
1

OWL, Patterns, & FOL
COMP62342

Sean Bechhofer 
sean.bechhofer@manchester.ac.uk 

Uli Sattler  
uli.sattler@manchester.ac.uk

2

So far, we have looked at
• operational knowledge of OWL (Pizza)
• KR in general, its roles
• KA and competency questions
• formalising knowledge
• the semantics of OWL

3

Today:
• Deepen your semantics: OWL & FOL & …
• Design Patterns in OWL

• local ones
• partonomies

• Design Principles in OWL:
• multi-dimensional modelling
• PIMPS - an upper level ontology
• post-coordination

• Automated reasoning about OWL ontologies:
• a tableau-based algorithm to make
• …implicit knowledge explicit
• …our know KR actionable

Left-overs from last week:
More on OWL Semantics

4

5

OWL 2 Semantics: an interpretation satisfying … (2)

• An interpretation I satisfies an axiom α if
• α = C SubClassOf: D and CI ⊆ DI

• α = C EquivalentTo: D and CI = DI
• α = P SubPropertyOf: S and PI ⊆ SI

• α = P EquivalentTo: S and PI = SI
• …
• α = x Type: C and xI ∈ CI
• α = x R y and (xI ,yI) ∈ RI

• I satisfies an ontology O if I satisfies every axiom α in O
• If I satisfies O, we call I a model of O 

• See how the axioms in O constrain interpretations:
✓ the more axioms you add to O, the fewer models O has

• …they do/don’t hold/are(n’t) satisfied in an ontology
• in contrast, a class expression C describes a set CI in I

Check  
OWL 2 Direct Semantics  
for more!!!

From Last W
eek

6

OWL 2 Semantics: an interpretation satisfying … (2)

• An interpretation I satisfies an axiom
• C SubClassOf: D if CI ⊆ DI
• C EquivalentTo: D if CI = DI
• P SubPropertyOf: S if PI ⊆ SI

• P EquivalentTo: S if PI = SI
• …
• x Type: C if xI ∈ CI
• x R y if (xI ,yI) ∈ RI

• I satisfies an ontology O if I satisfies every axiom A in O
• If I satisfies O, we call I a model of O 

• See how the axioms in O constrain interpretations:
✓ the more axioms you add to O, the fewer models O has

• …they do/don’t hold/are(n’t) satisfied in an ontology
• in contrast, a class expression C describes a set CI in I

Check  
OWL 2 Direct Semantics  
for more!!!

7

Draw & Match Models to Ontologies!
O1 = {} I1:

Δ = {v, w, x, y, z}
 
CI = {v, w, y}
DI = {x, y} EI = {}  

RI = {(v, w), (v, y)}
SI = {}
 
aI = v bI = x
cI = w dI = y

O2 = {a:C, b:D, c:C, d:C}

O3 = {a:C, b:D, c:C, b:C, d:E}

O4 = {a:C, b:D, c:C, b:C, d:E
 D SubClassOf C}

O5 = {a:C, b:D, c:C, b:C, d:E
 a R d,  

 D SubClassOf C,
D SubClassOf  

S some C}

O6 = {a:C, b:D, c:C, b:C, d:E
 a R d,  

 D SubClassOf C,
D SubClassOf  

S some C,
C SubClassOf R only C }

I2:
Δ = {v, w, x, y, z}
 
CI = {v, w, y}
DI = {x, y} EI = {y}  

RI = {(v, w), (v, y)}
SI = {}
 
aI = v bI = x
cI = w dI = y

I3:
Δ = {v, w, x, y, z}
 
CI = {x, v, w, y}
DI = {x, y} EI = {y}  

RI = {(v, w), (v, y)}
SI = {}
 
aI = v bI = x
cI = w dI = y

I4:
Δ = {v, w, x, y, z}
 
CI = {x, v, w, y}
DI = {x, y} EI = {y}  

RI = {(v, w), (v, y)}
SI = {(x,x), (y,x)}
 
aI = v bI = x
cI = w dI = y

8

Let O be an ontology, α an axiom, and A, B classes, b an individual name:
• O is consistent if there exists some model I of O

• i.e., there is an interpretation that satisfies all axioms in O
• i.e., O isn’t self contradictory

• O entails α (written O ⊧ α) if α is satisfied in all models of O
• i.e., α is a consequence of the axioms in O

• A is satisfiable w.r.t. O if O ⊧ A SubClassOf Nothing
• i.e., there is a model I of O with AI ≠ {}

• b is an instance of A w.r.t. O (written O ⊧ b:A) if bI ⊆ AI in every model I of O

Theorem:
1. O is consistent iff O ⊧ Thing SubClassOf Nothing
2. A is satisfiable w.r.t. O iff O ∪ {n:A} is consistent (where n doesn’t occur in O)
3. b is an instance of A in O iff O ∪ {b:not(A)} is not consistent
4. O entails A SubClassOf B iff O ∪ {n:A and not(B)} is inconsistent

OWL 2 Semantics: Entailments etc. (3)

9

Let O be an ontology, α an axiom, and A, B classes, b an individual name:
• O is consistent if there exists some model I of O

• i.e., there is an interpretation that satisfies all axioms in O
• i.e., O isn’t self contradictory

• O entails α (written O ⊧ α) if α is satisfied in all models of O
• i.e., α is a consequence of the axioms in O

• A is satisfiable w.r.t. O if O ⊧ A SubClassOf Nothing
• i.e., there is a model I of O with AI ≠ {}

• b is an instance of A w.r.t. O if bI ⊆ AI in every model I of O
• O is coherent if every class name that occurs in O is satisfiable w.r.t O

OWL 2 Semantics: Entailments etc. (3) ctd

Classifying O is a reasoning service consisting of
1. testing whether O is consistent; if yes, then
2. checking, for each pair A,B of class names in O plus Thing, Nothing whether  

O ⊧ A SubClassOf B
3. checking, for each individual name b and class name A in O, whether O ⊧ b:A

…and returning the result in a suitable form: O’s inferred class hierarchy

10

A side note: Necessary and Sufficient Conditions

• Classes can be described in terms of necessary and sufficient conditions.
– This differs from some frame-based languages where we only have

necessary conditions.
• Necessary conditions

– SubClassOf axioms
– C SubClassOf: D…any instance of C is also an instance of D

• Necessary & Sufficient conditions
– EquivalentTo axioms
– C EquivalentTo: D…any instance of C is also an instance of D 

 and vice versa, any instance of D is also an instance of C

• Allows us to perform automated  
recognition of individuals,  
i.e. O ⊧ b:C

Constraints/Background knowledge

Definitions

OWL and Other Formalisms:
First Order Logic

Object-Oriented Formalisms

11

12

OWL and First Order Logic

• in COMP60332 or elsewhere, you have learned a lot about FOL
• most of OWL 2 (and OWL 1) is a decidable fragment of FOL:

• …we assume that we have replaced each axiom C EquivalentTo D in O with  
C SubClassOf D, D SubClassOf C 

• …what is ?

Translate an OWL ontology O into FOL using t() as follows:

t(O) = {∀x.tx(C) ⇒ tx(D) | C SubClassOf D ∈ O} ∪
{tx(C)[x/a] | a : C ∈ O} ∪
{r(a, b) | (a, b) : r ∈ O}

As a consequence, we have that

Theorem 1 1. e is an instance of C in I iff I |= tx(C)[x/e]

2.C is satisfiable w.r.t. O iff {tx(C)[x/e]} ∪ t(O) is satisfiable

3.O |= C SubClassOf D iff t(O) |= t(α)

—- end of OWL translation —

University of
Manchester

8

Translate an OWL ontology O into FOL using t() as follows:

t(O) = {∀x.tx(C) ⇒ tx(D) | C SubClassOf D ∈ O} ∪
{tx(C)[x/a] | a : C ∈ O} ∪
{r(a, b) | (a, b) : r ∈ O}

As a consequence, we have that

Theorem 1 1. e is an instance of C in I iff I |= tx(C)[x/e]

2.C is satisfiable w.r.t. O iff {tx(C)[x/e]} ∪ t(O) is satisfiable

3.O |= C SubClassOf D iff t(O) |= t(α)

—- end of OWL translation —

University of
Manchester

8

13

OWL and First Order Logic

Exercise:
1. Fill in the blanks
2.Why is a formula in 1 free variable?
3. Translate O6 to FOL
4.…have you heard about the  

2 variable fragment of FOL?

O6 = {a:C, b:D, c:C, b:C, d:E
 a R d,  

 D SubClassOf C,
D SubClassOf  

S some C,
C SubClassOf R only C }

Relationship with First Order Logic II

Here is the translation tx() from an OWL ontology into FOL formulae in one free variable

tx(A) = A(x), ty(A) = A(y),

tx(not C) = ¬tx(C), ty(not C) = . . . ,

tx(C and D) = tx(C) ∧ tx(D), ty(C and D) = . . . ,

tx(C or D) = . . . , ty(C or D) = . . . ,

tx(r some C) = ∃y.r(x, y) ∧ ty(C), ty(r some C) = . . . ,

tx(r only C) = . . . , ty(r only C) =

• Fill in the blanks

•Why is tx(C) a formula in one free variable?

University of
Manchester

7

Translate an OWL ontology O into FOL using t() as follows:

t(O) = {∀x.tx(C) ⇒ tx(D) | C SubClassOf D ∈ O} ∪
{tx(C)[x/a] | a : C ∈ O} ∪
{r(a, b) | (a, b) : r ∈ O}

As a consequence, we have that

Theorem 1 1. e is an instance of C in I iff I |= tx(C)[x/e]

2.C is satisfiable w.r.t. O iff {tx(C)[x/e]} ∪ t(O) is satisfiable

3.O |= C SubClassOf D iff t(O) |= t(α)

—- end of OWL translation —

University of
Manchester

8

14

Object Oriented Formalisms

Many formalisms use an “object oriented model” with 

• Objects/Instances/Individuals
• Elements of the domain of discourse
• e.g., “Bob”
• Possibly allowing descriptions of classes

• Types/Classes/Concepts
• to describe sets of objects sharing certain characteristics
• e.g., “Person”

• Relations/Properties/Roles
• Sets of pairs (tuples) of objects
• e.g., “likes”  

• Such languages are/can be:
• Well understood
• Well specified
• (Relatively) easy to use
• Amenable to machine processing

15

Object Oriented Formalisms

OWL can be said to be object-oriented: 

• Objects/Instances/Individuals
• Elements of the domain of discourse
• e.g., “Bob”
• Possibly allowing descriptions of classes

• Types/Classes/Concepts
• to describe sets of objects sharing certain characteristics
• e.g., “Person”

• Relations/Properties/Roles
• Sets of pairs (tuples) of objects
• e.g., “likes”  

• Axioms represent background knowledge, constraints, definitions, …
• Careful: SubClassOf is similar to inheritance but different:

• inheritance can usually be over-ridden
• SubClassOf can’t
• in OWL, ‘multiple inheritance’ is normal

16

Other KR systems

• Protégé can be said to provide a frame-based view of an OWL ontology:
• it gathers axiom by the class/property names on their left 

• DBs, frame-based or other KR systems may make assumptions:
1. Unique name assumption

▪ Different names are always interpreted as different elements
2. Closed domain assumption

▪ Domain consists only of elements named in the DB/KB
3. Minimal models

▪ Extensions are as small as possible
4. Closed world assumption

▪ What isn’t entailed by O isn’t true
5. Open world assumption: an axiom can be such that

▪ it’s entailed by O or
▪ it’s negation is entailed by O or
▪ none of the above 

Question: which of these does
▪ OWL make?
▪ a SQL DB make?

17

Other KR systems: Single Model -v- Multiple Model

Multiple models:
• Expressively powerful
• Boolean connectives,

including not, or
• Can capture incomplete

information
• E.g., using or, some

• Monotonic: adding information
preserves entailments

• Reasoning (e.g., querying) is
often complex: e.g.,reasoning by
case

• Queries may give counter-
intuitive results in some cases

Single model:
• Expressively weaker (in most

respects)
– No negation or disjunction
• Can’t capture incomplete

information
• Often non-monotonic: adding

information may invalidate
entailments

• Reasoning (e.g., querying) is
often easy

• Queries may give counter-
intuitive results in some cases

18

Complete details about OWL

• here, we have concentrated on some core features of OWL, e.g., no
• domain, range axioms
• SubPropertyOf, InverseOf
• datatype properties
• …

• we expect you to look these up!  

• OWL is defined via a Structural Specification
• http://www.w3.org/TR/owl2-syntax/
• Defines language independently of concrete syntaxes
• Conceptual structure and abstract syntax
• UML diagrams and functional-style syntax used to define the language
• Mappings to concrete syntaxes then given.

• The structural specification provides the foundation for implementations (e.g.
OWL API as discussed later)

19

OWL Resources

• The OWL Technical Documentation is all available online from the W3C site. 
 
http://www.w3.org/TR/owl2-overview/ 
 
All the OWL documents are relevant; we recommend in particular the
• Overview
• Primer
• Reference Guide and
• Manchester Syntax Guide

• Our Ontogenesis Blog at
• http://ontogenesis.knowledgeblog.org/

http://www.w3.org/TR/owl2-overview/
http://ontogenesis.knowledgeblog.org/

20

Today:
✓Deepen your semantics: OWL & FOL & …
• Design Patterns in OWL

• local ones
• partonomies

• Design Principles in OWL:
• multi-dimensional modelling
• post-coordination
• PIMPS - an upper level ontology

• Automated reasoning about OWL ontologies:
• a tableau-based algorithm to make
• …implicit knowledge explicit
• …our know KR actionable

Patterns of axioms

• An axiom pattern is
• a recurring regularity in how axioms are used in an ontology

• The most common is
• atomic SubClassOf axioms,  

i.e. A SubClassOf B where A, B are class names
• … but they get much more complex than that

• Usually, we’re referring to syntactic patterns:
• how axioms are written,
• but remember “axioms” are entailed as well as written

21

Patterns and Design patterns

• Software Design Patterns are
• well accepted solutions for common issues met in software construction

• Ontology Design Patterns ODPs are similar:
• well accepted solutions for common issues met in ontology construction
• but ontology engineers have barely agreed on well accepted problems,

let alone their solutions

• ODPs often depend on one’s philosophical stance … 
we’ll mostly talk about patterns as recurring regularities of asserted axioms

22

Coding style: term normalisation

• Is a sort of pattern…
• What we want is:

‣ Class names:
‣ singular nouns with
‣ initial capital letter,
‣ spaces via CamelCase

‣ Individual names:
‣ all lower case,
‣ spaces indicated by _

‣ Property names:
‣ initial lower case letter,
‣ spaces via CamelCase
‣ usually start with “is” or “has”

• All classes and individuals have a  
label, creator, description  
annotation property

23

Term normalisation ⊆ applied naming convention

• A naming convention determines
• what words to use, in
• which order and
• what one does about symbols and acronyms 

• Adopt one
• for both labels and URI fragments

• Having a label is a “good practice” 
 
 
 
 

24

“Glucose transport” vs  
“transport of glucose”

See http://ontogenesis.knowledgeblog.org/948 for an introduction

http://ontogenesis.knowledgeblog.org/948

How good names help modelling

• The help understanding relationships between terms: for example,
• Thigh, shin, foot and toe are not “leg”, but “leg part”
• Slice of tomato, tomato sauce, and tomato puree are not “Tomato” but

“Tomato based product”
• Eggs, milk, honey are not meat or animal, but “Animal Product”
• Pizza base is not Pizza, but “part of Pizza” of “Pizza Ingredient” 

• Card sorting and the three card trick can help you here

25

Types of axiom patterns

• Naming Patterns
• see term normalisation, naming convention

• Logical patterns (also known as Language Patterns) 
axioms to
• take advantage of language features or
• work around something missing in a language

• Content Patterns (also known as Domain modelling patterns): 
 axioms to describe certain phenoma/concepts in a domain
• Works both in the

• large: the whole ontology
• small: how to describe a class/type of furniture

26

1st Logical Pattern: the Property Closure Pattern

Class: Nigiri
 SubClassOf Sushi,
 hasIngredient some Rice,
 hasIngredient some Fish

• Does Nigiri contain rice?
• Does Nigiri contain fish?
• Does Nigiri contain beef?

27

28

Fish

Beef

Rice

Nigiri

I1

Class: Nigiri
 SubClassOf Sushi,
 hasIngredient some Rice,
 hasIngredient some Fish

Fish

Beef

Nigiri

I2

hasIngredient

Which of these interpretations  
is a model of the above axiom?

1st Logical Pattern: the Property Closure Pattern

Rice

29

Fish

Beef

Nigiri

I1

Class: Nigiri
 SubClassOf Sushi,
 hasIngredient some Rice,
 hasIngredient some Fish,
 hasIngredient only (Fish or Rice)

Fish

Beef

Nigiri

I2

hasIngredient

Use property closure pattern
to avoid unintended models!

1st Logical Pattern: the Property Closure Pattern

Rice Rice

OWL’s Open World Assumption (OWA)

• Unless we have ‘constrained’ something it may be possible
• e.g., for Nigiri to have ingredients other than rice & fish

• This behaviour is as “open world assumption”
• OWL makes OWA  
 

30

Class: Nigiri
 SubClassOf Sushi,
 hasIngredient some Rice,
 hasIngredient some Fish

DisjointClasses: Rice, Fish, Beef
Class: Nigiri
 SubClassOf Sushi,
 hasIngredient some Rice,
 hasIngredient some Fish,
 hasIngredient only (Fish or Rice)

Q: “Does Nigiri have beef as ingredient?”
A: “Maybe/Don’t know”

O |= Nigiri SubClassOf hasIngredient some Rice?
<latexit sha1_base64="2gBjICfb2zGNlIhgkLxQ1RAUfCM=">AAACN3icbVDLSiNBFK32MaPRGTO6dHMxCK5CtyPoTsHNuPEdFdIhVFffTgrr0VRVD4Qmf+XG33CnGxeKuPUPrLRZ+DpQcDjnPuqeJBfcujC8DSYmp6Z//JyZrc3N//q9UP+zeGZ1YRi2mBbaXCTUouAKW447gRe5QSoTgefJ5e7IP/+PxnKtTt0gx46kPcUzzqjzUre+H0vq+oyK8mAIsdQpCguVZrNyn/e44RDDSZHsCmrtQRZDn9o91TOYclQuBqslxnDMGQ5hG7r1RtgMK8BXEo1Jg4xx2K3fxKlmhfSz2GhDOwpz1ympcZwJHNbiwmJO2SXtYdtTRSXaTlndPYRVr6SQaeOfclCp7ztKKq0dyMRXVhd99kbid167cNlWp+QqLxwq9rYoKwQ4DaMQIeUGmRMDTygz3P8VWJ8aypyPuuZDiD6f/JWcrTejv831o43GztY4jhmyTFbIGonIJtkh/8ghaRFGrsgdeSCPwXVwHzwFz2+lE8G4Z4l8QPDyCta1rGc=</latexit>

Q: “Does Nigiri have beef as ingredient?”
A: “No”

O |= Nigiri SubClassOf hasIngredient some Rice?
<latexit sha1_base64="2gBjICfb2zGNlIhgkLxQ1RAUfCM=">AAACN3icbVDLSiNBFK32MaPRGTO6dHMxCK5CtyPoTsHNuPEdFdIhVFffTgrr0VRVD4Qmf+XG33CnGxeKuPUPrLRZ+DpQcDjnPuqeJBfcujC8DSYmp6Z//JyZrc3N//q9UP+zeGZ1YRi2mBbaXCTUouAKW447gRe5QSoTgefJ5e7IP/+PxnKtTt0gx46kPcUzzqjzUre+H0vq+oyK8mAIsdQpCguVZrNyn/e44RDDSZHsCmrtQRZDn9o91TOYclQuBqslxnDMGQ5hG7r1RtgMK8BXEo1Jg4xx2K3fxKlmhfSz2GhDOwpz1ympcZwJHNbiwmJO2SXtYdtTRSXaTlndPYRVr6SQaeOfclCp7ztKKq0dyMRXVhd99kbid167cNlWp+QqLxwq9rYoKwQ4DaMQIeUGmRMDTygz3P8VWJ8aypyPuuZDiD6f/JWcrTejv831o43GztY4jhmyTFbIGonIJtkh/8ghaRFGrsgdeSCPwXVwHzwFz2+lE8G4Z4l8QPDyCta1rGc=</latexit>

• In general, the property closure pattern for a property P is of the form  

31

Class: A
 SubClassOf …
 P some B1, 
 …. ,  
 P some Bn,
 P only (B1 or … or Bn)

1st Logical Pattern: the Property Closure Pattern

• Say we have Class X with subclasses Yi
• e.g., UG, MSc, MRes, PhD are all  

 subclasses of Student 

• Now we may want to say that  
“any individual of class X has to be an individual of some class Yi”
• i.e., class X is covered by classes Y1,…,Yk
• e.g., every Student is a UG, MSc, MRes, or PhD student

• To ensure this coverage of X by Y1,…Yk, we use the covering axiom:

• Quick exercise: translate the above axioms into FOL! 32

Class: Y1 SubClassOf X 
Class: Y2 SubClassOf X
…
Class: Yk SubClassOf X

Class: Y1 SubClassOf X 
Class: Y2 SubClassOf X
…
Class: Yk SubClassOf X

Class: X SubClassOf: (Y1 or … or Yk)

2nd Logical Pattern: the Covering Pattern

• Say we have Class X with subclasses Yi
• e.g., UG, MSc, MRes, PhD are all  

 subclasses of Student 

• Now we may want to say that  
“no individual can be an instance 2 or more of these class Yi”

• How do we “partition” values for properties such as Size, Spicyness, etc:
• E.g., we want to say that a person’s “Size”

• must be one of the subclasses of Size and
• only one of those sizes – and that
• an individual size cannot be two kinds of size at the same time

33

3rd Logical Pattern: the Partitions Pattern

34

Size

Small Medium Large

IsA
IsA

IsA
has_size

Class: Small SubClassOf Size  
Class: Medium SubClassOf Size  
Class: Large SubClassOf Size
DisjointClasses: Small, Medium, Large
Class: Size SubClassOf (Medium or Small or Large) + Covering

Disjoint
Partition

3rd Logical Pattern: the Partitions Pattern

35

Size

Small Medium Large

IsA
IsA

IsA

Human

has_sizeChild

hasSize

Class: Small SubClassOf Size  
Class: Medium SubClassOf Size  
Class: Large SubClassOf Size
DisjointClasses: Small, Medium, Large
Class: Size SubClassOf (Medium or Small or Large)
Property: hasSize Characteristics: Functional  
 Range: Size Domain: Mammal
Class: Human SubClassOf hasSize some Size
Class: Child SubClassOf Human and hasSize only Small

4th Logical Pattern: the Entity Property Quality Pattern

Partition  
Pattern

• Used to model descriptive features of things
• possibly together with a value partition

• OWL elements:
– for each feature or quality such as size, weight, etc:

– functional property, e.g., hasSize and
– class for its values, e.g., Size
– link these by stating that the class is the range of the property
– state to which classes these qualities

– may apply via the domain of the property and
– are necessary

• Using classes allows to make subpartitions
• may overlap
• may be related to concrete sizes and datatype properties
• e.g. very large, moderately large

36

4th Logical Pattern: the Entity Property Quality Pattern

More information on logical patterns….

• Have a look at
• http://www.w3.org/TR/swbp-specified-values/
• http://ontogenesis.knowledgeblog.org/1499
• http://ontogenesis.knowledgeblog.org/1001
• Lots of short, accessible articles about ontology stuff

37

http://ontogenesis.knowledgeblog.org/1499
http://ontogenesis.knowledgeblog.org/1001

Partonomies:
Parts and Wholes

38

Towards Content Patterns:  
Composition, Parts and Wholes

39

Composition or Aggregation

• Describing a whole by means of its parts, e.g.,  

AppleCake is a Cake that has parts that are Apple

• Is hasPart one or more relations?
• If more, what are the primary  

composition relationships?
• What inferences can we make?
• What might we have in our representation 

languages to support this?

• Mereonomy is the study of parts, wholes, and their relations

40

http://www.flickr.com/photos/hartini/2429653007/

Parts & wholes: examples

Toothbrush — Bristles
Shopping Trolley — Wheels
Car — Iron
Cappuccino — Milk
Kilometer — Meter
England — Manchester
Forest — Tree
Pie — Slide of Pie
Book — Chapter
University of Manchester — You

• These are different kinds of composition, with different
• characteristics
• properties.

• Confusing them may result in incorrect (or undesirable) inferences. 41

http://www.flickr.com/photos/aramisfirefly/4585596077

Is part of versus has part

• Of course is part of is a different relation than has part
• my hand is part of me but
• my hand has part me

• But is part of is the inverse of has part
• Protégé makes it easy to say this
• Not declaring this may cause loss of entailments/inferences

• Semantics:

42

Cake ApplepartOf

hasPart

If P is the inverse of Q in O, then
for any model I of O, any x, y in �:
(x, y) 2 P� i↵ (y, x) 2 Q�

<latexit sha1_base64="jMrhpzo+Ovx18SGS2EHd5o8Pa+M=">AAACqHicbVFLj9MwEHbCaymPLXDkMqJZqaCqSsqBFaeV4MCKA6m03S5qSuU4k621jh3FDmoU5bfxH7jxb3DSIO2DOX36HmPPTJwLro3v/3Hce/cfPHx08Hjw5Omz54fDFy/PtSoLhgumhCouYqpRcIkLw43Ai7xAmsUCl/HVp1Zf/sRCcyXPTJXjOqOXkqecUWOpzfBXJBWXCUoDkcGd0Wl9moIXesA1mC0Cl20cQVl2blkJXpRRs2VU1N8ab9KaZBRBqgoYUFlBphIU10ynjdeFb6Zap7ebVH3HzygM9T6CbeSNLf0WIsuHP3oBeGo7jKvJbi/M/wnNZjjyp35XcBcEPRiRvsLN8HeUKFZmdmImqNarwM/NuqaF4UxgM4hKjTllV/QSVxZKmqFe192iGziyTNKNmiq7sY69nqhppnWVxdbZTqtvay35P21VmvR4XXOZlwYl2z+UlgKMgvZqkPACmRGVBZQV3P4V2JYWlBl7nIFdQnB75LvgfDYN3k9n89no5LhfxwF5Td6QMQnIB3JCvpCQLAhzjpyvzpmzcN+5obt0v++trtNnXpEb5cZ/Aa7/yW8=</latexit>

More on Inverse Properties

• Be careful about what you can/cannot infer around inverse relationships: 

• …for example:

- does this ontology entail that  
 
 Engine SubClassOf (isPartOf some Car)?  
Car and (hasPart some Broken) SubClassOf Broken?

43

Property: hasPart
 InverseOf: isPartOf
Class: Car

 SubClassOf: Vehicle and  
 (hasPart some Engine) 
 (hasPart exactly 4 Wheel)

Class: Broken
 SubClassOf: Device and (isPartOf only Broken)  

Possible Properties of Part-Whole Relations

• See [Winston, Chaffin, Herrmann1987] and [Odell 1998] 

• functional:
• Does the part bear a functional or structural relationship to the whole?

Are they in specific temporal/special position to support this functionality?
– e.g., engine-car, wheel-bicycle
– Odell calls this “configurational”

• homeomerous (homeomeric):
• Is the part the same kind of thing as the whole?
– e.g., the North-West of England, a slice of bread

• invariant (separable)
• Can the part be separated from the whole (without destroying it)?
– e.g., a hair of me, the bell of my bicycle
– often difficult since it involves identity
– e.g. if you remove my arm, I am still me?

44

1. P-W-R: isComponentOf

• holds between
• a component and
• an integral object
• i.e., a configuration of parts and a whole

• used for a particular arrangement (not just haphazard)

• Bristles - toothbrush
• Scene - film
• Handle - CarDoor

• Functional: ripping handle off car door affects functionality (of both)
• Non-homeomeric: handle & door are different kinds of things
• Separable: ripping handle off car door is possible

45

functional
non-homeomeric

separable

2. P-W-R: isIngredientOf

• holds between
• material and
• object that’s made of this material

• Milk - Capuccino
• Flour - Bread

• Functional: milk is “anywhere” in the cappuccino
• Non-homeomeric: cappuccino and milk are different kinds of things
• Non-separable: can’t take milk out of cappucino/flour out of bread

46

non-functional
non-homeomeric

non-separable

3. P-W-R: isPortionOf

• holds between
• a portion and
• an object

• Almost like Material-Object, but parts are the same kinds of thing as whole
• aka Slice, helping, segment, lump, drop etc.

• SliceOfBread - Bread
• SomeChocolate - Chocolate

• Non-functional: slices can be anywhere, and don’t affect function of whole
• Homeomeric: slide & bread are both bread
• Separable: can cut a slice of bread

47

non-functional
homeomeric

separable

4. P-W-R: isSpatialPartOf

• holds between
• a place and
• its surrounding area

• Like Portion-Object, parts are same kind of things as whole
• Unlike Portion-Object, parts cannot be removed

• Manchester - England
• Peak - a mountain

48

non-functional
homeomeric
non-separable

5. P-W-R: isMemberOf

• holds between
• a thing and
• a unit/collection of these things

• Tree - Forest
• Employee - Union
• Ship - Fleet
• I - University of Manchester

• there’s also a non-separable variant “Member - Partnership”:
• e.g., Stan - StanAndLaurel

49

non-functional
non-homeomeric

separable

Summary of Odell’s Compositional Relationships

50

Functional Homeomeric Separable

Component-Integral
isComponentOf Y N Y
Material-Object  
isIngredientOf N N N
Portion-Object
isPortionOf N Y Y
Place-Area N Y N
Member-Bunch N N Y
Member-Partnership N N N

P-W-Rs ≄ Non Compositional Relationships

• Topological inclusion
– I am in the lecture theatre

• Classification inclusion
– Catch 22 is a Book
– It’s an instance of Book, not a part of it, so not Member-Bunch

• Attribution
– Properties of an object can be confused with composition
– Height of a Lighthouse isn’t part of it

• Attachment
– Earrings aren’t part of Ears
– Toes are part of Feet
– Sometimes attachments are parts, but not always

• Ownership
– I have a bicycle
…a lot of modelling is about making the right distinctions and thus  
 helping to get the right relationships between individuals 51

52

So what?
Modelling these in OWL

Transitivity

53

X is part of Y, Y is part of Z,  
thus X is part of Z

Dance
Party

partOf WeddingpartOf

partOf

Transitivity

• Careful: this is only true for some/with the same kind of composition.

• Pistons part of the Engine
• Engine part of the Car
➡ Pistons part of the Car 

• Pistons component of the Engine
• Engine component of the Car
➡ Pistons component of the Car 

• Sean’s arm component of Sean
• Sean member of School of Computer Science
➡ Sean’s arm component of School of Computer Science
➡ Sean’s arm member of School of Computer Science
➡ Sean’s arm part of School of Computer Science 54

X is part of Y, Y is part of Z,  
thus X is part of Z

Transitivity

• Careful: this is only true for some/with the same kind of composition.

• Pistons part of the Engine
• Engine part of the Car
➡ Pistons part of the Car 

• Pistons component of the Engine
• Engine component of the Car
➡ Pistons component of the Car 

• Sean’s arm component of Sean
• Sean member of School of Computer Science
➡ Sean’s arm component of School of Computer Science
➡ Sean’s arm member of School of Computer Science
➡ Sean’s arm part of School of Computer Science 55

X is part of Y, Y is part of Z,  
thus X is part of Z

Property: isPartOf 
 Characteristics: Transitive  

Property: isComponentOf 
 SubPropertyOf: isPartOf
 
Property: isPortionOf 
 SubPropertyOf: isPartOf 
 Characteristics: Transitive

Transitivity

• In partonomies, we may want to identify direct parts
– Piston directPartOf Engine; Engine directPartOf Car
– Piston is not directPartOf Car, but is a partOf Car

• I want to query for all the direct parts of the Car, but  
not the direct parts of its direct parts.
– So directPartOf cannot be transitive

• Solution: provide a transitive superproperty

• Queries can use the superproperty to query transitive closure
• Assertions use the direct part of relationship
• A standard ontology design pattern, sometimes referred to as transitive

reduction.
56

Property: isPartOf
 Characteristics: Transitive

Property: isDirectPartOf
 SubPropertyOf: isPartOf

Aside: Transitivity and Subproperties

• Transitive property R is one s.t. for  
any I model of O, any x,y,z in ∆:
– if (x,y) ∈ RI and (y,z) ∈ RI,  

then (x,z) ∈ RI
– A superproperty of a transitive property  

 is not necessarily transitive
– A subproperty of a transitive property  

 is not necessarily transitive

57

Property: knows

Property: hasFriend

 SubPropertyOf: knows

 Characteristics: Transitive

Property: hasBestFriend

 SubPropertyOf: hasFriend

Generalised Transitivity

• Some P-W relations interact in interesting ways:

• Sean member of School of Computer Science
• School of Computer Science is a portion of the University of Manchester
➡ Sean member of School of the University of Manchester

58

Property: isPartOf 
 Characteristics: Transitive  

Property: isMemberOf 
 SubPropertyOf: isPartOf
 
Property: isPortionOf 
 SubPropertyOf: isPartOf 
 Characteristics: Transitive  
 SubPropertyChain: isMemberOf o isPortionOf

Composition

• Composition provides a mechanism for describing  
 a (class of) object(s) in terms of its parts

• By considering basic properties of part-whole relationships, we can
• identify different kinds of relationship
• decide where we can (or can’t) apply transitivity.

• Explicitly separating & relating these important to get correct inferences

59

Property: isPartOf 
 Characteristics: Transitive  
 
Property: isLocatedIn  
 SubPropertyChain: isLocatedIn o isPartOf 
 Characteristics: Transitive  

Class Fracture
SubClassOf isLocatedIn some Bone

Class FractureOfFemur
EquivalentTo Fracture and isLocatedIn some Femur

Class HeadOfFemur
SubClassOf isPartOf some Femur

⊨
Fracture and  
isLocatedIn some  
HeadOfFemur

SubClassOf

FractureOfFemur

Depends on

Other Content Design Patterns

• …we just talked a lot about how to model composites

• there are many other general content design patterns:
• how to model time, trajectories, agents, lists, development,  

 roles (see later!), …

• and many domain dependent content design patterns:
• how to model

• aquatic resource observations
• algorithm implementation execution
• microblog entry
• hazardous situation
• …

• See http://ontologydesignpatterns.org/wiki/Main_Page for a long list

60

http://ontologydesignpatterns.org/wiki/Main_Page

Design Principles in OWL:
Multi-Dimensional Modelling

&
Post-Coordination

61

Ontology Normalisation

• An ontology covers different kinds of things
• each kind can come with its (class) hierarchy!

➡ poly-hierarchies are the norm
• “Harry Potter and the Philosopher’s stone” is a book, a

• children’s book (readers!),
• work of fiction (literature category!)
• written in English (language!)
• available in paperback (form of printing/binding)

• Poly-hierarchies allow knowledge to be captured and appropriately queried
• They are difficult to build by hand

• do we have “EnglishChildFictionPaperback” or  
 “EnglishChildPaperbackFiction” or….

• Essentially impossible to get right and maintain
• combinatorial explosion of terms!

• We can use OWL and automated reasoners to do the work for us
• … but how does one manage this and get it right? 62

Example: tangled medecine

63

shoulder_catches_during_movement
shoulder_feels_like_it_will_slip_out_of_place
shoulder_joint_feels_like_it_may_slip_out_of_place
shoulder_joint_pain_better_after_rest
shoulder_joint_pain_causes_difficulty_lying_on_affected_side
shoulder_joint_pain_causing_inability_to_sleep
shoulder_joint_pain_difficult_to_localize
shoulder_joint_pain_feels_better_after_normal_movement
shoulder_joint_pain_first_appears_at_night
shoulder_joint_pain_improved_by_medication
shoulder_joint_pain_improves_during_exercise__returns_later
shoulder_joint_pain_incr_by_raising_arm_above_shoulder_level
shoulder_joint_pain_increased_by
shoulder_joint_pain_increased_by_lifting
shoulder_joint_pain_increased_by_moving_arm_across_chest
shoulder_joint_pain_increased_by_reaching_around_the_back
shoulder_joint_pain_relieved_by_putting_arm_over_head
shoulder_joint_pain_sudden_onset
shoulder_joint_pain_unrelenting
shoulder_joint_pain_worse_on_rising
shoulder_joint_pain_worsens_with_extended_activity
shoulder_joint_popping_sound_heard
shoulder_joint_suddenly_gives_way
shoulder_seems_out_of_place
shoulder_seems_out_of_place__recollection_of_the_event
shoulder_seems_out_of_place_recurrent
shoulder_seems_out_of_place_which_resolved
shoulder_suddenly_locked_up

Example: “tangled” ontology of amino acids

64

There are several dimensions of classification here

• Identifiable dimensions are:
• amino acids themselves – they have side chains
• the size of the amino acids side chain
• the charge on the side chain
• the polarity of the side chain
• The hydrophobicity of the side chain

• We can
• normalise these into separate hierarchies then
• put them back together again 

• Our goal is to put entities into separate trees all formed on the same basis

65

Untangeling 1: separate dimensions Amino Acids
• Alanine
• Arginine
• Asparagine
• Cysteine
• Glutamate
• Glutamine
• Glycine
• Histidine

• Isoleucine
• Leucine

• Lysine
• Methionine
• Phenylalanine
• Proline

• Serine
• Threonine
• Tryptophan
• Tyrosine
• Valine

Charge
• Negative
• Neutral
• Positive

Size
• Tiny
• Small
• Medium
• Large

Polarity
• Polar
• Nonpolar

Hydrophobicity
• Hydrophobic
• Hydrophilic

66

• Each separate dimension includes the same kind of thing 

• Within a dimension, we don’t mix
• self-standing things, processes, modifiers (qualities)
• our classification by, for instance, structure and then charge

67

Untangeling 1: separate dimensions

68

Untangeling 2: relate dimensions using properties

Charge
• Negative
• Neutral
• Positive

Size
• Tiny
• Small
• Medium
• Large

Polarity
• Polar
• Nonpolar

Hydrophobicity
• Hydrophobic
• Hydrophilic

Amino Acids
• Alanine
• Arginine
• Asparagine
• Cysteine
• Glutamate

Property: hasSize
 Domain: AminoAcid
 Range: Size  

Property: hasCharge
 Domain: AminoAcid
 Range: Charge

Property: hasPolarity
 Domain: AminoAcid
 Range: Polarity

Property: hasHydrophobicity
 Domain: AminoAcid
 Range: Hydrophilic

Class: AminoAcid 
 SubClassOf: hasSize some Size, 
 hasPolarity some Polar, 
 hasCharge some Charge, 
 hasHydrophobicity some  
 hydrophobicity
Class: Lysine
 SubClassOf: AminoAcid,
 hasSize some Large,
 hasCharge some Positive,
 hasPolarity some Polar,
 hasHydrophobicity some Hydrophilic

69

Charge
• Negative
• Neutral
• Positive

Size
• Tiny
• Small
• Medium
• Large

Polarity
• Polar
• Nonpolar

Hydrophobicity
• Hydrophobic
• Hydrophilic

Amino Acids
• Alanine
• Arginine
• Asparagine
• Cysteine
• Glutamate

Untangeling 3: Describe relevant terms

Untangeling 3: Describe relevant terms
Class: LargeAminoAcid
 EquivalentTo: AminoAcid
 and hasSize some Large

Class: PositiveAminoAcid
 EquivalentTo: AminoAcid
 and hasCharge some Positive

Class: LargePositiveAminoAcid
 EquivalentTo: LargeAminoAcid and PositiveAminoAcid

70

Charge
• Negative
• Neutral
• Positive

Size
• Tiny
• Small
• Medium
• Large

Polarity
• Polar
• Nonpolar

Hydrophobicity
• Hydrophobic
• Hydrophilic

Amino Acids
• Alanine
• Arginine
• Asparagine
• Cysteine
• Glutamate

• This poly-hierarchical/multi-dimensional modelling style in OWL  
allows us to use post-coordination
• build class expressions and use them like names
• i.e., we can ask a reasoner (via the OWL API)

• for instances of (AminoAcid and (hasSize some Large)  
 and (hasCharge some Positive))

• whether (AminoAcid and (hasSize some Large)  
 and (hasCharge some Neutral))  
is satisfiable w.r.t O

• relies on OWL reasoners/tools to be able to handle class expressions
in the same way as they handle names  

• this saves us from having to give names to all combinations:
• we can give names to some expressions

• but we don’t have to
• since the reasoner can understand expressions!

Post-Coordination

71

• Multi-dimensional modelling in OWL allows us to use post-coordination  
and thus avoid tangles like this…

• if we need all these terms, we can generate them
• automatically
• in a principled way
• ..and update them in case of changes! 72

shoulder_catches_during_movement
shoulder_feels_like_it_will_slip_out_of_place
shoulder_joint_feels_like_it_may_slip_out_of_place
shoulder_joint_pain_better_after_rest
shoulder_joint_pain_causes_difficulty_lying_on_affected_side
shoulder_joint_pain_causing_inability_to_sleep
shoulder_joint_pain_difficult_to_localize
shoulder_joint_pain_feels_better_after_normal_movement
shoulder_joint_pain_first_appears_at_night
shoulder_joint_pain_improved_by_medication
shoulder_joint_pain_improves_during_exercise__returns_later
shoulder_joint_pain_incr_by_raising_arm_above_shoulder_level
shoulder_joint_pain_increased_by
shoulder_joint_pain_increased_by_lifting
shoulder_joint_pain_increased_by_moving_arm_across_chest

shoulder_joint_pain_increased_by_reaching_around_the_back
shoulder_joint_pain_relieved_by_putting_arm_over_head
shoulder_joint_pain_sudden_onset
shoulder_joint_pain_unrelenting
shoulder_joint_pain_worse_on_rising
shoulder_joint_pain_worsens_with_extended_activity
shoulder_joint_popping_sound_heard
shoulder_joint_suddenly_gives_way
shoulder_seems_out_of_place
shoulder_seems_out_of_place__recollection_of_the_event
shoulder_seems_out_of_place_recurrent
shoulder_seems_out_of_place_which_resolved
shoulder_suddenly_locked_up

Post-Coordination

Patterns used

• The Amino acids ontology uses these five patterns:
– Normalisation/Multidimensional modelling
– EPQ
– Closure (via it’s functional properties)
– A covering axiom for all the amino acids
– It’s own pattern for amino acids

– There is more information via
• http://ontogenesis.knowledgeblog.org/tag/ontology-normalization
– http://robertdavidstevens.wordpress.com/2010/12/18/an-update-to-

the-amino-acids-ontology/
– http://ontogenesis.knowledgeblog.org/1401

73

http://ontogenesis.knowledgeblog.org/tag/ontology-normalization
http://robertdavidstevens.wordpress.com/2010/12/18/an-update-to-the-amino-acids-ontology/
http://robertdavidstevens.wordpress.com/2010/12/18/an-update-to-the-amino-acids-ontology/
http://ontogenesis.knowledgeblog.org/1401

PIMPS - an Upper Level Ontologies

74

Upper Level Ontologies

• Domain neutral description of all entities
• Should be able to be used to describe any domain:

• biology, art, politics, business, medicine, …
• The basic dimensions:

• processes and the
• things that participate in processes

• Different ULOs differ in
• the ontology language they use
• their level of detail
• their view of the world
• etc

• Much philosophical discussion
• …been trying since 437 BCE and still not sorted it out

• So, we’ll do something simple: PIMPS

75

The PIMPS ontology in context

76

PIMPS: A Simple Domain Neutral Ontology

• Thing
– Process
– Immaterial
– Material
– Properties

• Quality
• Function
• Role
• Disposition

– Sites

77

• Process
• An entity that unfolds over time such that its identity changes
• Not all of a process is present at a given time-point in that process
• E.g., living, wedding, dying, eating, breathing, liberation, election
• Lots of “-ation” and “…ing” words  

• Material
• Self-standing things I can “hold in my hand”
• E.g., ball, car, person, leg, pizza, piece of seaweed
• All of it exists at any one point in time
• All of Robert exists at any point in time, even though Robert himself

actually changes
• It retains its identity

78

PIMPS: A Simple Domain Neutral Ontology

• Immaterial
• Self-standing things I can not “hold in my hand”
• E.g., idea, goal, wish, …
• It exists at any one point in time
• This idea may change over time but retains its identity

• Properties
• Dependant (not-self-standing) things including

• Quality, e.g. Size, Weight
• Function, e.g., Control, Activation, Neutralisation
• Role, e.g., Catalyst, Pathogen
• Disposition, e.g., HeatResistence

• Site
• point or area on/of a material entity
• e.g., the area occupied by Manchester
• not to be confused with segments of that entity

79

PIMPS: A Simple Domain Neutral Ontology

Why use an upper level ontology?

• Consistent modelling style both within and between ontologies
• Primarily a guide to using properties consistently

• Continuants have parts that are continuants
• Processes have parts that are processes
• Independent continuants hasQuality some Quality  

 and playRole some Role
• Independent continuant hasFunction some Function
• Independent continuants participate in processes
• Sites occupy some material entity

80

81

Today:
✓Semantic left-overs from last week
✓Deepen your semantics: OWL & FOL & …
✓Design Patterns in OWL

local ones
partonomies

• Design Principles in OWL:
✓multi-dimensional modelling
✓post-coordination
✓PIMPS - an upper level ontology

• Automated reasoning about OWL ontologies:
• a tableau-based algorithm to make
• …implicit knowledge explicit
• …our know KR actionable

