
Week 4
COMP62342

Sean Bechhofer, Uli Sattler
sean.bechhofer@manchester.ac.uk,

uli.sattler@manchester.ac.uk

mailto:sean.bechhofer@manchester.ac.uk
mailto:uli.sattler@manchester.ac.uk

Today

• Some clarifications around last week’s coursework
• More on reasoning:

• extension of the tableau algorithm & discussion of blocking
• traversal or “how to compute the inferred class hierarchy”
• OWL profiles

• Snap-On: an ontology-based application
• The OWL API: a Java API and reference implementation for

• creating,
• manipulating and
• serialising OWL Ontologies and
• interacting with OWL reasoners

• Lab:
• OWL API for coursework
• Ontology Development 2

3

Some clarifications around last week’s coursework

4

• OWL is based on a Description Logic
• we can use DL syntax
• e.g., C ⊑ D for C SubClassOf D

• An OWL ontology O is a document:
• therefor, it cannot do anything: it isn’t a piece of software!
• in particular, an ontology cannot infer anything  

(a reasoner may infer something!)

• An OWL ontology O is a web document:
• with ‘import’ statements, annotations, …
• corresponds to a set of logical OWL axioms, its imports closure
• the OWL API (today) helps you to

• parse an ontology
• access its axioms

• a reasoner is only interested in this set of axioms
• not in annotation axioms
• see https://www.w3.org/TR/owl2-primer/#Document_Information_and_Annotations
• https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/#Annotations

Ontologies, inference, entailments, models

https://www.w3.org/TR/owl2-primer/#Document_Information_and_Annotations
https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/#Annotations

5

• We have defined what it means for O to entail an axiom C SubClassOf D
• written O ⊨ C SubClassOf D  

 or O ⊨ C ⊑ D
• based on the notion of a model I of O

• i.e., an interpretation I that satisfies all axioms in O
• don’t confuse ‘model’ with ‘ontology’

• one ontology can have many models
• the more axioms in O the fewer models O has 
 

• A DL reasoner can be used to
• check entailments of an OWL ontology O and
• compute the inferred class hierarchy of O

• this is also known as classifying O
• e.g., by using a tableau algorithm

Ontologies, inference, entailments, models (2)

6

Learn terms & meaning & relations!

7

More on Reasoning

Why?
To

deepen our
understanding of

OWL

To
understand

better what
reasoners do

8

Let O be an ontology, α an axiom, and A, B classes, b an individual name:
• O is consistent if there exists some model I of O

• i.e., there is an interpretation that satisfies all axioms in O
• i.e., O isn’t self contradictory

• O entails α (written O ⊧ α) if α is satisfied in all models of O
• i.e., α is a consequence of the axioms in O

• A is satisfiable w.r.t. O if O ⊧ A SubClassOf Nothing
• i.e., there is a model I of O with AI ≠ {}

• b is an instance of A w.r.t. O (written O ⊧ b:A) if bI ⊆ AI in every model I of O

Theorem:
1. O is consistent iff O ⊧ Thing SubClassOf Nothing
2. A is satisfiable w.r.t. O iff O ∪ {n:A} is consistent (where n doesn’t occur in O)
3. b is an instance of A in O iff O ∪ {b:not(A)} is not consistent
4. O entails A SubClassOf B iff O ∪ {n:A and not(B)} is inconsistent

Recall Week 2: OWL 2 Semantics: Entailments

9

Let O be an ontology, α an axiom, and A, B classes, b an individual name:
• O is consistent if there exists some model I of O

• i.e., there is an interpretation that satisfies all axioms in O
• i.e., O isn’t self contradictory

• O entails α (written O ⊧ α) if α is satisfied in all models of O
• i.e., α is a consequence of the axioms in O

• A is satisfiable w.r.t. O if O ⊧ A SubClassOf Nothing
• i.e., there is a model I of O with AI ≠ {}

• b is an instance of A w.r.t. O if bI ⊆ AI in every model I of O

• O is coherent if every class name that occurs in O is satisfiable w.r.t O
• Classifying O is a reasoning service consisting of

1. testing whether O is consistent; if yes, then
2. checking, for each pair A,B of class names in O plus Thing, Nothing  

O ⊧ A SubClassOf B
3. checking, for each individual name b and class name A in O, whether O ⊧ b:A

…and returning the result in a suitable form: O’s inferred class hierarchy

Recall Week 2: OWL 2 Semantics: Entailments etc.

10

Before Easter, you saw a tableau algorithm that
• takes a class expression C and decides satisfiability of C:

• it answers ‘yes’ if C is satisfiable 
 ‘no’ if C is not satisfiable

• …and always stops with a yes/no answer:  
 it is sound, complete, and terminating

We saw such a tableau algorithm for ALC:
• ALC is a Description Logic that forms logical basis of OWL,  

only has and, or, not, some, only
• works by trying to generate an interpretation with an instance of C

• by breaking down class expressions
• generating new P-successors for some-values from restrictions  

 (∃P.C restrictions in DL)

• we can handle an ontology that is a set of acyclic SubClassOf axioms
• via unfolding (check Week 3 slide 24ff)

Week 3: how to test satisfiability …

in
Negation
Normal
Form

11

Week 3: tableau rules

9	

17	

Tableaux Rules for ALC	

{C1 u C2,… }	x	 {C1 u C2, C1, C2,… }	x	!u	

{C1 t C2,… }	x	 {C1 t C2, C,… }	
For C 2 {C1, C2}	

x	!t	

{9R.C,… }	x	 {9R.C,… }	x	

!9	
{C}	y	

{8R.C,… }	x	

!8	
{C,…}	y	

{8R.C,… }	x	

{…}	y	

R	

R	R	

18	

Algorithm Examples	

•  Test the satisfiability of	
 9R.A u 8R.B	

9R.A u 8R.¬A	

	

9R.A u 8S.¬A	

 9R.(A t 9R.B) u 8R.¬A u 8R.(8R.¬B)	

12

• Apply the tableau algorithm to test whether A is satisfiable w.r.t.

Mini-exercise

{A SubClassOf B and (P some C),
 B SubClassOf C and (P only (not C or D)}  

{A ⊑ B ⊓ ∃P.C,
 B ⊑ C ⊓ ∀P.(¬C ⊔ D) }

13

• When writing an OWL ontology in Protégé,
• axioms are of the form A SubClassOf B with A a class name
• (or A EquivalentTo B with A a class name)

• last week’s tableau handles these via unfolding:
• works only for acyclic ontologies
• e.g., not for A SubClass (P some A)

• but OWL allows for general class inclusions (GCIs),
• axioms of the form A SubClassOf B with A a class expression
• e.g., (eats some Thing) SubClassOf Animal
• e.g., (like some Dance) SubClassOf (like some Music)
• this requires another rule:

This week: GCIs and tableau algorithm

x {…} →GCI x {¬C ⊔ D,…}

for each C ⊑ D ∈ O

14

• Assume you have some C ⊑ D ∈ O and consider an interpretation I:
• If I is a model of O, then

• CI ⊆ DI , hence
• x ∈ CI implies x ∈ DI for each x in the domain of I, hence
• x ∉ CI or x ∈ DI, hence
• x ∈ (CI ⊔ DI)

• This is why our new rule ensure that the interpretation we are trying to
construct satisfies all GCIs:

Interlude: GCIs

x {…} →GCI x {¬C ⊔ D,…}

for each C ⊑ D ∈ O

15

• E.g., test whether  
 
A is satisfiable w.r.t.  
 {A SubClassOf (P some A)}  
 or {A ⊑ ∃P.A } 

GCIs and tableau algorithm

x {…} →GCI x {¬C ⊔ D,…}

for each C ⊑ D ∈ O

{A, ¬A ⊔ ∃P.A, ∃P.A}

{A, ¬A ⊔ ∃P.A, ∃P.A}
P

{A, ¬A ⊔ ∃P.A, ∃P.A}
P

{A, ¬A ⊔ ∃P.A, ∃P.A}
P

…
P

• This rule easily causes non-termination
• if we do not block

16

• Blocking ensures termination
• even on cyclic ontologies
• even with GCIs

• If x’s node label is contained in  
the label of a predecessor y, we say  
“x is blocked by y”

• E.g., test whether A is satisfiable  
 w.r.t. {A SubClassOf (P some A)}
• here, n2 is blocked by n1

Blocking

{A, ¬A ⊔ ∃P.A, ∃P.A}

{A, ¬A ⊔ ∃P.A, ∃P.A}

9	

17	

Tableaux Rules for ALC	

{C1 u C2,… }	x	 {C1 u C2, C1, C2,… }	x	!u	

{C1 t C2,… }	x	 {C1 t C2, C,… }	
For C 2 {C1, C2}	

x	!t	

{9R.C,… }	x	 {9R.C,… }	x	

!9	
{C}	y	

{8R.C,… }	x	

!8	
{C,…}	y	

{8R.C,… }	x	

{…}	y	

R	

R	R	

18	

Algorithm Examples	

•  Test the satisfiability of	
 9R.A u 8R.B	

9R.A u 8R.¬A	

	

9R.A u 8S.¬A	

 9R.(A t 9R.B) u 8R.¬A u 8R.(8R.¬B)	

only if x’s node label 
isn’t contained in  
the node label of a  
predecessor of x

P
n1

n2

17

• When blocking occurs, we can build  
a cyclic model from a  
complete & clash-free completion tree
• hence soundness is preserved!

Blocking

{A, ¬A ⊔ ∃P.A, ∃P.A}

{A, ¬A ⊔ ∃P.A, ∃P.A}

9	

17	

Tableaux Rules for ALC	

{C1 u C2,… }	x	 {C1 u C2, C1, C2,… }	x	!u	

{C1 t C2,… }	x	 {C1 t C2, C,… }	
For C 2 {C1, C2}	

x	!t	

{9R.C,… }	x	 {9R.C,… }	x	

!9	
{C}	y	

{8R.C,… }	x	

!8	
{C,…}	y	

{8R.C,… }	x	

{…}	y	

R	

R	R	

18	

Algorithm Examples	

•  Test the satisfiability of	
 9R.A u 8R.B	

9R.A u 8R.¬A	

	

9R.A u 8S.¬A	

 9R.(A t 9R.B) u 8R.¬A u 8R.(8R.¬B)	

only if x’s node label 
isn’t contained in  
the node label of a  
predecessor of x

P
n1

n2
P

18

Our ALC tableau algorithm with blocking is
• sound: if the algorithm stops and says “input ontology is consistent”  

 then it is.
• complete: if the input ontology is consistent,  

 then the algorithm stop and says so.
• terminating: regardless of the size/kind of input ontology,  

 the algorithm stops and says
• either “input ontology is consistent”
• or “input ontology is not consistent”

• …i.e., a decision procedure for ALC ontologies
• even in the presence of cyclic axioms!

Tableau algorithm with blocking

19

Our ALC tableau algorithm has a few sources of complexity
• the breadth/out-degree of the tree constructed
• the depth of/path length in tree constructed
• non-determinism due to →⊔ rule from

• disjunctions in O, e.g., A SubClassOf B or C
• SubClassOf axioms in O
• EquivalentTo axioms in O

Tableau algorithm & complexity not too bad:
bounded by number
of ‘some’
expressions in O

•ok/linear for acyclic O
•bad/exponential for  
 general O:  
we can construct O  
 of size n  
where each model has  
 a path of length 2n

1 disjunction  
per axiom in O  
for each node in tree

2 disjunctions  
per axiom in O  
for each node in tree

hopefully not
too bad

3 nodes with  
25 SubClassOf  
axioms →  
how many  
choices?

37,778,931,862,957,161,709,568

20

• Without further details: deciding ALC satisfiability
• only of class expressions is PSpace-Complete
• of class expressions w.r.t. ontology is ExpTime-complete
• …much higher than intractable/SAT

• Implementation of ALC or OWL tableau algorithm requires optimisation
• there has been a lot of work in the last ~25 years on this
• you see the fruits in Fact++, Pellet, Hermit, Elk, … 

reasoners available in Protégé
• some of them from SAT optimisations, see COMP60332

• Next, I will discuss 1 optimisation: enhanced traversal

Tableau algorithm & complexity

21

• Remember: Classifying O is a reasoning service consisting of  

1. testing whether O is consistent; if yes, then  
 
 
 

2. checking, for each pair A,B of class names in O plus Thing, Nothing  
whether O ⊧ A SubClassOf B 
 
 

3. checking, for each individual name b and class name A in O,  
whether O ⊧ b:A  
 
 
 

…and returning the result in a suitable form: O’s inferred class hierarchy

Naive Classification

Test:  
is Thing satisfiable w.r.t. O?

Test:  
is A ⊓¬B unsatisfiable w.r.t. O?

Test:  
is O ∪ {b:¬A} is inconsistent?

22

• Remember: Classifying O is a reasoning service consisting of  

1. testing whether O is consistent; if yes, then  
 
 
 

2. checking, for each pair A,B of class names in O plus Thing, Nothing  
whether O ⊧ A SubClassOf B 
 
 

3. checking, for each individual name b and class name A in O,  
whether O ⊧ b:A  
 
 
 

…and returning the result in a suitable form: O’s inferred class hierarchy

Naive Classification

Test:  
is Thing satisfiable w.r.t. O?

Test:  
is A ⊓¬B unsatisfiable w.r.t. O?

Test:  
is O ∪ {b:¬A} is inconsistent?

1 test

n2 tests for O with  
n class names

nm tests for O with  
n class names, m individuals

23

• Naive Classification of O requires 1 + n2 + nm  
expensive satisfiability/consistency tests

• …can we do better?
➡ Enhanced Traversal

• idea: build inferred class hierarchy top-down and bottom-up,  
 “trickling in” each class name in turn

• Assume you have, so far,  
constructed this hierarchy for O 

• Now you “trickle in” Oak

Enhanced Traversal

Thing

AnimalPlant

FishBirdTree

Oak
?

24

• Naive Classification of O requires 1 + n2 + nm  
expensive satisfiability/consistency tests

• …can we do better?
➡ Enhanced Traversal

• idea: build inferred class hierarchy top-down and bottom-up,  
 “trickling in” each class name in turn

• Assume you have, so far,  
constructed this hierarchy for O 

• Now you “trickle in” Oak: check whether
• O ⊧ Oak ⊑ Plant?  

 yes - continue with Plant’s child

Enhanced Traversal

Thing

AnimalPlant

FishBirdTree

Oak
?

25

• Naive Classification of O requires 1 + n2 + nm  
expensive satisfiability/consistency tests

• …can we do better?
➡ Enhanced Traversal

• idea: build inferred class hierarchy top-down and bottom-up,  
 “trickling in” each class name in turn

• Assume you have, so far,  
constructed this hierarchy for O 

• Now you “trickle in” Oak: check whether
• O ⊧ Oak ⊑ Plant?  

 yes - continue with Plant’s child
• O ⊧ Oak ⊑ Tree?  

yes. Done here, backtrack.  

Enhanced Traversal

Thing

AnimalPlant

FishBirdTree

Oak
?

26

• Naive Classification of O requires 1 + n2 + nm  
expensive satisfiability/consistency tests

• …can we do better?
➡ Enhanced Traversal

• idea: build inferred class hierarchy top-down and bottom-up,  
 “trickling in” each class name in turn

• Assume you have, so far,  
constructed this hierarchy for O 

• Now you “trickle in” Oak: check whether
• O ⊧ Oak ⊑ Plant?  

 yes - continue with Plant’s child
• O ⊧ Oak ⊑ Tree?  

yes. Done here, backtrack.
• O ⊧ Oak ⊑ Animal? 

No. Done: no more need to test! 
 

Enhanced Traversal

Thing

AnimalPlant

FishBirdTree

Oak
?

27

• Naive Classification of O requires 1 + n2 + nm  
expensive satisfiability/consistency tests

• …can we do better?
➡ Enhanced Traversal

• idea: build inferred class hierarchy top-down and bottom-up,  
 “trickling in” each class name in turn

• Potentially avoids many of the n2 satisfiability/consistency tests
• very important in practice
• different variants have been developed

• Just one of many optimisations!

Enhanced Traversal

Thing

AnimalPlant

FishBirdTree

TunaDuck SharkEagleOak

28

OWL Profiles

Restrictions
of OWL to tame

complexity

29

• Despite all optimisations, classification may still take too long if ontology is
• big (300,000 axioms or more) and/or
• rich (ALC plus inverse properties, atleast, atmost, sub-property chains,…)

• For OWL 2 [*], profiles have been designed
• syntactic fragments of OWL obtained by restricting constructors available

• Each profile is
• maximal, i.e., we know that if we allow more constructors,  

 then computational complexity of reasoning would increase
• motivated by a use case

OWL Profiles

[*] the one we talk about here/you use in Protégé

30

OWL 2 has 3 profiles, roughly defined as follows: 

• OWL 2 EL:

• only and, some, SubProperty, transitive, SubPropertyChain
• it’s a Horn logic

• no reasoning by case required,
• no disjunction, not even hidden

• designed for big class hierarchies

• OWL 2 QL:
• only restricted some, restricted and, inverseOf, SubProperty
• designed for querying data in a database through a class-level ontology

• OWL 2 RL:
• no some on RHS of SubClassOf, …
• designed to be implemented via a classic rule engine

• For details, see OWL 2 specification!

OWL Profiles

All Problems

Some Key Complexity Classes

31

Semi-Decidable

Decidable

NP

P

Validity of
FOL
Formula

Satisfiability
Propositional
Logic

Consistency/
Satisfiability/
Entailment
of
OWL 2
ontologies

Entailment/… of
OWL 2 EL ontologies

The Design Triangle

2

Expressivity
(Representational Adequacy)

Usability
(Weak Cognitive Adequacy

vs.
Cognitive Complexity)

Computability
(vs. Computational and

Implementational Complexity)

32

The design triangle

33

OWL reasoning

• is unusual:

• standard reasoning involves solving many reasoning problems/
satisfiability tests

• is decidable:
• for standard reasoning problems, we have decision procedures
• i.e., a calculus that is sound, complete, and terminating

• can be complex
• but we know the complexity for many different DLs/OWL variants/profiles
• and implementations require many good optimisations!

• goes beyond what we have discussed here
• entailment explanation
• query answering
• module extraction
• …

Summary

Today

✓ Some clarifications from last week’s coursework
✓ More on reasoning:

✓ extension of the tableau algorithm & discussion of blocking
✓ traversal or “how to compute the inferred class hierarchy”
✓ OWL profiles

• Snap-On: an ontology-based application
• The OWL API: a Java API and reference implementation for

• creating,
• manipulating and
• serialising OWL Ontologies and
• interacting with OWL reasoners

• Lab:
• OWL API for coursework
• Ontology Development 34

