
The OWL API: 
An Introduction	

Sean Bechhofer and Nicolas Matentzoglu	

University of Manchester	

sean.bechhofer@manchester.ac.uk	

OWL	

OWL allows us to describe a domain in 	

terms of:	

•  Individuals	

–  Particular objects in our domain	

•  Classes	

–  Collections of objects (usually sharing some common

characteristics)	

•  Properties	

–  Binary relationships between ���

individuals. 	

•  Plus a collection of axioms describing how these classes,
individuals, properties are related	

OWL	

•  OWL has a number of operators that allow us to
describe the classes and the characteristics that they have	

•  Boolean operators	

–  and, or, not	

•  Quantification over properties/relationships	

–  universal, existential.	

•  A clear and unambiguous semantics for the operators and
composite class expressions	

Why build an OWL API?	

•  The use of a higher level data model can help to 	

–  insulate us from the vagaries of concrete syntax. 	

–  make it clear what is happening in terms of functionality.	

–  increase the likelyhood of interoperating applications. 	

Assumptions	

•  Primarily targeted at OWL-DL	

–  This does not mean that we cannot handle OWL-Full ontologies,

but a number of design decisions reflect this assumption.	

•  Java based	

–  Interfaces 	

–  Java reference implementation	

•  Main memory based	

OWL Interfaces

Implementation Implementation

Application

Implementation

What is an “OWL
Implementation”?	

•  Modelling	

–  Provide data structures that represent OWL ontologies/

documents.	

•  Parsing	

–  Taking some syntactic presentation, e.g. OWL-RDF and

converting it to some [useful] internal data structure.	

•  Serializing	

–  Producing a syntactic presentation, e.g. OWL-XML from a local

data structure.	

•  Manipulation/Change	

–  Being able to manipulate the underlying objects.	

•  Inference	

–  Providing a representation that implements/understands the

formal semantics of the language.	

OWL Structural Specification	

•  Provides a definition of the language in terms of the
constructs and assertions allowed.	

•  Semantics are then defined in terms of this abstract
syntax.	

•  Our OWL API data model is based largely on this
abstract presentation.	

–  Conceptually cleaner. 	

–  Syntax doesn’t get in the way	

Considerations	

•  Clear identification of  
functionalities and a  
separation of concerns	

•  Representation	

–  Syntax vs. Data Model	

–  Interface vs. Implementation	

–  Locality of Information	

•  Parsing/Serialization	

–  Insulation from underlying concrete presentations	

–  Insulation from triples	

Modelling

Parsing

Serializing Inference

Manipulation

Modelling

Parsing

Serializing Inference

Manipulation

Considerations	

•  Manipulation/Change	

–  Granularity	

–  Dependency	

–  User Intention	

–  Strategies	

•  Inference	

–  Separation of explicit assertions from inferred consequences	

–  External reasoning implementations	

Caveats	

•  Primarily designed to support manipulation of T-Box/
schema level ontologies	

–  Large amounts of instance data may cause problems.	

•  Designed to support OWL (not RDF)	

•  This isn’t industrial production level quality code	

–  It’s not bad though :-)	

•  We can’t promise to answer all your questions	

•  We can’t promise to fix all your bugs	

•  But we’ll try……	

Where’s it used?	

•  Pellet	

–  OWL reasoner	

•  SWOOP	

–  OWL editor	

•  Protégé 4	

–  OWL editor	

•  ComparaGrid	

•  CLEF	

•  OntoTrack	

–  OWL Editor	

•  DIP Reasoner	

•  BT	

–  SNOMED-CT support 	

•  BioPAX	

–  Lisp bindings (!!)	

Other, Related Work	

•  Jena	

–  Provides OWL Ontology interfaces, layered on the RDF

structures of Jena	

•  Protégé API	

–  Protégé 3 provided OWL API layered on Protégé model	

–  Mixture of frames, RDF and OWL	

–  Evolution to support a UI	

•  KAON2	

–  Support for OWL	

–  Not open source	

References	

•  Matthew Horridge, Sean Bechhofer. The OWL API: A Java API

for OWL Ontologies. Semantic Web Journal 2(1), Special Issue on
Semantic Web Tools and Systems, pp. 11-21, 2011���
	

•  Cooking the Semantic Web with the OWL API, ISWC2003	

•  Parsing OWL DL: Trees or Triples?, WWW2004	

•  Patching Syntax in OWL Ontologies, ISWC 2004	

•  The Manchester OWL Syntax, OWLEd 2006	

•  Igniting the OWL 1.1 Touch Paper: The OWL API, OWLEd 2007	

•  The OWL API: A Java API for Working with OWL 2 Ontologies, OWLEd
2009 	

Programming to the OWL API	

What is an Ontology?	

<owl:Class rdf:about="#Man">!
 <rdf:subClassOf>!
 <owl:intersectionOf rdf:parseType="Collection">!
 <owl:Class rdf:about="#Person"/>!
 <owl:Class rdf:about="#Male"/>!
 </owl:intersectionOf>!
 </rdf:subClassOf>!
</owl:Class>!
!
<owl:Class rdf:about="#Person">!
 <rdf:subClassOf>!
 <owl:Class rdf:about="#Animal"/>!
 </rdf:subClassOf>!
</owl:Class>! Man Person

Animal Person Male

and

Man

Animal

OWL API Philosophy	

•  An Ontology is represented as 	

–  a collection of axioms 	

–  that assert information about the classes, properties and
individuals	

•  OWL API provides a uniform view on the ontology	

•  More or less direct implementation of the OWL 2
specification	

•  Helpful Resources!	

Basic Data Structures	

•  At its heart, the OWL API provides data structures
representing OWL ontologies, like their axioms, classes
and relations	

•  Plus classes to help 	

–  Create;	

–  Manipulate; 	

–  Parse;	

–  Render; and	

–  Reason about those structures	

Main Building Blocks	

•  OWLOntology	

•  OWLOntologyManager	

•  OWLAxiom	

–  SubclassOf	

–  EquivalentClasses	

–  DisjointClasses	

•  OWLEntity	

–  OWLClass	

–  OWLObjectProperty	

–  OWLDataProperty	

–  OWLIndividual	

OWLOntology	

Axiom-
centric view

Signature
contains
OWLEntities

Names and URIs	

•  Ontologies in OWL are named using URIs	

•  Entities in OWL are identified using URIs	

	

Ontology: <http://owl.cs.manchester.ac.uk/ontologies/sushi.owl>	

	

Class: <http://owl.cs.manchester.ac.uk/ontologies/sushi.owl#Sushi>	

OWLEntity	

•  OWLEntity is the fundamental building block of the
ontology	

–  Classes	

‒  Properties 	

–  Individuals	

–  Datatypes	

•  Named using URIs	

Class: <http://owl.cs.manchester.ac.uk/ontologies/sushi.owl#Sushi>	

OWLClass	

•  Represents an OWL Class.	

•  The Class itself is a relatively lightweight object	

–  A Class doesn’t hold information about definitions that may apply
to it.	

•  Axioms relating to the class are held by an
OWLOntology object 	

–  E.g. a superclass axiom must be stated within the context of an

OWLOntology	

–  Thus alternative characterisations/perspectives can be asserted
and represented for the same class. 	

OWLClass	

•  Methods are available on OWLClass that give access to
the information within a particular ontology	

•  But these are simply convenience methods.	

java.util.Set<OWLDescription> getDisjointClasses(OWLOntology ontology) !
java.util.Set<OWLDescription> getEquivalentClasses(OWLOntology ontology) !

OWLProperty	

•  OWL makes a distinction between	

–  Object Properties: those that relate two individuals	

•  E.g. hasBrother	

–  Data Properties: those that relate an individual to a concrete data
value	

•  E.g. hasName	

•  There is a strict separation between the two and two
explicit classes representing them	

–  OWLObjectProperty	

–  OWLDataProperty	

OWLProperty	

•  Properties can have associated domains and ranges	

•  There is also a property hierarchy	

–  Super properties	

–  Property equivalences	

–  Disjoint Properties (OWL2)	

•  Assertions about properties are made in the context of
an Ontology. 	

–  E.g functional properties	

OWLObjectProperty	

•  Represents an Object Property that can be used to relate
two individuals	

•  Object properties can have additional characteristics	

–  Transitivity	

–  Inverses	

OWLDataProperty	

•  Represents an Data Property that can be used to relate
an individual to some concrete data value	

•  Data properties can also have additional characteristics	

–  Functional	

Project Setup and Task 1	

•  Lets get our hands dirty.	

The structure of axioms	

OWLAxiom	

•  An ontology contains a collection of OWLAxioms	

•  Each axiom represents some fact that is explicitly

asserted in the ontology	

•  There are a number of different kinds of axiom	

–  Annotation Axioms	

–  Declaration Axioms	

–  Import Axioms	

–  Logical Axioms	

Logical Axioms	

•  The subclasses of OWLLogicalAxiom represent the
logical assertions contained in the ontology	

–  Supers (of classes and properties)	

–  Equivalences (of classes and properties)	

–  Property Characteristics	

•  Functionality, transitivity etc.	

–  Facts about particular individuals	

•  Types	

•  Relationships	

•  Values	

Annotation Axioms	

•  An OWLAnnotationAxiom is used to associate arbitrary
pieces of information with an object in the ontology	

–  Labels or natural language strings	

–  Dublin core style metadata, e.g. author or creator information	

•  Annotation Axioms have no logical significance	

–  They do not affect the underlying semantics of the ontology	

Change	

COMP60421 46	

Changes	

•  The API takes an “axiom-centric” view	

•  There are a limited number of change objects	

–  Add an Axiom	

–  Remove an Axiom	

–  Set the Ontology URI	

•  Trade off between simplicity and power	

–  Change from original API, which had a number of different change

objects encapsulating different changes. 	

–  Change object describes what happened, e.g. add/remove	

–  Wrapped axiom describes the change	

Ontology Formats	

•  The OWLOntologyFormat class represents a format used
for concrete serialisation	

–  E.g OWL RDF/XML	

•  The format may also contain information about the
particular serialisation	

–  E.g. namespace declarations	

–  Ordering	

–  Structural information	

–  Helps in addressing problems with round-tripping	

•  If an ontology was parsed, the Manager maintains
information about the original format of the ontology	

Task 2+3	

•  Creating Entities and Axioms	

•  Saving the ontology	

OWL Class Expressions	

•  Student EquivalentClass 	

Person and isEnrolledInSome University 	

and attends some Course	

Class
Expression!

Class
Expression! Class
Expression!

Class
Expression! Class

Expression!

Not a Class
Expression!

•  This is an axiom!
•  A statement about the student class.
•  A class expression in logical terms is a complex concept

(such as an “attends some Course”) or a class name (such
as “Person”) and is used in axioms

•  Axioms can be true or false, class expressions have
instances

Task 4	

•  Working with more complicated class expressions and
individuals	

Inference	

Inference	

•  OWL’s semantics allows the possibility to perform
inference or reasoning over an ontology	

•  A reasoner may be able to determine additional facts that
follow from the information in the ontology	

•  How best do we expose this information?	

–  Add it into the structure?	

–  Provide alternative interfaces?	

a subClassOf b
b subClassOf c a subClassOf c

a subClassOf (b and (some r x))
c equivalentClass (some r Thing) a subClassOf c

Reasoner Implementations	

•  OWLReasoner and OWLReasonerFactory	

•  Pellet and HermiT	

–  Pure Java implementation	

–  Implements OWL API reasoner interfaces	

•  FaCT++	

–  C++ Implementation	

–  Java wrapper	

–  OWLAPI wrapper implementating OWL API interfaces	

Nuts and Bolts	

•  OWL API code is available from github:	

https://github.com/owlcs/owlapi/releases	

•  Get the Examples.java!	

–  https://github.com/owlcs/owlapi/wiki/Documentation	

–  Click on Examples for 3.x à Examples.java	

•  Latest versions are in the git repository.	

Task 5-7	

•  Some advanced things to look at:	

–  Using a reasoner	

–  Generating class annotations	

