
1	

Description Logic
Reasoning	

COMP62342	
Sean Bechhofer	

sean.bechhofer@manchester.ac.uk	

Inference	

•  Ontologies provide	
–  Vocabulary that describes a domain	
–  Assumptions about the ways in which that vocabulary should

be interpreted	

•  What can we then infer from that information?	

–  In particular, what inferences can be drawn from the assumptions
that we’ve expressed?	

	

2	

2	

3	

DL Semantics	

•  Recall that our semantics was defined in terms of Interpretations	
–  Domain of discourse Δ	
–  Function I mapping:	

–  Individuals names x, y, z to elements of Δ	

–  Class names A, B, C to subsets of Δ	

–  Property names R, S, to sets of pairs of elements of Δ	

AI

v

x

y
z

w

BI

4	

DL Semantics	

•  Interpretations then extended to cover concept expressions	
–  (A u B)I = AI ∩ BI	

•  Interpretation is a model of an axiom A iff the interpretation of the
axiom holds	
–  I ⊨ A v B iff AI µ BI	

•  Interpretation is a model of an ontology O iff it is a model of all the
axioms in O	

Note use of logical (“German syntax”) 	
here rather than Manchester Syntax.	

3	

5	

Inference	

•  What can we infer from an Ontology O?	
–  And what do we mean by infer?	

•  The semantics describe the conditions under which an interpretation
is a model of a Ontology O.	

•  It can be the case that due to the constraints that O places on the
interpretations, there are consequences that also hold in all the
interpretations.	

•  Recall, an Ontology doesn’t define a single model, it is a set of
constraints that define a set of possible models	
–  No constraints (empty Ontology) means any model is possible	
–  More constraints means fewer models	
–  Too many constraints may mean no possible model (inconsistent

Ontology)	

6	

Basic Inference Problems	

•  Subsumption	
–  C vO D 	iff 	CI µ DI in all models I of O 	

•  Equivalence	

–  C ´O D 	iff 	CI = DI in all models I of O 	

•  Satisfiability 	

–  C ´O ⊥ 	iff 	CI non empty in some model I of O 	

•  Instantiation	
–  i 2O C 	iff 	i 2 CI in all models I of O 	

•  Consistency 	

–  O consistent iff there is at least one model I of O 	

•  Coherency 	

–  O coherent iff all names classes are satisfiable	
•  Problems reducible to satisfiability:	

–  e.g., C vO D iff (C u ¬D) not satisfiable w.r.t. O 	

4	

Example Inferences	

•  O = {B v A, C v B}	
–  C vO A	

•  O = {C v A u B }	

–  C vO A	

•  O = {}	
–  A vO A t B	

•  O = {C ´ 9R.A, B v A }	

–  9R.A vO C 	

•  O = {B v A, x:B}	
–  x 2O B	

•  O = {C v A u B }	

–  C ´O ⊥	

•  O = {C v A, C v ¬A}	
–  C ´O ⊥	
–  O incoherent	

•  O = {C v A, C v ¬A, x:C}	

–  O inconsistent 	

7	

8	

Consistency and Unsatisfiability	

•  Note the difference between class satisfiability and ontology
consistency	

•  A class C is unsatisfiable if there are no models such that its
interpretation is non-empty	

•  An Ontology O is inconsistent if there are no models of O	

•  A consistent Ontology may contain unsatisfiable classes. 	

•  O = {C v A u B, D v C u ¬ B }	

–  D unsatisfiable, but models exists thus O is consistent…	

•  O = {C v 8R.¬A, x:C, y:A, <x,y>:R}	

–  Inconsistent Ontology	

5	

9	

Why are these useful?	

•  Subsumption: check knowledge is correct	
–  Build classification hierarchies of primitive (named) classes	

•  Equivalence: check knowledge is minimally redundant	

•  Satisfiability: check knowledge is meaningful	

•  Instantiation: check if individual i instance of class C. 	

–  Supporting query.	

10	

Structural Approaches	

•  Early implementations used structural approaches	
•  E.g. to check subsumption	

1.  Normalise expressions	

2.  Compare the structure of the expressions to see if there is
“overlap”.	

•  This is effective, but hard to get complete results, particularly in the
face of complex axioms (or GCIs as they are sometimes known).	

•  An alternative is to use an approach based on the underlying
semantics, e.g. tableaux. 	

6	

11	

Tableaux Algorithms: Basics	

•  Tableaux algorithms used to test satisfiability	
•  Try to build tree-like model I of input class C	
•  Work on classes in negation normal form	

–  Rewrite and push in negation using de Morgan’s laws	

–  E.g. ¬9R.C to 8R.¬C	

•  Break down C syntactically, inferring constraints on elements of I	

•  Decomposition uses tableau rules corresponding to constructors in
the logic (e.g u, 9)	
–  Some rules are nondeterministic, e.g. they involve some choice	

§  t, ·	

–  In practice, this means search.	

12	

Tableaux Algorithms: Basics	

•  Try and build a “completion tree” by applying rules	
•  Stop when a clash occurs or when no more rules are applicable. 	
•  Blocking (cycle check) used to guarantee termination	

•  Returns “C is consistent” iff C is consistent	

–  Tree model property	

7	

13	

Tableaux Algorithms: Details	

•  Work on tree T representing model I of class C	
–  Nodes x,y represent elements of domain Δ	
–  Nodes labelled with L(x), sub-expressions of C	
–  Edges represent role-successorships between elements of Δ	

•  T initialised with single root node labelled {C}	
•  Tableau rules repeatedly applied to node labels.	

–  Extend labels of a node or extend/modify the tree structure	
–  Rules can be blocked, e.g. if a predecessor node has superset label	
–  Nondeterministic rules mean we may need to search for possible

extensions	
•  T contains a Clash if there is an obvious contradiction in some node

label	
–  E.g. {A, ¬ A} µ L(x) for some class A and node x	

14	

Tableaux Algorithms: Details	

•  T fully expanded if no rules are applicable	
•  C satisfiable iff fully expanded clash-free tree T found	

–  There is then a correspondence between T and a model of C (see
later remarks regarding completeness)	

•  Thus the tableaux algorithm helps us by finding a witness for the
consistency of C	
–  There is some model.	

8	

15	

ALC	

•  Propositional constructors	
–  u, t, ¬	

•  Role Quantifiers	

–  9, 8	
•  Top and Bottom	

–  >, ?	

•  Concept names, >, ? are
Concepts. Role names are
Roles	

•  For C, D concepts and R a
role, the following are
Concepts:	
–  ¬ C	

–  C u D	

–  C t D	

–  9 R.C	

–  8 R.C	

16	

ALC and OWL	

ALC	 OWL	

u and	

t or	

¬ not	

9 some	

8 only	

> thing	

? nothing	

9	

17	

Tableaux Rules for ALC	

{C1 u C2,… }	x	 {C1 u C2, C1, C2,… }	x	!u	

{C1 t C2,… }	x	 {C1 t C2, C,… }	
For C 2 {C1, C2}	

x	!t	

{9R.C,… }	x	 {9R.C,… }	x	

!9	
{C}	y	

{8R.C,… }	x	

!8	
{C,…}	y	

{8R.C,… }	x	

{…}	y	

R	

R	R	

18	

Algorithm Examples	

•  Test the satisfiability of	
 9R.A u 8R.B	

9R.A u 8R.¬A	

	

9R.A u 8S.¬A	

 9R.(A t 9R.B) u 8R.¬A u 8R.(8R.¬B)	

10	

Is it right?	

•  How do we know whether our algorithm is doing the “right thing”?	
–  And what is the “right thing”?	

•  Soundness and Completeness help us characterise this.	

–  Soundness: we get correct answers	

–  Completeness: we get all the answers 	

•  For our tableaux algorithm	

–  Soundness: if the algorithm says that C is satisfiable, then it is
(according to the semantics)	

–  Completeness: if C is satisfiable (according to the semantics) then
the algorithm will tell us this 	

19	

Termination	

•  Given a concept expression C, our algorithm will terminate	

•  Informal argument:	

–  Rules (other than !8) are never applied twice on the same label	

–  The !8 rule is never applied to node N more that n times where
n is the number of direct successors of N.	

–  Each rule application on a label C adds labels D such that D is a
strict sub-expression of C	

	

20	

11	

Soundness	

•  If, given a concept description C, the algorithm terminates with a
clash-free completion tree, then C is satisfiable	

•  Informal argument	

–  Given the clash-free completion tree, we can produce an
interpretation where C is non-empty	

21	

Completeness	

•  For completeness, we need to show that given a satisfiable concept
expression C, if we start the tableaux with C, then we will arrive at a
fully expanded clash-free tree	

•  Informal argument	

–  As C is satisfiable, we know there is an interpretation I where CI
is non-empty. 	

–  We can use this interpretation to guide the construction of the
tableaux – in particular guiding choices. 	

22	

12	

23	

Satisfiability w.r.t Axioms	

•  Our basic algorithm just operates on class expressions and doesn’t
consider any axioms	

	
•  For each axiom C v D in O, add ¬C t D to every node label	

–  Can rewrite Ontology in terms of v	
•  Potentially very expensive!	

–  Adding a disjunction to every node in the graph	

24	

Unfolding	

•  Unfolding allows us to deal with particular forms of Ontology.	

•  Consider a Ontology O that only contains definitions	

–  E.g. C ´ D or C v D, where C is a concept name.	

•  For any concept A occurring in D, we say A directly uses D and
define uses as the transitive closure of directly uses. 	

•  O contains a cycle if there is an atomic concept that uses itself. 	

–  {A v B, B v C, C ´ D}	
–  {A v B, B ´ 9R.C, C v A}	

•  If O is acyclic, we can expand and unfold the Ontology. 	

13	

25	

Unfolding	

•  To test satisfiability of concept description C w.r.t. acyclic Ontology
O	
1.  For any axiom	

B ´ A	

–  Replace all occurrences of B in C with A.	

2.  For any axiom 	

B v A	
–  Replace all occurrences of B in C with B’ u A, where B’ is a new

concept name. 	

3.  Then proceed with tableaux as normal on the new description. 	

26	

Unfolding Examples	

•  Test satisfiability of 	
 ¬ (¬A t 9 R.C)	

1.  w.r.t the axioms	

{A v C u 9R.C}	

2.  w.r.t. the axioms	

{A ´ ¬ C}	

14	

27	

Tableau Rule for Transitive
Roles	

•  We can also consider ALC plus transitive roles 	
–  i.e. allowing assertions about the transitivity of a role (rather than

allowing us to talk about the transitive closure	
•  This then requires an additional rule for transitive role R	

•  No longer naturally terminating (e.g. if C = 9R.>)	

•  We need a blocking strategy	

–  Simple blocking is enough for ALC + transitive roles	

–  Do not expand the node label if the ancestor has superset label	

–  Need more for more expressive logics.	

{8R.C,… }	x	

!8+	
{8R.C,…}	y	

{8R.C,… }	x	

{…}	y	

R	R	

28	

Algorithm Examples	

•  Test the satisfiability of	

9S.C u 8S.(¬C t ¬D) u 9R.C u 8R(9R.C)	
Where R is a transitive role	

15	

29	

More Expressive DLS	

•  Basic technique can be extended to deal with	
–  Role inclusion axioms	
–  Number restrictions	
–  Inverse Roles	
–  Concrete domains	
–  Aboxes	

•  Extend expansion rules and use more sophisticated blocking strategy.	
•  Forest instead of tree for Individual Facts	

–  Root nodes correspond to individuals in Ontology.	

30	

Scalability	

•  Reasoning with DL languages is hard	
–  Ontologies on the web may grow large	
–  Particularly with Instance data. 	

•  Space usage	
–  Storage required for tableaux datastructures	
–  Rarely serious problem in practice	
–  But problems with inverse roles and cyclical Ontologies	

•  Time usage	
–  Non-deterministic rules lead to search	
–  Serious problem in practice	
–  Mitigated by	

§  Careful choice of algorithm	
§  Highly optimised implementations	

16	

31	

Choice of Algorithm	

•  Transitive roles rather than transitive closure	
–  Deterministic expansion of 9R.C even when R in R+	
–  Relatively simple blocking conditions	

•  Direct algorithm/implementation instead of encodings	

–  GCI axioms can be used to encode additional operators/axioms	

–  E.g. domain and range	
§  (domain R C) ´ 9R.T v C	

–  But even simple domain encoding yields terrible performance with
large numbers of roles. 	

Trade Offs: The Design Triangle	

Expressivity
(Representational Adequacy)

Usability
(Weak Cognitive Adequacy

vs.
Cognitive Complexity)

Computability
(vs. Computational and

Implementational Complexity)

32	

17	

Cognitive Adequacy	

•  Strong Cognitive Adequacy	
–  A KR is SCA if it is “a (psychologically valid) cognitive model of [a

human’s] knowledge” (Strube, 1992)	
§  If strong adequacy is claimed, the system is supposed to function like

a human expert, at least in a circumscribed domain. In short, strongly
adequate systems employ the very same principles of cognitive
functioning as human experts do	

•  Weak Cognitive Adequacy	

–  A KR is WCA if it is “ergonomic and user-friendly”	
§  Note, however that the system may differ considerably from the

experts (whose knowledge it attempts to represent) and from its
users (if those are difference from the expert group). Still, the system
tries to give users a comfortable feel, which may be achieved through
symbols or words familiar to the user.	

33	
Gerhard Strube, The Role of Cognitive Science in Knowledge Engineering, 1992	

Tradeoffs	

•  Syntax	
–  How do we write things down?	

•  Expressivity	
–  Ability of the language to

distinguish between different
concrete situations	

–  If suitable to our needs, a
formalism (or KR) is
representationally adequate	

•  Computational Complexity	
–  Reasoning	
–  How hard is it to work with?	

§  Theoretical Complexity	

–  Implementational Complexity	
§  How hard is it to produce a

production quality implementation	

•  Cognitive Complexity 		
–  Focus on Weak Cognitive

Adequacy i.e., Usability	
–  How hard is it to understand or

comprehend?	

–  How much effort does it take to
express something?	

•  A good KR (or KR formalism)
achieves a good balance of all of
these for most of its uses, most of
the time	

34	

General desiderata:	
•  Clarity of specification	
•  Expressivity	
•  Usability	
•  Computability	

18	

A Reasoning Perspective	

•  What expressivity do you need?	
•  What are your core service?	
•  What are the key services?	

•  Are you interactive or not?	

•  What's the scale you need to deal with?	

–  And other performance characteristics	

•  What do you know about implementation?	

•  May neglect	

–  Many surface syntax issues	

–  Non logical aspects of the language	

–  Cognitive complexity	

35	

Services	

•  Core	
–  Satisfiability	
–  Consistency Checking	

•  Key	
–  Entailment	
–  Classification (atomic

subsumptions)	
–  Atomic class satisfiability	

–  Instantiation	
–  Query/ASK	

•  Querying	
–  Basic logical inference services

insufficient	

–  DB style query languages	
–  Supporting applications	

•  Explanation	
–  Why do concepts subsume?	
–  Supporting ontology design

process	

•  Non-Standard Inferences	
–  Least Common Subsumer	
–  Matching	
–  Supporting ontology design

process	

36	

19	

37	

Extra Logical Services	

•  It’s not just about logic!	
–  We also need services that are not directed related to the

underlying formal semantics of the representation	
•  Annotation Services	

–  Associating information with concepts.	

–  Facilitating the use of an ontology within an application	

–  “Conceptual Coatrack”	

•  Lexical Services	
–  Associating words, terms or symbols with concepts	

–  Facilitating understanding and use in applications	

–  Rendering definitions	

38	

Summary	

•  Tableaux Reasoning provides implementations for basic inference
problems	
–  Satisfiability	
–  Subsumption	

–  Classification	

•  Tableaux rules applied to try and build a treelike model of a concept
(and thus demonstrate satisfiability)	

•  Further Reading:	
–  Baader et.al. The Description Logic Handbook, Cambridge University

Press, 2003	

