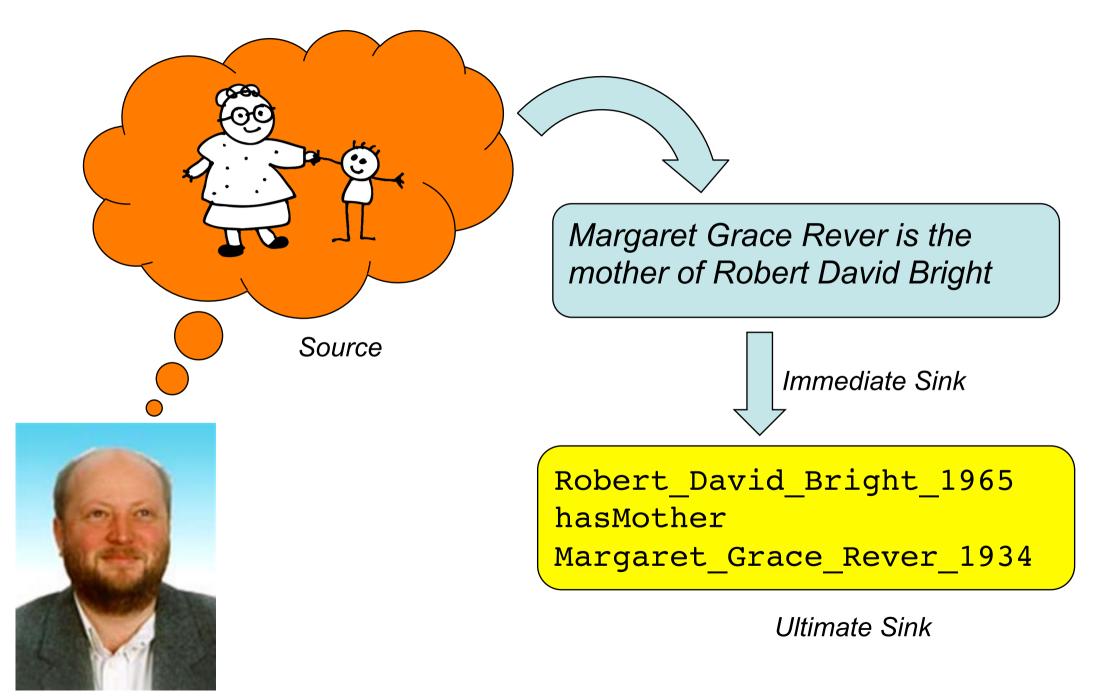
Knowledge Acquisition

COMP62342 Sean Bechhofer University of Manchester sean.bechhofer@manchester.ac.uk

Knowledge Acquisition (KA)


- Operational definition
 - Given
 - a source of (declarative) knowledge
 - a sink
 - KA is the transfer of declarative statements from source to sink
 - we can generalise this to other sources, e.g., sensors
- We distinguish between KA and K refinement
 - i.e., modification of the statements in our sink
 - But this distinction is merely conceptual
 - Actual processes are messy
- Range of automation
 - Fully manual (what we're going to do!)
 - (Fully) automated

From Knowing to Representation

Source

- A person, typically called the domain expert (DE, or "expert")
 - domain, subject matter, universe of discourse, area,...
- Key features
 - They know a lot about the domain (coverage)
 - They are highly reliable about the domain (accuracy)
 - They know how to articulate domain knowledge
 - Though not always in the way we want!
 - They have good metaknowledge
- Immediate Sink
 - A document encoded in natural language or semi-NL
- Ultimate Sink
 - A document encoded in a formal/actionable KR language

Knowing to Representation

...there are known knowns; there are things we know we know. We also know there are known unknowns; that is to say we know there are some things we do not know. But there are also unknown unknowns -- the ones we don't know we don't know.

Eliciting Knowledge

- Proposal 1: Ask the expert nicely to write it all down
- Problems:
 - 1. They know too much
 - 2. Much of what they know is tacit
 - Perhaps can give it on demand, but not spontaneously
 - -I.e., it's there but hard to access
 - They can't describe it (well)
 - 3. They know too little
 - E.g., application goals
 - Target representation constraints
 - E.g., the language
 - Their knowledge is incomplete
 - Though they maybe able to acquire or generate it
 - 4 Expense

The Knowledge Engineer (KE)

- Key Role
 - Expertise in KA
 - E.g., elicitation
 - Knows the target formalism
 - Knows knowledge (and software) development
 - Tools, methodologies, requirements management, etc.
- Does not necessarily know the domain!
 - Though the KE may also be a DE
 - Most DEs are not KEs
 - Though they may be convertible
 - May be able to "become (enough of an) expert"
 - E.g., if autodidact or good learner with access to classes
- Investment in the representation itself

Elicitation Technique Requirements

Minimise DE's time

- Assume DE scarcity
- Capture essential knowledge
 - Including metaknowledge!
- Minimise DE's KE training and effort
 - Assume loads of tacit knowledge
 - Thus techniques must be able to capture it
- Support multiple sources
 - Multiple experts (get consensus?)
 - Experts might point to other sources (e.g., standard text)
- KEs must understand enough
 - So, the techniques have to allow for KE domain learning
 - KRs reasonably accessible to non-experts

Note on generalizability

- Many KA techniques are very specific
 - Specific to source (e.g., learning from relational databases)
 - Specific to targets (e.g., learning a schema)
- Elicitation techniques are generally flexible
 - Arbitrary sources and sinks
 - In both domain and form
 - NL intermediaries help
 - "Parameterisable" is perhaps more accurate

Elicitation Techniques

- Two major families
 - Pre-representation
 - Post-(initial)representation
- Pre-representation
 - Starting point! Experts interact with a KE
 - Focused on "protocols"
 - A record of behavior
 - Protocol-generation
 - Protocol-analysis
- Post-representation (modelling)
 - Experts interact with a (proto)representation (& KE)
 - Testing and generating

Pre-representation Techniques

- Protocol-generation
 - Often involves video or other recording
 - Interviews
 - Structured or unstructured (e.g., brainstorming)
 - Observational
 - Reporting
 - Self or shadowing
 - Any non-interview observation
- Protocol-analysis
 - Typically done with transcripts or notes
 - But direct video is fine
 - Convert protocols into protorepresentations
 - So, some modelling already!

Modelling Techniques

- (Often characterized by aspects of the target (OWL in our case))
- Being picky
 - Pedantic refinement
- Sorting techniques
 - are used for capturing the way people compare and order concepts, and can lead to the revelation of knowledge about classes, properties and priorities

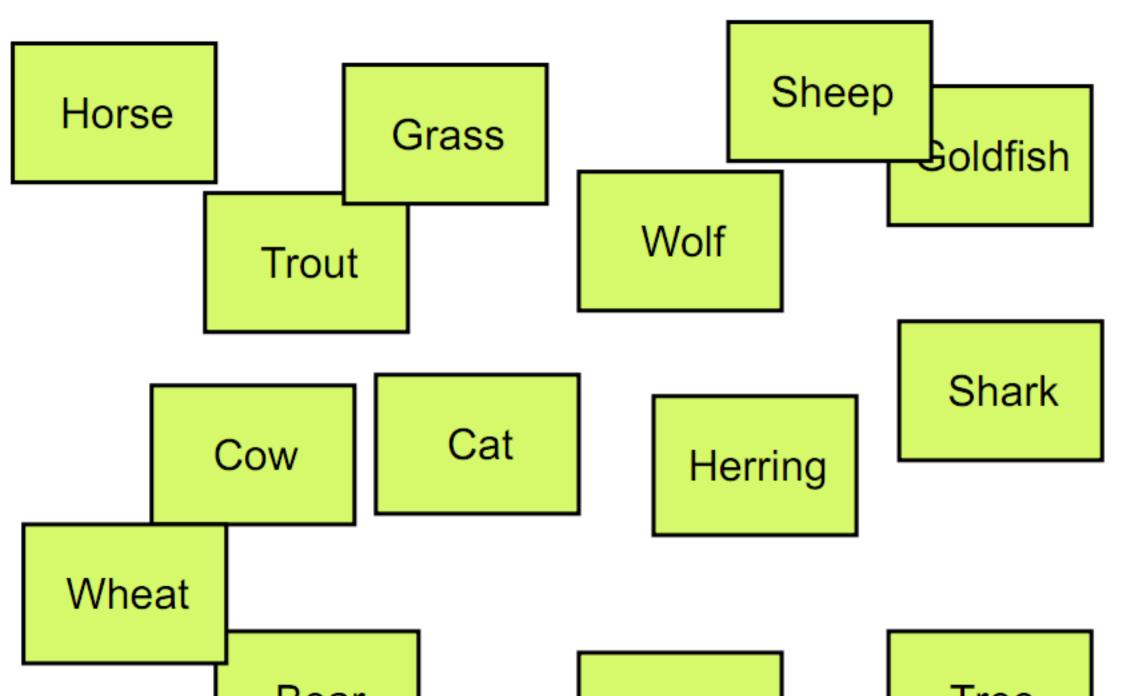
• Hierarchy-generation techniques

- such as laddering are used to build taxonomies or other hierarchical structures such as goal trees and decision networks.
- Matrix-based techniques
 - involve the construction of grids indicating such things as problems encountered against possible solutions.
- Limited-information and constrained-processing tasks
 - are techniques that either limit the time and/or information available to the

Other Modelling Techniques

- Scenario descriptions
- Diagrams
- Problem solving
- Teaching
- Role Play
- Joint Observation
- Etc.

Example: An Animals Taxonomy

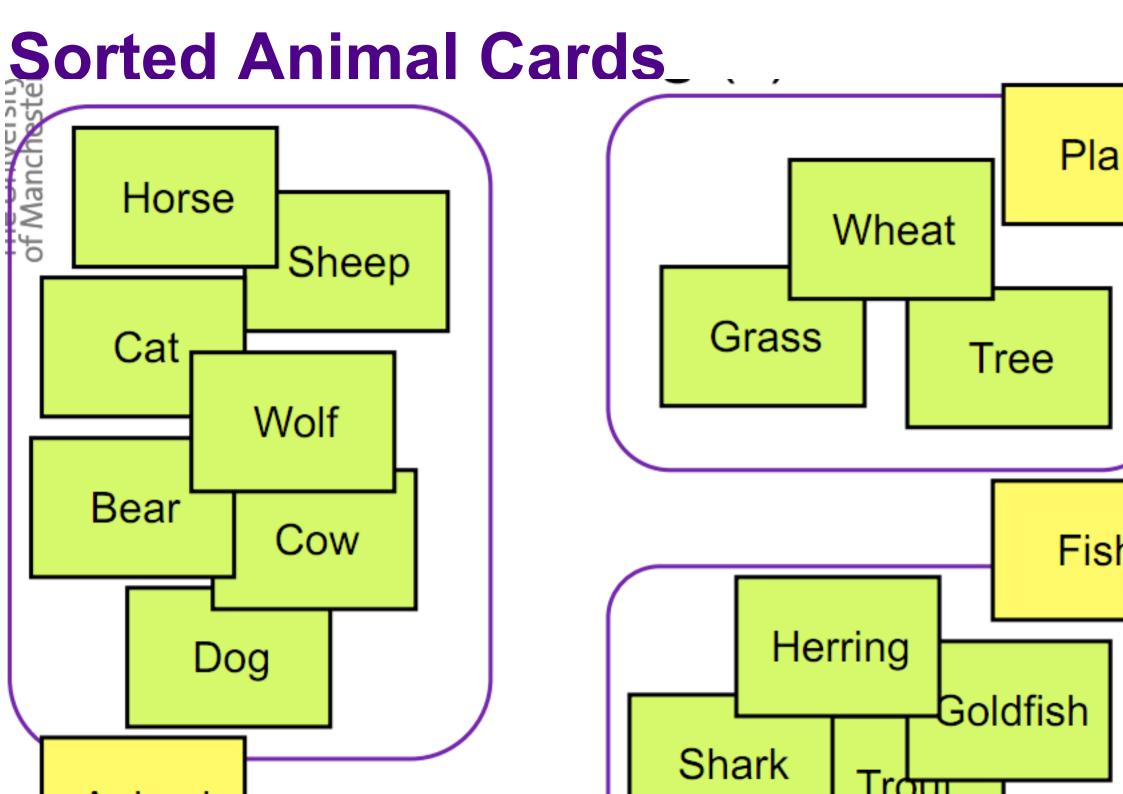

- Task:
 - generate a controlled vocab for an index of a children's book
- Domain:
 - Animals including (think of these as CQ)
 - Where they live
 - What they eat
 - Carnivores, herbivores and omnivores
 - How dangerous they are
 - How big they are
 - A bit of basic anatomy
 - » legs, wings, fins? skin, feathers, fur?
 - (read the book!)

Protocol Analysis

- From interviews/behaviour to analysable items

 Text! Text is good!
- From a text,
 - find key terms
 - harmonise them
 - capitalisation, pluralization (or not), orthography, etc.
- Keep track of
 - Significance
 - Core or peripheral terms
 - Illustrative? Defining?
 - Situation
 - Sentences or sections

Animal taxonomy Term Generation



Sort of Knowledge

- "Declarative" Knowledge about Terms (or Concepts)
 - Aka Conceptual Knowledge
- Initial steps
 - Identify the domain and requirements
 - Collect the terms
 - Gather together the terms that describe the objects in the domain.
 - Analyse relevant sources
 - Documents
 - Manuals
 - Web resources
 - Interviews with Expert
- We've done that!
- Now some modelling
 - Tura ta alaniau sa ta davil

Card Sorting!

- Card Sorting identifies similarities
 - A relatively informal procedure
 - Works best in small groups
- Write down each concept/idea on a card
 - 1. Organise them into piles
 - 2. Identify what the pile represents
 - New concepts! New card!
 - 3. Link the piles together
 - 4. Record the rationale and links
 - 5. Reflect
- Repeat!
 - Each time, note down the results of the sorting

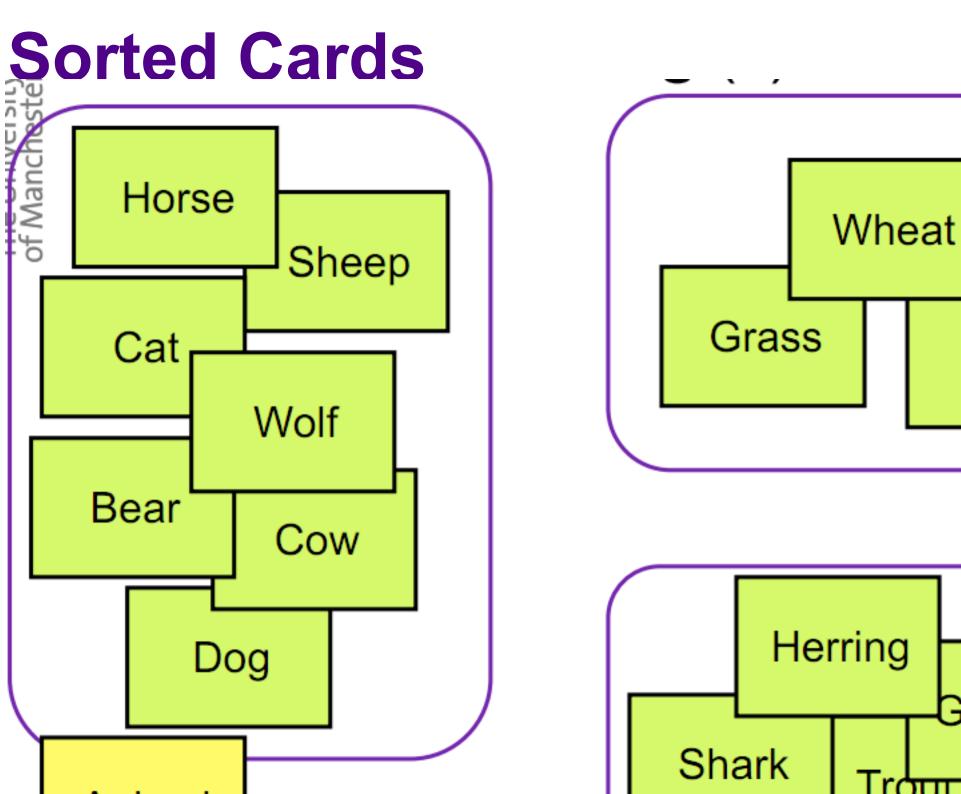
Try 2 Rounds

- Initial ideas
 - How we use them
 - Ecology
 - Anatomy

. . .

Generative

- For elicitation, more is (generally) better
 - Within limits
 - Brainstormy
- Is critical knowledge tacit?
 - We can't easily know in advance
- Winnowing is crucial
 - Sometimes we elicit things which should be discarded
 - And trigger the discarding of other things!
 - Better to know what we don't care to know!


Knowledge Acquisition (KA)

- Operational definition
 - Given
 - a source of (propositional) knowledge
 - a sink
 - KA is the transfer of propositions from source to sink
- Elicitation (for terminological knowledge)
 - Initial Capture:
 - Source: People, "experts", "domain experts" (DE)
 - Sink: "Protocol" (record of behavior)
 - Term Extraction:
 - Source: Text (e.g., transcript, textbook, Wikipedia article)
 - Sink: List of terms (perhaps on cards)
 - Initial Regimentation:
 - Source: List of terms (on cards!)

Reminder: An Animals Taxonomy

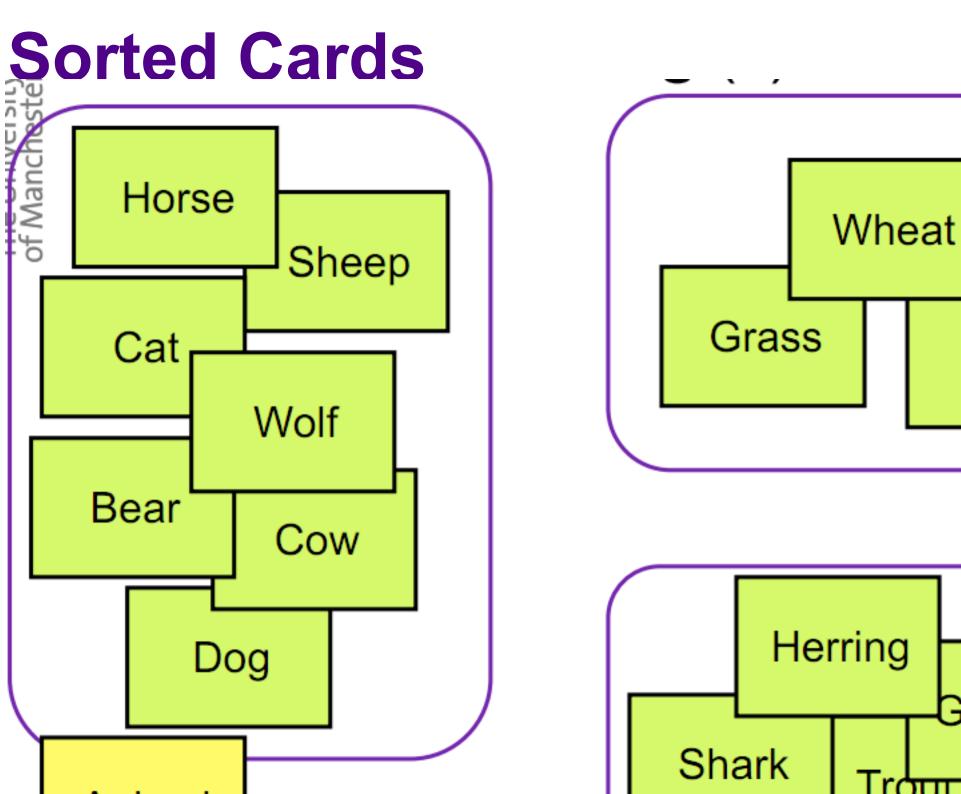
• Task:

- generate a controlled vocab for an index of a children's book
- Domain:
 - Animals including
 - Where they live
 - What they eat
 - Carnivores, herbivores and omnivores
 - How dangerous they are
 - How big they are
 - A bit of basic anatomy
 - » legs, wings, fins? skin, feathers, fur?
 - (read the book!)

Pla

Fisł

Tree


Goldfish

Triadic Elicitation: The 3 card trick

- Select 3 cards at random
 - Identify which 2 cards are the most similar?
 - Write down why (a similarity)
 - -As a new term!
 - Write down why not like 3rd (a difference)
 - Another new term!

• Helps to determine the characteristics of our classes

- Prompts us into identifying differences & similarities
 - There will always be two that are "closer" together
 - Although which two cards that is may differ
 - From person to person
 - From perspective to perspective
 - From round to round

Pla

Fisł

Tree

Goldfish

20 Questions

- Like the game!
 - The KE picks an object/concept in the domain
 - The DE tries to guess it
 - and asks a series of yes/no questions
 - "Is it an animal?" "Is it a vegetable?" "Is it a mineral?"

Living

Thing

Animal

- KE notes the questions and their order
 - Can help determine key concepts, properties, etc.
 - Animals, vegetables, and minerals!
 - Can help structure the domain
 - "Is it a living thing?", "an animal?", "a plant?"
- Note that the technique is not the game!
 - Goals are different!

Key Goal: Laddering

- Terms vary in generality
 - Tree vs. Plant
 - Dog vs. Rover
- Each sort may be implicit!
 - Goal: Flesh out the generality hierarchy
 - Get more specific (if too general)
 - Get more general (if mostly specific)
- How?
 - 1. Take a group and ask what they have in common
 - During sorting or 3-card or directly
 - 2. Then investigate relations of new term
 - Siblings, missing children, and (eventually) parents (back to 1)

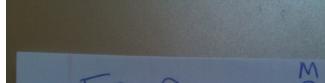
A (Partial) Hierachy

- Living Thing
 - Animal
 - Mammal
 - -Cat
 - Dog
 - -Cow
 - Person
 - Fish
 - Trout
 - Goldfish
 - Shark

– Plant

- Tree
- Grass

Categorisation: "Grammatical"


- Types\Classes\Categories
 - Self standing entities
 - Things that can exist on their own
 - People, animals, houses,
 - -actions, processes, ...
 - Roughly nouns
- Modifiers
 - Things that modify ("inhere") in other things
 - Roughly adjectives and adverbs
- Relations\Properties
 - Things which relate two individuals
 - Roughly verbs, and (variable) attributes

Categorisation: Modelling

- In general, given a set of terms:
 - We describe the world using them
 - We describe terms using other terms
 - Paradigmatically, we define terms
- Assumable
 - Terms which have no or minimal modelling
 - Too hard to model or not needed to model or don't know
 - For "Living thing" we might just have a list of subclasses
 - Sometimes known as the "primitive vocabulary"
- Definable
 - Terms for which we can give a full definition
 - Or reasonably full definition

Result!

- Living Thing
 - Animal
 - Mammal
 - Cat
 - Dog
 - Cow
 - Person
 - Fish
 - Trout
 - Goldfish
 - Shark
 - Plant
 - Tree
 - Grass
 - Wheat

- Modifiers
 - Domestic
 - Pet
 - Farmed
 - Draft
 - Food
 - Wild
 - Health
 - Healthy
 - Sick
 - Sex
 - Male
 - Female
 - Age
 - Adult
 - Child

- Relations
 - eats
 - owns
 - parent-of
 - ...
- Definable
 - Carnivore
 - Herbivore
 - Child
 - Parent
 - Mother
 - Father
 - Food Animal
 - Draft Animal

So! A Task

- Capture
 - Look at the Source Materials
- Extract
 - List of terms; put them on cards!
- Organise
 - Hierarchy
- Encode
 - OWL in Protégé

Coursework

- Take the KE done in class – Feel free to refine it further
- Encode it using Protege 4
 - Each category term becomes a class
 - Capture your hierarchy using subsumption/subclassing
- Submit your RDF/XML file
- Full description on Blackboard!