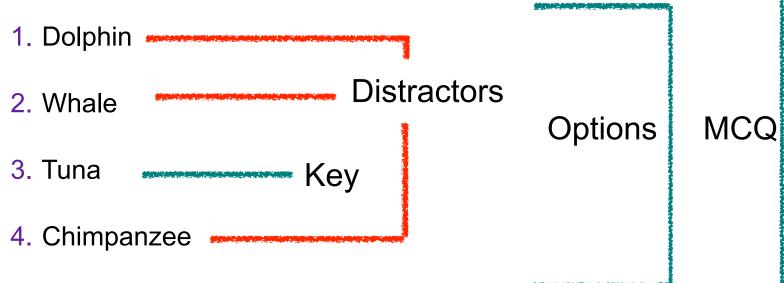


1. Dolphin

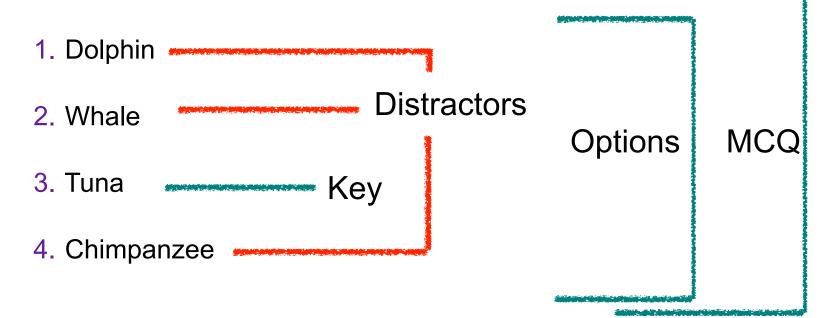
2. Whale

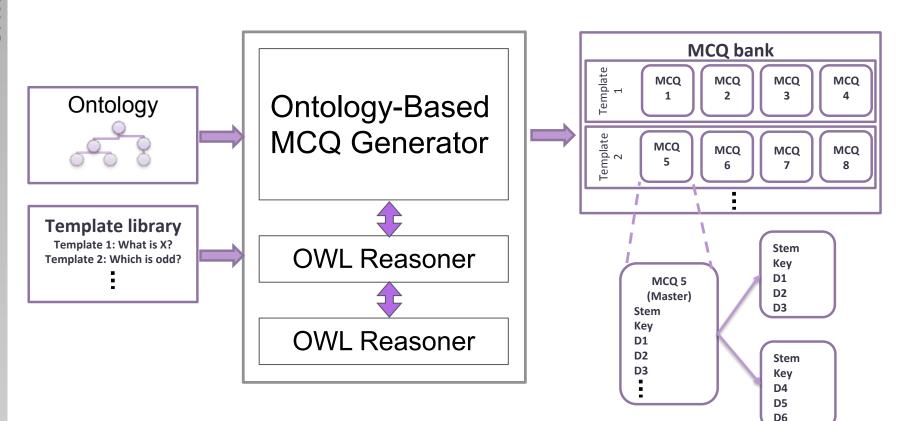
3. Tuna


4. Chimpanzee

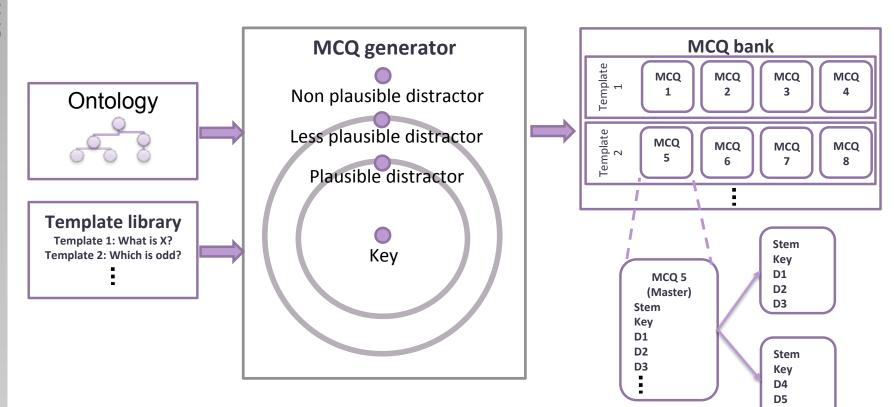


Key


- 1. Dolphin
- 2. Whale
- 3. Tuna
- 4. Chimpanzee



Follows a **template:** Stem: Which of these is **not a** (Class) X? Distractors: Y with $O \models Y \sqsubseteq X$ Key: Y with $O \not\models Y \sqsubseteq X$


Ontology-based MCQ generation

The more similar D is to K, the more difficult is Q.

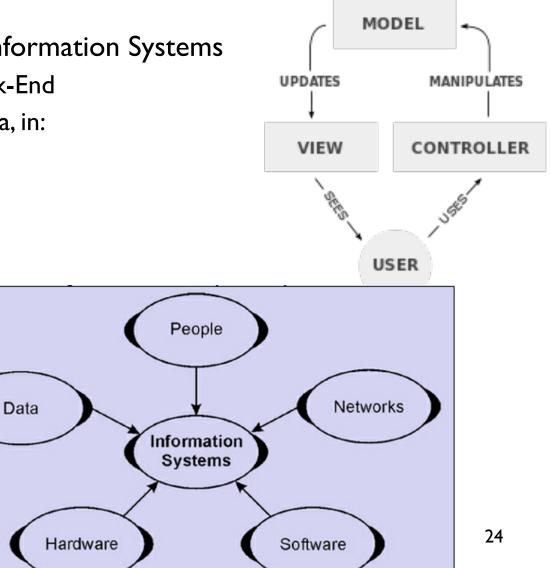
Ontology-based MCQ generation

D6

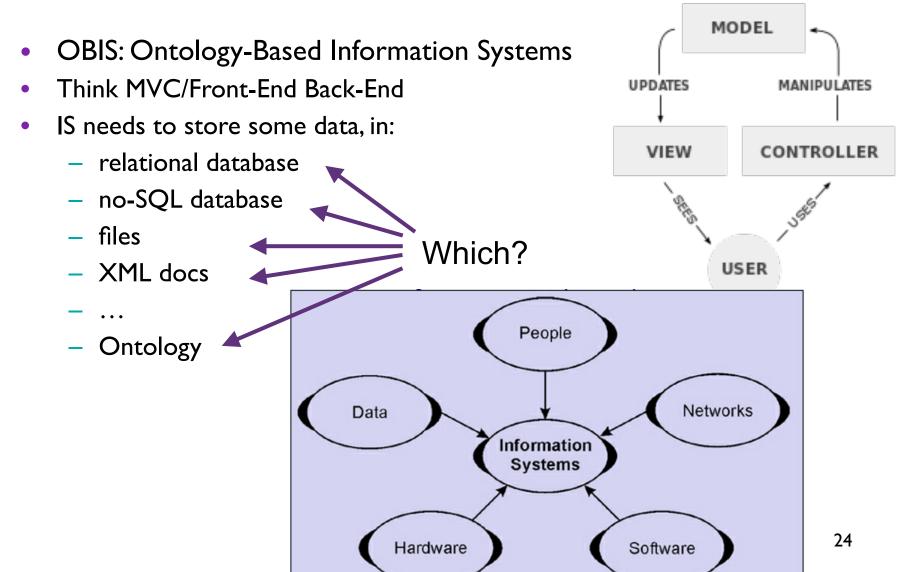
The more similar D is to K, the more difficult is Q.

Which of these is **not a** mammal?

1. Dolphin1. Zebra


- 2. Whale 2. Giraffe
- 3. Tuna 3. Tuna
- 4. Chimpanzee 4. Chimpanzee

(Why) Is Whale more similar to Tuna than Giraffe? How to measure similarity of classes in ontologies?

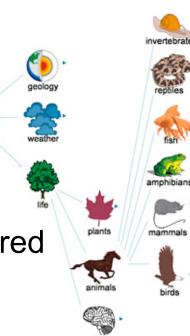

What else do we do with ontologies?

- OBIS: Ontology-Based Information Systems
- Think MVC/Front-End Back-End
- IS needs to store some data, in:
 - relational database
 - no-SQL database
 - files
 - XML docs
 - ...
 - Ontology

What else do we do with ontologies?

Using Ontologies to build & maintain taxonomies

Remember...


- **Controlled Vocabulary** = {terms for concepts}
- Taxonomy
- Thesaurus
- Terminology
- Ontology

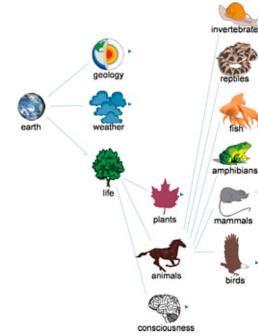
- - = CV + hierarchy
- **Classification system** = Taxonomy + principles
 - = Taxonomy + more labels
 - = ... + glossary/explanations

+ logical axioms + well-defined semantics + reasoning +

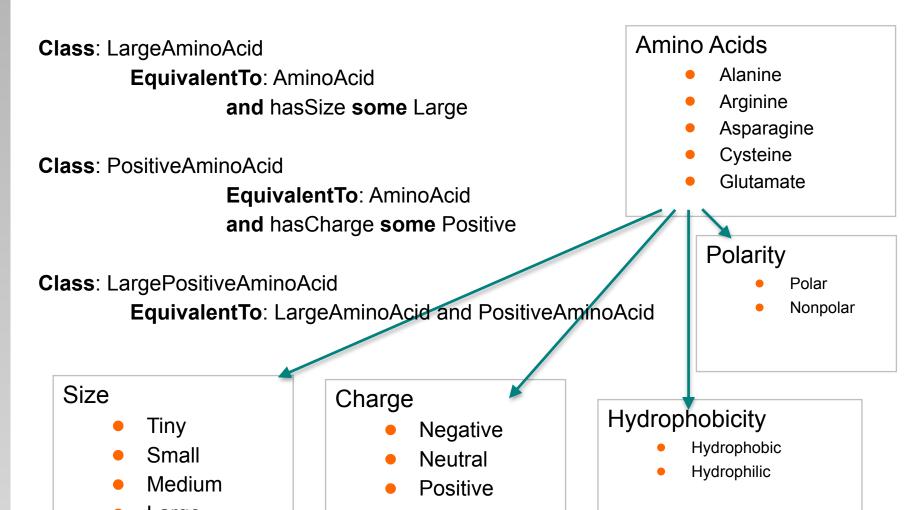
Taxonomies

- used heavily, e.g., to annotate data about
 - patients, clinical trials data, genetics,...
- are often big, ~300,000 concepts
 Building/maintaining them requires
- checking whether a term/class is already covered
- adding new terms/classes
 - into the right place, with the right name(s)
- fixing terms/classes
 - move them to right place
 - associate right terms: annotation properties
 - label, alternative label, ...
 - label @lang = "Eng", see <u>https://www.w3.org/wiki/RdfThesaurus</u> ^

'Tiny amino acid'

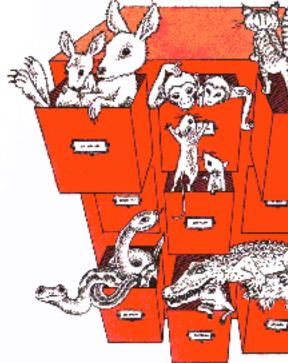

Is hard: remember

shoulder_catches_during_movement is- a shoulder_feels_like_it_will_slip_out_of_place Aspartate shoulder_joint_feels_like_it_may_slip_out_of_place shoulder_joint_pain_better_after_rest is- a 'Hydrophobic amino acid' shoulder_joint_pain_causes_difficulty_lying_on_affected_sic shoulder joint pain causing inability to sleep shoulder joint pain difficult to localize is-a 'Small amino acid' shoulder_joint_pain_feels_better_after_normal_movement shoulder joint pain first appears at night shoulder_joint_pain_improved_by_medication is- a Serine shoulder joint pain improves during exercise returns la shoulder joint pain incr by raising arm above shoulder shoulder_joint_pain_increased_by is- a Asparagine shoulder joint pain increased by lifting shoulder_joint_pain_increased_by_moving_arm_across_che is- a shoulder_joint_pain_increased_by_reaching_around_the_ba 'Non-polar amino acid' shoulder_joint_pain_relieved_by_putting_arm_over_head shoulder joint pain sudden onset is- a shoulder_joint_pain_unrelenting 'Charged amino acid' shoulder_joint_pain_worse_on_rising shoulder_joint_pain_worsens_with_extended_activity shoulder_joint_popping_sound_heard Thing 'Amino acid' Histidine shoulder joint suddenly gives way shoulder seems out of place Tyrosine shoulder_seems_out_of_place_recollection_of_the_event s-a shoulder_seems_out_of_place_recurrent shoulder seems out of place which resolved


Build & maintain an ontology

- taxonomy = inferred class hierarchy(O)
 - describe (instances of classes)
 - let reasoner figure out class hierarchy
 - ✓ no need for manual placing of concept!
 - \checkmark deals nicely redundancies
 - ✓ (unintended, missed) relationships are found
 - ✓ taking all given information into account
- requires
 - ontology language, e.g., OWL
 - reasoner
 - infrastructure to update/expert inferred class hierarchy (OWL API)
 - with the correct labels
 - perhaps ignoring some classes

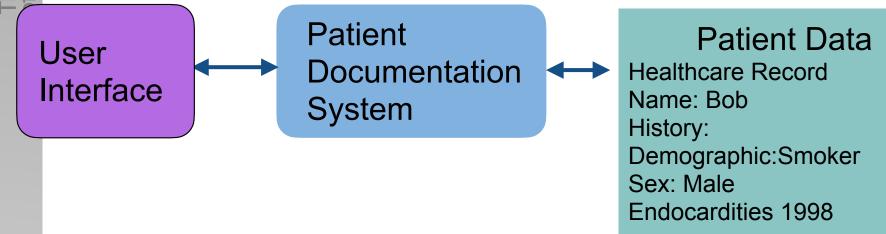
Remember our remodelling/untangling of AminoAcids?


- Even searching/using ontology is cool:
 - we can **build** expressions and classify these
 - ...jump rather than browse, even with only partial knowledge
 - since OWL & reasoner support post-coordination

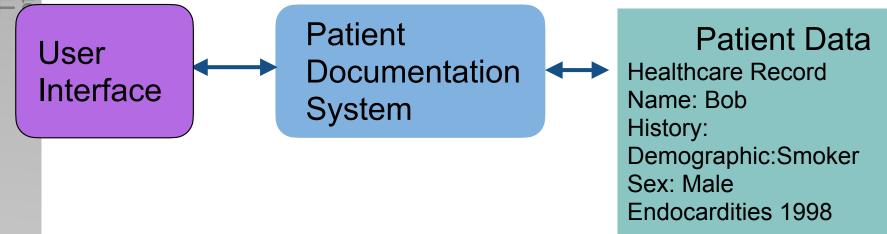
Endocardium⊑ BodyWall □ ∃partOf .HeartHeartWall⊑ Tissue □ ∃containedIn.HeartWall □ ∃containedIn.HeartValveHeartValve⊑ BodyValve □ ∃partOf.Heart □ ∃coveredIn.EndocardiumEndocarditis≡ Inflammation □ ∃isLocatedIn.EndocardiumInflammation⊑ Disease □ ∃actsOn.TissueHeartDisease≡ Disease □ ∃isLocatedIn.HeartpartOf⊑ containedIn, coveredIn ⊑ containedInisLocatedIn ∘ containedIn ⊑ isLocatedIn

BactInfection $\sqcap \exists$ **isLocatedIn.HeartValve** \sqsubseteq **Endocarditis**

- If you're a GP and need to label patient data with a term
 - know/find/browse to correct term in taxonomy
 - e.g., Endocarditis
 - error prone
 - often leads to over-generalisation
 - describe term
 - e.g., BactInfection ⊓ ∃isLocatedIn.HeartVal
 - and let reasoner find suitable super class
 - e.g., Endocarditis

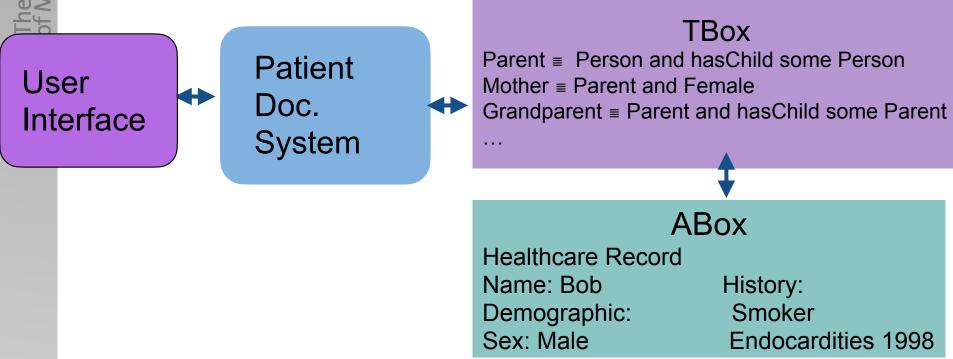


Using Ontologies in information systems e.g., SnapOn last week!


E.g.: Patient Documentation System

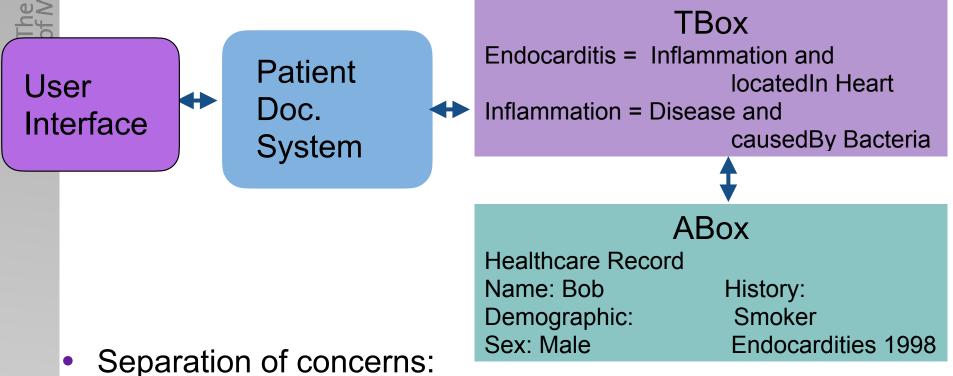
- Information System relies on Patient Data
 - recorded in different systems with possibly different structures
 - recorded by different clinicians with different styles
- Holding Data in DB:
 - many complex queries that need to change with changes in medical knowledge

E.g.: Patient Documentation System


- Toy example: get all *Parents* from database get those
 - who have a known child
 - described as Mother or Father
 - described as Grandmother or Grandfather
 - who receive Child Benefit

— ...

Why basing ISs on Ontologies?



- Toy example: get all *Parents* from ontology:
 - use suitable TBox and
 - retrieve all those who are **entailed** to be an instance of *Parent*

— ...

Why basing ISs on Ontologies?

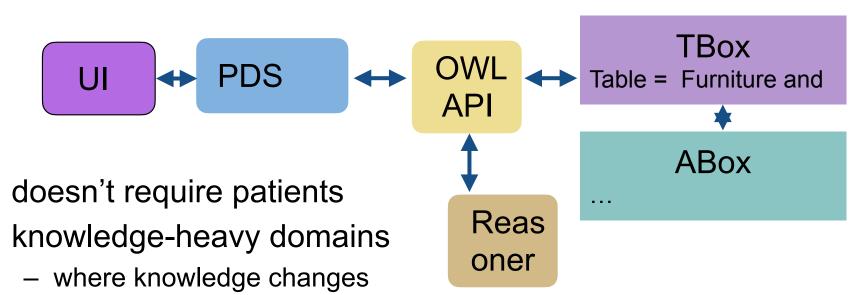
- background knowledge & terminology into ontology
- data into DB or ABox
 - suitably linked/mapped
- behaviour into program code

Why basing ISs on Ontologies?

- UI + PDS
- Separation of concerns
- \checkmark flexible access to data can deal with
 - incomplete knowledge
 - data coded in different ways
 - complex expressions: post-coordination!
 - data coded & queries on varying levels of granularity

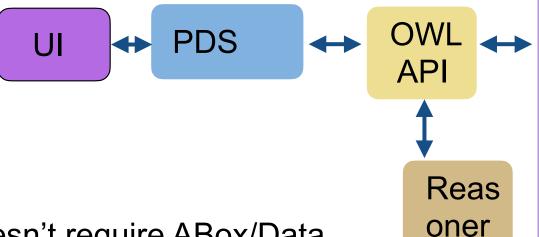
TBox

ABox


Healthcare Record

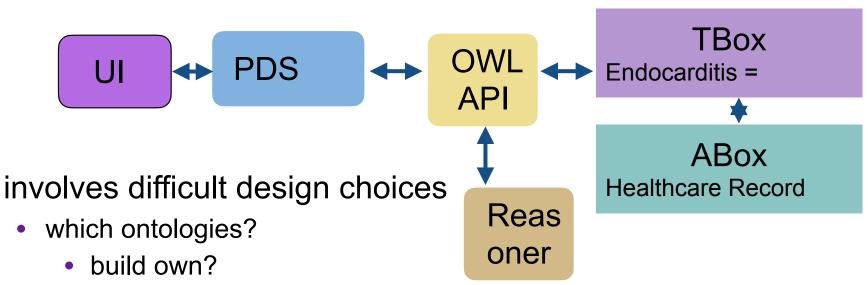
Endocarditis =

- \checkmark via terms as appropriate to IS
 - same data can be linked to different ontologies
- ✓ maintainable
 - changes in background knowledge are reflected in updated ontology


Ontology-Based ISs

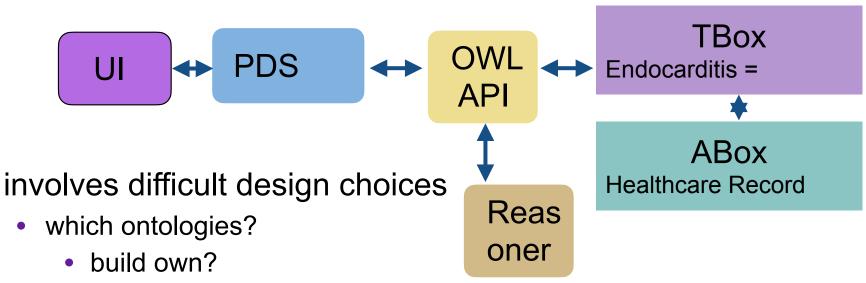
- Example:
 - furniture
 - restaurants & food properties: allergies, ethical,...
 - biochemistry
 - defence, intelligence
 - (nano) engineering
 - recruitment/skills management

Ontology-Based ISs



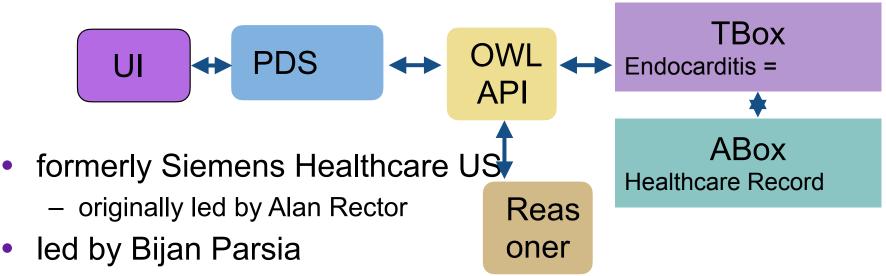
TBox Endocarditis = Inflammation and locatedIn some Heart Inflammation = Disease and causedBy some Bacteria

- doesn't require ABox/Data
- sometimes only TBox
 - e.g., NCI Thesaurus, where a large medical thesaurus & its hierarchy is maintained as the Inferred Class Hierarchy of rich OWL ontology


Building Ontology-Based ISs

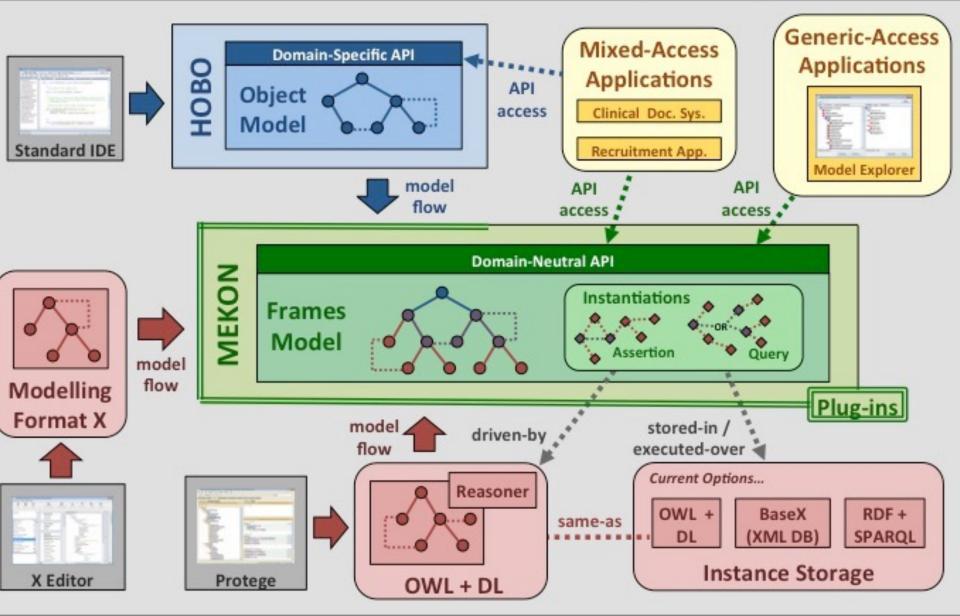
- reuse/extend/combine others?
- how to map?
- what to put in OWL classes or Java classes?
- how to make it scale?
- which tools to use?
 - OWLAPI
 - reasoner

Building Ontology-Based ISs



- reuse/extend/combine others?
- how to map?
- what to put in OWL classes or Java classes?
- how to make it scale?
- which tools to use?
 - OWLAPI
 - reasoner

We tried to give you knowledge & understanding to answer these questions


E.g., Cerner Collaboration

- concerned with patient documentation systems:
 - given the information about patient we have so far
 - what should we ask/document next?
- fine example where
 - behaviour depends on but differs from
 - static knowledge captured in ontology
- led to development of Chiron, Hobo, Mekon,...

MEKON & HOBO

Java frameworks for building ontology-driven applications

Colin Puleston, University of Manchester (puleston@manchester.ac.uk)

Challenges of Building an OBIS

- Reasoner Performance/Scalability
 - if your usage scenario doesn't fit reasoner performance, consider
 - other reasoner; see ORE
 - suitable profile
 - your scenario
- New (reasoning) problems crop up
 - entailment explanation (see Protégé's "?")
 - modularity (in OWL API tools!)
 - similarity (see MCQ generation)
- Training, maintenance
 - who's building/maintaining the ontology?
 - who's writing the code?
- Tool support
 - many OWL tools around, but few stable/commercial

MANCHESTER

That's it!

What have we learnt?

- Intro to Knowledge Representation
 - Why do this?
- Knowledge Acquisition
 - What & how do we model?
- Formalisation, Ontology Patterns
 - How to represent things (in OWL) in actionable way?
- Semantics and Reasoning
 - Models, entailments, tableau, classification, ...
 - What exactly is it we are saying and what are the consequences?
- OWL API: actions with ontologies
- SKOS
 - An alternative to OWL using OWL
- Linked Data
 - Using OWL or RDF(S) for data on the Web
- Usage of ontologies

Coursework this Week

- The University of Manchester
- Core Task: Furniture Ontology (50% of your coursework mark)
 - Submit your **ontology** (group)
 by Friday, May 10
 - Submit your **report** (individual)
 by Friday, May 10 (65% of CT mark)
 - Peer assess your ontologies, by Tuesday, May 14 (35% of CT mark)
- W5 Query application
 - use the OWLAPI to query an ontology
 - Friday, May 10
- W5 Post-coordination
 - a short essay

Your furniture Ontology

- An ontology of furniture
- Classes that enable us to represent furniture & answer competency questions like
 - Which pieces of furniture are found in the greatest number of rooms?
 - Which items of furniture are available in different sizes?
 - What are those sizes?
 - ...see BB for more CQs: we've added some more!
- Class hierarchy organised using the PIMPS upper ontology.
- Peer assessed
- Plus a reflective report on how you built it, interesting aspects of the model

- Online Exam via Blackboard
 - Two hours
 - Multiple Choice Questions
 - Short Essays
 - Answer **all** questions
- ...which is *formative*, i.e., will not count towards your final mark

- ... use Forum for questions about
 - coursework
 - everything else

That's really it...

- not quite:
 - work on your coursework
 - in your teams
 - ask questions in Forum
 - stay in touch
 - stay safe
- Thanks for continuing to learn and work with us in these unusual times!