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Today 

• Some clarifications around last week’s coursework
• More on reasoning:

• extension of the tableau algorithm & discussion of blocking 
• traversal or “how to compute the inferred class hierarchy”
• OWL profiles

• Snap-On: an ontology-based application
• The OWL API: a Java API and reference implementation for 

• creating, 
• manipulating and 
• serialising OWL Ontologies and 
• interacting with OWL reasoners 

• Lab:
• OWL API for coursework 
• Ontology Development 2
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Some clarifications around last week’s coursework
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• OWL is based on a Description Logic 
• we can use DL syntax 
• e.g., C ⊑ D  for C SubClassOf D 

• An OWL ontology O is a document: 
• therefor, it cannot do anything: it isn’t a piece of software! 
• in particular, an ontology cannot infer anything  

(a reasoner may infer something!) 

• An OWL ontology O is a web document: 
• with ‘import’ statements, annotations, …  
• corresponds to a set of logical OWL axioms, its imports closure  
•  the OWL API (today) helps you to  

• parse an ontology 
• access its axioms   

• a reasoner is only interested in this set of axioms  
• not in annotation axioms 
• see https://www.w3.org/TR/owl2-primer/#Document_Information_and_Annotations 
• https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/#Annotations 

Ontologies, inference, entailments, models

https://www.w3.org/TR/owl2-primer/#Document_Information_and_Annotations
https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/#Annotations
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• We have defined what it means for O to entail an axiom C SubClassOf D 
• written O ⊨ C SubClassOf D  

       or O ⊨ C ⊑ D  
• based on the notion of a model I of O 

• i.e., an interpretation I that satisfies all axioms in O 
• don’t confuse ‘model’ with ‘ontology’ 

• one ontology can have many models 
• the more axioms in O the fewer models O has 
 

• A DL reasoner can be used to  
• check entailments of an OWL ontology O and  
• compute the inferred class hierarchy of O  

• this is also known as classifying O 
• e.g., by using a tableau algorithm 

Ontologies, inference, entailments, models (2)
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Learn terms & meaning & relations! 
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More on Reasoning

Why?
To 

deepen our 
understanding of 

OWL 

To 
understand 

better what 
reasoners do 
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Let O be an ontology, α an axiom, and A, B classes, b an individual name:   
•  O is consistent if there exists some model I of O 

• i.e., there is an interpretation that satisfies all axioms in O 
• i.e., O isn’t self contradictory 

• O entails α  (written O ⊧ α) if α is satisfied in all models of O 
• i.e., α is a consequence of the axioms in O 

• A is satisfiable w.r.t. O if O ⊧ A SubClassOf Nothing 
• i.e., there is a model I of O with AI ≠ {}

• b is an instance of A w.r.t. O (written O ⊧ b:A) if bI ⊆ AI in every model I of O 

Theorem: 
1. O is consistent iff O ⊧ Thing SubClassOf Nothing 
2. A is satisfiable w.r.t. O iff O ∪ {n:A} is consistent (where n doesn’t occur in O) 
3. b is an instance of A in O iff O ∪ {b:not(A)} is not consistent 
4. O entails A SubClassOf B iff O ∪ {n:A and not(B)} is inconsistent 

Recall Week 2: OWL 2 Semantics: Entailments 
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Let O be an ontology, α an axiom, and A, B classes, b an individual name:   
•  O is consistent if there exists some model I of O 

• i.e., there is an interpretation that satisfies all axioms in O 
• i.e., O isn’t self contradictory 

• O entails α  (written O ⊧ α) if α is satisfied in all models of O 
• i.e., α is a consequence of the axioms in O 

• A is satisfiable w.r.t. O if O ⊧ A SubClassOf Nothing 
• i.e., there is a model I of O with AI ≠ {}

• b is an instance of A w.r.t. O if bI ⊆ AI in every model I of O 

• O is coherent if every class name that occurs in O is satisfiable w.r.t O 
• Classifying O is a reasoning service consisting of  

1. testing whether O is consistent; if yes, then  
2. checking, for each pair A,B of class names in O plus Thing, Nothing  

O ⊧ A SubClassOf B 
3. checking, for each individual name b and class name A in O, whether O ⊧ b:A 

…and returning the result in a suitable form: O’s inferred class hierarchy

Recall Week 2: OWL 2 Semantics: Entailments etc.
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Before Easter, you saw a tableau algorithm that    
• takes a class expression C and decides satisfiability of C: 

• it answers ‘yes’ if C is satisfiable 
                  ‘no’   if C is not satisfiable 

• …and always stops with a yes/no answer:  
          it is sound, complete, and terminating 

We saw such a tableau algorithm for ALC:  
• ALC is a Description Logic that forms logical basis of OWL,  

only has and, or, not, some, only  
• works by trying to generate an interpretation with an instance of C 

• by breaking down class expressions  
• generating new P-successors for some-values from restrictions  

                                                      (∃P.C restrictions in DL)  

• we can handle an ontology that is a set of acyclic SubClassOf axioms 
• via unfolding (check Week 3 slide 24ff)

Week 3: how to test satisfiability …

in 
Negation 
Normal 
Form 
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Week 3: tableau rules

9	

17	

Tableaux Rules for ALC	

{C1 u C2,… }	x	 {C1 u C2, C1, C2,… }	x	!u	

{C1 t C2,… }	x	 {C1 t C2, C,… }	
For C 2 {C1, C2}	

x	!t	

{9R.C,… }	x	 {9R.C,… }	x	

!9	
{C}	y	

{8R.C,… }	x	

!8	
{C,…}	y	

{8R.C,… }	x	

{…}	y	

R	

R	R	

18	

Algorithm Examples	

•  Test the satisfiability of	
 9R.A u 8R.B	

9R.A u 8R.¬A	

	

9R.A u 8S.¬A	

 9R.(A t 9R.B) u 8R.¬A u 8R.(8R.¬B)	
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• Apply the tableau algorithm to test whether A is satisfiable w.r.t. 

Mini-exercise

{A SubClassOf B and (P some C), 
 B SubClassOf C and (P only (not C or D)}  
            

{A ⊑ B ⊓ ∃P.C,  
 B ⊑ C ⊓ ∀P.(¬C ⊔ D) }
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• When writing an OWL ontology in Protégé,  
• axioms are of the form A SubClassOf B with A a class name 
• (or A EquivalentTo B with A a class name) 

• last week’s tableau handles these via unfolding:  
• works only for acyclic ontologies 
• e.g., not for A SubClass (P some A) 

• but OWL allows for general class inclusions (GCIs), 
• axioms of the form A SubClassOf B with A a class expression 
• e.g., (eats some Thing) SubClassOf Animal  
• e.g., (like some Dance) SubClassOf (like some Music) 
• this requires another rule: 

This week: GCIs and tableau algorithm

x {…} →GCI x {¬C ⊔ D,…} 

for each C ⊑ D ∈ O
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• Assume you have some C ⊑ D ∈ O and consider an interpretation I:  
• If I is a model of O, then  

• CI ⊆ DI , hence  
• x ∈ CI implies x ∈ DI  for each x in the domain of I, hence  
• x ∉ CI  or x ∈ DI, hence 
• x ∈ (CI ⊔ DI) 

• This is why our new rule ensure that the interpretation we are trying to 
construct satisfies all GCIs: 

Interlude: GCIs 

x {…} →GCI x {¬C ⊔ D,…} 

for each C ⊑ D ∈ O
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• E.g., test whether  
 
A is satisfiable w.r.t.  
                 {A SubClassOf (P some A)}  
             or {A ⊑ ∃P.A } 

GCIs and tableau algorithm

x {…} →GCI x {¬C ⊔ D,…} 

for each C ⊑ D ∈ O

{A, ¬A ⊔ ∃P.A, ∃P.A}  

{A, ¬A ⊔ ∃P.A, ∃P.A}  
P  

{A, ¬A ⊔ ∃P.A, ∃P.A}  
P  

{A, ¬A ⊔ ∃P.A, ∃P.A}  
P  

…
P  

• This rule easily causes non-termination 
• if we do not block
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• Blocking ensures termination 
• even on cyclic ontologies  
• even with GCIs 

• If x’s node label is contained in  
the label of a predecessor y, we say  
“x is blocked by y” 

• E.g., test whether A is satisfiable  
         w.r.t. {A SubClassOf (P some A)} 
• here, n2 is blocked by n1

Blocking

{A, ¬A ⊔ ∃P.A, ∃P.A}  

{A, ¬A ⊔ ∃P.A, ∃P.A}  

9	

17	

Tableaux Rules for ALC	

{C1 u C2,… }	x	 {C1 u C2, C1, C2,… }	x	!u	

{C1 t C2,… }	x	 {C1 t C2, C,… }	
For C 2 {C1, C2}	

x	!t	

{9R.C,… }	x	 {9R.C,… }	x	

!9	
{C}	y	

{8R.C,… }	x	

!8	
{C,…}	y	

{8R.C,… }	x	

{…}	y	

R	

R	R	

18	

Algorithm Examples	

•  Test the satisfiability of	
 9R.A u 8R.B	

9R.A u 8R.¬A	

	

9R.A u 8S.¬A	

 9R.(A t 9R.B) u 8R.¬A u 8R.(8R.¬B)	

only if x’s node label 
isn’t contained in  
the node label of a  
predecessor of x 

P  
n1  

n2  
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• When blocking occurs, we can build  
a cyclic model from a  
complete & clash-free completion tree 
• hence soundness is preserved!

Blocking

{A, ¬A ⊔ ∃P.A, ∃P.A}  

{A, ¬A ⊔ ∃P.A, ∃P.A}  

9	

17	

Tableaux Rules for ALC	

{C1 u C2,… }	x	 {C1 u C2, C1, C2,… }	x	!u	

{C1 t C2,… }	x	 {C1 t C2, C,… }	
For C 2 {C1, C2}	

x	!t	

{9R.C,… }	x	 {9R.C,… }	x	

!9	
{C}	y	

{8R.C,… }	x	

!8	
{C,…}	y	

{8R.C,… }	x	
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Algorithm Examples	

•  Test the satisfiability of	
 9R.A u 8R.B	

9R.A u 8R.¬A	

	

9R.A u 8S.¬A	

 9R.(A t 9R.B) u 8R.¬A u 8R.(8R.¬B)	

only if x’s node label 
isn’t contained in  
the node label of a  
predecessor of x 

P  
n1  

n2  
P  
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Our ALC tableau algorithm with blocking is  
• sound: if the algorithm stops and says “input ontology is consistent”  

   then it is.  
• complete: if the input ontology is consistent,  

   then the algorithm stop and says so.  
• terminating: regardless of the size/kind of input ontology,  

   the algorithm stops and says  
• either “input ontology is consistent” 
•      or “input ontology is not consistent” 

• …i.e., a decision procedure for ALC ontologies 
• even in the presence of cyclic axioms!

Tableau algorithm with blocking
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Our ALC tableau algorithm has a few sources of complexity  
• the breadth/out-degree of the tree constructed 
• the depth of/path length in tree constructed 
• non-determinism due to →⊔  rule from 

• disjunctions in O, e.g., A SubClassOf B or C 
• SubClassOf axioms in O 
• EquivalentTo axioms in O

Tableau algorithm & complexity not too bad: 
bounded by number 
of ‘some’ 
expressions in O

•ok/linear for acyclic O 
•bad/exponential for  
                     general O:  
we can construct O  
     of size n  
where each model has  
     a path of length 2n

1 disjunction  
per axiom in O  
for each node in tree 

2 disjunctions  
per axiom in O  
for each node in tree 

hopefully not 
too bad

3 nodes with  
25 SubClassOf  
axioms →  
how many  
choices?

37,778,931,862,957,161,709,568
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• Without further details: deciding ALC satisfiability  
• only of class expressions                   is PSpace-Complete 
• of class expressions w.r.t. ontology    is ExpTime-complete 
• …much higher than intractable/SAT 

• Implementation of ALC or OWL tableau algorithm requires optimisation 
• there has been a lot of work in the last ~25 years on this  
• you see the fruits in Fact++, Pellet, Hermit, Elk, … 

reasoners available in Protégé 
• some of them from SAT optimisations, see COMP60332 

• Next, I will discuss 1 optimisation: enhanced traversal

Tableau algorithm & complexity 



21

• Remember: Classifying O is a reasoning service consisting of  

1. testing whether O is consistent; if yes, then  
 
 
 

2. checking, for each pair A,B of class names in O plus Thing, Nothing  
whether O ⊧ A SubClassOf B 
 
 

3. checking, for each individual name b and class name A in O,  
whether O ⊧ b:A  
 
 
 

…and returning the result in a suitable form: O’s inferred class hierarchy

Naive Classification

Test:  
is Thing satisfiable w.r.t. O?

Test:  
is A ⊓¬B unsatisfiable w.r.t. O?

Test:  
is O ∪ {b:¬A} is inconsistent?
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• Remember: Classifying O is a reasoning service consisting of  

1. testing whether O is consistent; if yes, then  
 
 
 

2. checking, for each pair A,B of class names in O plus Thing, Nothing  
whether O ⊧ A SubClassOf B 
 
 

3. checking, for each individual name b and class name A in O,  
whether O ⊧ b:A  
 
 
 

…and returning the result in a suitable form: O’s inferred class hierarchy

Naive Classification

Test:  
is Thing satisfiable w.r.t. O?

Test:  
is A ⊓¬B unsatisfiable w.r.t. O?

Test:  
is O ∪ {b:¬A} is inconsistent?

1 test

n2 tests for O with  
n class names

nm tests for O with  
n class names, m individuals
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• Naive Classification of O requires 1 + n2 + nm  
expensive satisfiability/consistency tests 

• …can we do better?  
➡ Enhanced Traversal 

• idea: build inferred class hierarchy top-down and bottom-up,  
         “trickling in” each class name in turn   

• Assume you have, so far,  
constructed this hierarchy for O 

• Now you “trickle in” Oak

Enhanced Traversal 

Thing

AnimalPlant

FishBirdTree

Oak
?
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• Naive Classification of O requires 1 + n2 + nm  
expensive satisfiability/consistency tests 

• …can we do better?  
➡ Enhanced Traversal 

• idea: build inferred class hierarchy top-down and bottom-up,  
         “trickling in” each class name in turn   

• Assume you have, so far,  
constructed this hierarchy for O 

• Now you “trickle in” Oak: check whether 
•  O ⊧ Oak ⊑ Plant?  

 yes - continue with Plant’s child

Enhanced Traversal 

Thing

AnimalPlant

FishBirdTree

Oak
?
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• Naive Classification of O requires 1 + n2 + nm  
expensive satisfiability/consistency tests 

• …can we do better?  
➡ Enhanced Traversal 

• idea: build inferred class hierarchy top-down and bottom-up,  
         “trickling in” each class name in turn   

• Assume you have, so far,  
constructed this hierarchy for O 

• Now you “trickle in” Oak: check whether 
•  O ⊧ Oak ⊑ Plant?  

 yes - continue with Plant’s child 
• O ⊧ Oak ⊑ Tree?  

yes. Done here, backtrack.   

Enhanced Traversal 

Thing

AnimalPlant

FishBirdTree

Oak
?



26

• Naive Classification of O requires 1 + n2 + nm  
expensive satisfiability/consistency tests 

• …can we do better?  
➡ Enhanced Traversal 

• idea: build inferred class hierarchy top-down and bottom-up,  
         “trickling in” each class name in turn   

• Assume you have, so far,  
constructed this hierarchy for O 

• Now you “trickle in” Oak: check whether 
•  O ⊧ Oak ⊑ Plant?  

 yes - continue with Plant’s child 
• O ⊧ Oak ⊑ Tree?  

yes. Done here, backtrack.   
• O ⊧ Oak ⊑ Animal? 

No. Done: no more need to test! 
 

Enhanced Traversal 

Thing

AnimalPlant

FishBirdTree

Oak
?
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• Naive Classification of O requires 1 + n2 + nm  
expensive satisfiability/consistency tests 

• …can we do better?  
➡ Enhanced Traversal 

• idea: build inferred class hierarchy top-down and bottom-up,  
         “trickling in” each class name in turn   

• Potentially avoids many of the n2  satisfiability/consistency tests 
• very important in practice 
• different variants have been developed 

• Just one of many optimisations!

Enhanced Traversal 

Thing

AnimalPlant

FishBirdTree

TunaDuck SharkEagleOak
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OWL Profiles

Restrictions 
of OWL to tame 

complexity
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• Despite all optimisations, classification may still take too long if ontology is  
• big (300,000 axioms or more) and/or 
• rich (ALC plus inverse properties, atleast, atmost, sub-property chains,…)  

• For OWL 2 [*], profiles have been designed 
• syntactic fragments of OWL obtained by restricting constructors available 

• Each profile is  
• maximal, i.e., we know that if we allow more constructors,  

                  then computational complexity of reasoning would increase 
• motivated by a use case

OWL Profiles

[*] the one we talk about here/you use in Protégé
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OWL 2 has 3 profiles, roughly defined as follows: 
  
• OWL 2 EL:  

• only and, some, SubProperty, transitive, SubPropertyChain 
• it’s a Horn logic 

• no reasoning by case required,  
• no disjunction, not even hidden 

• designed for big class hierarchies  

• OWL 2 QL:  
• only restricted some, restricted and, inverseOf, SubProperty 
• designed for querying data in a database through a class-level ontology 

• OWL 2 RL:  
• no some on RHS of SubClassOf, … 
• designed to be implemented via a classic rule engine   

• For details, see OWL 2 specification! 

OWL Profiles



All Problems

Some Key Complexity Classes

31

Semi-Decidable

Decidable

NP

P

Validity of 
FOL 
Formula

Satisfiability 
Propositional 
Logic

Consistency/ 
Satisfiability/ 
Entailment  
of  
OWL 2 
ontologies

Entailment/… of  
OWL 2 EL ontologies



The Design Triangle

2

Expressivity
(Representational Adequacy)

Usability
(Weak Cognitive Adequacy 

vs.
Cognitive Complexity)

Computability
(vs. Computational and 

Implementational Complexity)

32

The design triangle
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OWL reasoning 
  
• is unusual:  

• standard reasoning involves solving many reasoning problems/
satisfiability tests 

• is decidable:  
• for standard reasoning problems, we have decision procedures 
• i.e., a calculus that is sound, complete, and terminating 

• can be complex 
• but we know the complexity for many different DLs/OWL variants/profiles   
• and implementations require many good optimisations!     

• goes beyond what we have discussed here  
• entailment explanation 
• query answering  
• module extraction 
• …

Summary



Today 

✓ Some clarifications from last week’s coursework
✓ More on reasoning:

✓ extension of the tableau algorithm & discussion of blocking 
✓ traversal or “how to compute the inferred class hierarchy”
✓ OWL profiles

• Snap-On: an ontology-based application
• The OWL API: a Java API and reference implementation for 

• creating, 
• manipulating and 
• serialising OWL Ontologies and 
• interacting with OWL reasoners 

• Lab:
• OWL API for coursework 
• Ontology Development 34


