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a b s t r a c t

The self-organizing map (SOM) is an automatic data-analysis method. It is widely applied to clustering
problems and data exploration in industry, finance, natural sciences, and linguistics. The most extensive
applications, exemplified in this paper, can be found in themanagement of massive textual databases and
in bioinformatics. The SOM is related to the classical vector quantization (VQ), which is used extensively
in digital signal processing and transmission. Like in VQ, the SOM represents a distribution of input data
items using a finite set of models. In the SOM, however, these models are automatically associated with
the nodes of a regular (usually two-dimensional) grid in an orderly fashion such that more similar models
become automatically associated with nodes that are adjacent in the grid, whereas less similar models
are situated farther away from each other in the grid. This organization, a kind of similarity diagram of
the models, makes it possible to obtain an insight into the topographic relationships of data, especially
of high-dimensional data items. If the data items belong to certain predetermined classes, the models
(and the nodes) can be calibrated according to these classes. An unknown input item is then classified
according to that node, themodel of which is most similar with it in somemetric used in the construction
of the SOM. A new finding introduced in this paper is that an input item can even more accurately be
represented by a linear mixture of a few best-matching models. This becomes possible by a least-squares
fitting procedure where the coefficients in the linear mixture of models are constrained to nonnegative
values.

© 2012 Elsevier Ltd. All rights reserved.
1. Brain maps

It has been known for over hundred years that various cortical
areas of the brain are specialized to different modalities of
cognitive functions. However, it was not until, e.g., Mountcastle
(1957) as well as Hubel and Wiesel (1962) found that certain
single neural cells in the brain respond selectively to some specific
sensory stimuli. These cells often form local assemblies, in which
their topographic location corresponds to some feature value of a
specific stimulus in an orderly fashion. Such systems of cells are
called brain maps.

It was believed first that the brain maps are determined geneti-
cally, like the other bodily formations and organizations. It was not
until many of these maps, at least their fine structures and feature
scales were found to depend on sensory experiences and other oc-
currences. Studies of brain maps that are strongly modified by ex-
periences have been reported especially byMerzenich et al. (1983).

Among some theoretical biologists in the 1970s, e.g. Grossberg
(1976), Nass and Cooper (1975), and Perez, Glass, and Shlaer
(1975), the question arose whether feature-sensitive cells could
be formed also in artificial systems automatically, by learning
(i.e., adaptation to simulated sensory stimuli). However, already
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Malsburg (1973), and later Amari (1980) demonstrated that their
topographic order may also ensue from the input data.

The above modeling approaches deserve to be mentioned
among the first successful theoretical proofs of input-driven self
organization. In them, the emergence of feature-sensitive cells
was implemented by the so-called competitively learning neural
networks. In a subset of cells, adaptation of the strongest-activated
cells to the afferent input signals made them become tuned to
specific input features or their combinations.

The early, biologically inspired brain map models, however,
were not suitable for practical data analysis. One of their inherent
handicapswas that the resultingmapswere partitioned. Theywere
made up of small patches, between which the ordering jumped
discontinuously and at random, and thus no global order over the
whole map array was achieved. Although such partial ordering is
commonplace in biology, many brain maps that represent abstract
features, such as the tonotopic maps, the color maps, and the
sonar-echo maps as reported in Suga and O’Neill (1979), Tunturi
(1950, 1952), and Zeki (1980) respectively, are globally organized.
Neither did these models scale up, i.e., they could not be used for
large networks and high signal dimensionalities, in spite of highly
increased computing power.

It is possible to state in retrospection that from the early neural
models of self organization there was an important factor missing.
It is a control factor or function, the amount of which depends
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on local signal activity, but which itself does not contribute to the
signals. Its only purpose is to control the plasticity (modifiability by
the signals) of selected subsets of neural connections in the network.
So, in the neural models, it will not be enough to control the
activities of the nodes by the activities of other nodes through the
links, i.e., the neural connections. One needs extra kinds of control
factors that mediate information without mediating the activities.
It is generally known that such an information is carried in the
neural realms by, e.g., the chemical messenger molecules.

On the other hand, if the above neural and chemical functions
are taken into account at least in abstract form, it is possible to
scale up the self-organizing systems up to the capacity limits of
the modern computers.

2. The classical vector quantization (VQ)

The implementation of optimally tuned feature-sensitive filters
by competitive learning was actually demonstrated in abstract
form much earlier in signal processing. I mean the classical vector
quantization (VQ), the basic idea of which was introduced (in
scalar form) by Lloyd (1957), and (in vector form) by Forgy
(1965). Actually the optimal quantization of a vector space dates
back to 1850, called the Dirichlet tessellation in two- and three-
dimensional spaces and the Voronoi tessellation in spaces of
arbitrary dimensionality; cf. Dirichlet (1850) and Voronoi (1907).
The VQ has since then become a standard technology in modern
digital signal processing.

In vector quantization, the space of vector-valued input data,
such as feature vectors, is partitioned into a finite number of
contiguous regions, and each region is represented optimally by
a single model vector, originally called the codebook vector in the
VQ. (The latter term comes from digital signal transmission, where
the VQ is used for the encoding and decoding of transmitted
information.)

In an optimal partitioning, the codebook vectors are constructed
such that the mean distance (in some metric) of an input data
item from the best-matching codebook vector, called the winner,
is minimized, i.e., the mean quantization error is minimized.

For simplicity, the VQ is illustrated using the Euclidean dis-
tances only. Let the input data items constitute n-dimensional
Euclidean vectors, denoted by x. Let the codebook vectors be de-
noted bymi, indexed by subscript i. Let the subscript c be the index
of a particular codebook vector mc , called the winner, namely, the
one that has the smallest Euclidean distance from x:

c = argmin
i

{∥x − mi∥}. (1)

If p(x) is the probability density of x, themean quantization error
E is defined as

E =


V

∥x − mc∥
2p(x)dV , (2)

where dV is a volume differential of the data space V . The objec-
tive function E, being an energy function, can be minimized by a
gradient-descent procedure. However, the problem is highly non-
linear; nonetheless, e.g., this author has shown that it converges to
a local minimum; cf. Kohonen (1991).

If the set of the input data items is finite, a batch computation
method is also feasible. It is called the Linde–Buzo–Gray (LBG)
algorithm, cf. Linde, Buzo, and Gray (1980), but it was devised
already by Forgy (1965). There exists a wealth of literature on the
above VQ, which is also called ‘‘k-means clustering ’’. For classical
references, cf., e.g., Gersho (1979), Gray (1984), and Makhoul,
Roucos, and Gis (1985).
Fig. 1. Illustration of a self-organizing map. An input data item X is broadcast to
a set of models Mi , of which Mc matches best with X . All models that lie in the
neighborhood (larger circle) of Mc in the grid match better with X than with the
rest.

3. The self-organizing map (SOM): general

3.1. Motivation of the SOM

Around 1981–82 this author introduced a new nonlinearly pro-
jecting mapping, called the self-organizing map (SOM), which oth-
erwise resembles the VQ, but in which, additionally, the models
(corresponding to the codebook vectors in the VQ) become spa-
tially, globally ordered (Kohonen, 1982a, 1982b, 1990, 2001).

The SOMmodels are associatedwith the nodes of a regular, usu-
ally two-dimensional grid (Fig. 1). The SOM algorithm constructs
the models such that:

More similar models will be associated with nodes that are closer
in the grid, whereas less similar models will be situated gradually
farther away in the grid.

It may be easier to understand the rather involved learning
principles and mathematics of the SOM, if the central idea is first
expressed in the following simple illustrative form:

Every input data item shall select the model that matches best with
the input item, and this model, as well as a subset of its spatial
neighbors in the grid, shall be modified for better matching.

Like in the VQ, the modification is concentrated on a selected
node that contains the winner model. On the other hand, since
a whole spatial neighborhood in the grid around the winner is
modified at a time, the degree of local ordering of themodels in this
neighborhood, due to a smoothing action, will be increased. The
successive, different inputs cause corrections in different subsets
of models. The local ordering actions will gradually be propagated
over the grid. However, the real mathematical process is a bit more
complicated than that.

The actual computations for producing the ordered set of the
SOM models can be implemented by either of the following main
types of algorithms: 1. The models in the original SOM algorithm
are computed by a recursive, stepwise approximation process in
which the input data items are applied to the algorithm one at
a time, in a periodic or random sequence, for as many steps as
it will be necessary to reach a reasonably stable state. 2. In the
batch-type process, on the other hand, all of the input data items
are applied to the algorithm as one batch, and all of the models
are updated in a single concurrent operation. This batch process
usually needs to be reiterated a few to a few dozen times, after
which the models will usually be stabilized exactly. Even the time
to reach an approximately stabilized state is an order ofmagnitude
shorter than in the stepwise computation.

It should be emphasized that only the batch-learning version
of the SOM is recommendable for practical applications, because it
does not involve any learning-rate parameter, and its convergence
is an order of magnitude faster and safer. The stepwise learning
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rule, on the other hand, was originally set up only for theoretical
reasons and to facilitate a comparison with the other self-
organizing models. Moreover, it is not possible to use the stepwise
learning with general metrics, but we will see that batch learning
also solves this problem.

More detailed descriptions of the SOM algorithms will be given
below.

Several commercial software packages as well as plenty of
freeware on the SOMare available. This author strongly encourages
the use of well-justified public-domain software packages. For
instance, there exist two freeware packages developed by us,
namely, the SOM_PAK (Kohonen, Hynninen, Kangas, & Laaksonen,
1996; SOM_PAK Team, 1990) and the SOM Toolbox (SOM Toolbox
Team, 1999; Vesanto, Alhoniemi, Himberg, Kiviluoto, & Parviainen,
1999; Vesanto, Himberg, Alhoniemi, & Parhankangas, 1999), both
downloadable from the Internet. Both packages contain auxiliary
analytical procedures, and especially the SOM Toolbox, which
makes use of the MATLAB functions, is provided with versatile
graphics means.

Unlike in most biologically inspired map models, the topo-
graphic order in the SOM can always be materialized globally over
the whole map.

The spatial order in the display facilitates a convenient and
quick visual inspection of the similarity relationships of the input
data aswell as their clustering tendency, and comes in handy in the
verification and validation of data samples. Moreover, with proper
calibration of the models, the clustering and classification of the
data become explicit.

The rest of this article concentrates on the SOM principles and
applications. The SOM has been used extensively as a visualization
tool in exploratory data analysis. It has had plenty of practical
applications ranging from industrial process control and finance
analyses to the management of very large document collections.
New, promising applications exist in bioinformatics. The largest
applications so far have been in the management and retrieval of
textual documents, of which this paper contains two examples.

Many versions of the SOM algorithms have been suggested
over the years. They are too numerous to be reviewed here; cf.
the extensive bibliographies mentioned as Refs. (Kaski, Kangas, &
Kohonen, 1998; Oja, Kaski, & Kohonen, 2003; Pöllä, Honkela, &
Kohonen, 2009). See also the Discussion, Section 7.

3.2. Calibration of the SOM

If the input items fall in a finite number of classes, the different
models can be made to correspond to these classes and to
be provided with corresponding symbolic labels. This kind of
calibration of the models can be made in two ways: 1. If the
number of input items is sufficiently large, one can first study the
distribution of matches that all of the input data items make with
the various models. A particular model is labeled according to that
class that occurs in themajority of input samples thatmatchwith this
model. In the case of a tie, one may carry out, e.g., a majority voting
over a larger neighborhood of themodel. 2. If there is only a smaller
number of input data items available so that the above majority
votingmakes no sense (e.g., there are toomany ties, or there are no
hits at some of the models), one can apply the so-called k-nearest-
neighbors (kNN) method. For each model, those k input data items
that are closest to it (in the metric applied in the construction of
the SOM) are searched, and a majority voting over them is carried
out to determine the most probable classification of the node. In
the case of a tie, the value of k is increased until the tie is resolved.
Usually k is selected to be on the order of half a dozen to a hundred,
depending on the number of input data items and the size of the
SOM array.

When a new, unknown input item is compared with all of the
models, it will be identified with the best-matching model. The
classification of the input item is then understood as that of the
best-matching model.
3.3. On ‘‘matching by similarity’’

There exist many versions of the SOM, which apply different
definitions of ‘‘similarity’’. This property deserves first a short dis-
cussion. ‘‘Similarity’’ and ‘‘distance’’ are usually opposite concepts.

The cognitive meaning of similarity is a very vague one. For
instance, one may talk of the similarity of two persons or two
historical eras, although such a comparison is usually based on a
subjective opinion.

If the same comparison should be implemented automatically,
it can only be based on some very restricted analytical, say
statistical attributes. The situation is much clearer, if we deal with
concrete objects in science or technology, since we can then base
the definition of dissimilarity on basic mathematical concepts of,
say, distance measures between attribute vectors. The statistical
figures are usually also expressed as real vectors, consisting of
numerical results or other statistical indicators. Various kinds
of spectra and other transformations can also be regarded as
multidimensional vectors of their components.

The first problem in trying to compare such vectors is usually
different scaling of their elements. For metric comparison, a simple
remedy is to normalize the scales so that either the variances of the
variables in the different dimensions, or theirmaxima andminima,
respectively, become the same. After that, some standard distance
measure, such as the Euclidean, or more generally, the Minkowski
distance, etc. can be tried, the choice depending on the nature
of the data. It has turned out that the Euclidean distance, with
normalization, is already applicable tomost practical studies, since
the SOM is able to display even complex interdependencies of the
variables in its display.

A natural measure of the similarity of vectorial items is in
general some inner product. In the SOM research, the dot product
is commonly used. This measure also complies better with the
biological neural models than the Euclidean distance. However,
the model vectors mi, for their comparison with the input x, must
be kept normalized to constant length all the time. If the vector
dimensionality is high, and also the input vectors are normalized
to constant length, the difference between SOMs based on the
Euclidean distances and the dot products is insignificant. (For the
construction of Euclidean and dot-product SOMs, cf. Sections 4.1
and 4.5, respectively.) On the other hand, if there are plenty of
zero elements in the vectors, the computation of dot products is
correspondingly faster. This property can be utilized effectively
especially in the fast computation of document maps discussed at
the end of this article.

Before proceeding further, it will be necessary to emphasize a
basic fact. An image, often given as a set of pixels or other structural
elements, will usually not be applicable as such as an input vector.
The natural variations in the images, such as translations, rotations,
variations of size, etc., as well as variations due to different lighting
conditions are usually so wide that a direct comparison of the
objects on the basis of their appearances does not make any
sense. Instead, the classification of natural items shall be based
on the extraction and classification of their characteristic features
which must be as invariant as possible. Features of this type may
consist of color spectrograms, expansions of the images in Fourier
transforms, wavelets, principal components, or eigenvectors of
some image operators, etc. If one can describe the input objects by
a restricted set of invariant features, the dimensionality of the input
representations, and the computing load are reduced drastically.

A special kind of dissimilarity or distance measure is applied
in an SOM that is called the Adaptive-Subspace SOM (ASSOM), cf.
Kohonen (1995, 1996, 2001) and Kohonen, Kaski, and Lappalainen
(1997). In it, certain elementary systems are associated with the
nodes, and these systems develop into specific filters that respond
invariantly to some class (e.g., translation-invariant, rotation-
invariant, or scale-invariant) of local features. Their parameters
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are determined by adaptation to transforms of the same input
patterns (whatever they are) when these patterns occur in various
elementary transformations of observations. Mathematically each
of these systems represents a subspace of the signal space, and is
described by a few basis vectors. The distance of an input vector
from the subspace is defined as its orthogonal projection on the
orthogonal complement of this subspace, cf. Kohonen (2001, p. 6).
So, if the length of the distance from the subspace is zero, the input
vector is expressible as a linear combination of the basis vectors;
but in general, the length of that distance constitutes the error. In
the adaptive learning, the basis vectors are rotated to decrease the
error, i.e., the distance from the due subspace.

The selection of a characteristic set of features and their au-
tomatic extraction from the primary observations must often be
based on heuristic rules. In biology, various feature detectors have
been developed in a very long course of evolution.

For more complex comparisons one may also look for other
kinds of features to be used as the vector elements. For instance,
in text analysis, complete documents can be distinguished from
each other based on their word statistics, i.e., word histograms,
whereupon very careful attention must be paid to the relative
occurrence of the words in different texts; cf. Salton and McGill
(1983). So, the elements of the histogram, corresponding to the
various words, must be weighted by multiplicative factors derived
from the relative occurrences of the words. In addition to using
the statistical entropy of a word, the words in histograms can
be weighted (and thus, rare and very common words can be
ignored) based on their inverse document frequency (IDF). The
‘‘document frequency’’ means in how many documents in a text
corpus a particularword occurs, and IDF is the inverse of this figure.
With proper weighting, the word histograms, which constitute
the feature vectors, can be restricted to, say, some hundreds of
dimensions.

The strings of symbols constitute another common type of vari-
ables. Except in text, string variables occur, e.g., in bioinformat-
ics and organic chemistry: in genetic codes, sequences of atoms in
macromolecules etc.: cf., e.g., Kohonen and Somervuo (2002) and
Oja, Somervuo, Kaski, and Kohonen (2003). Normally the strings
are of very different length. Some kind of edit distance, i.e., the
number of elementary editing operations needed to transform
one string into the other is a very effective definition of the dis-
tance between string variables. These operations must normally
be weighted based on the statistics of the various errors. For very
long strings, such as the protein sequences, some heuristic short-
cut computations such as those applied in the wide-spread FASTA
method (Pearson, 1999; Pearson & Lipman, 1988) may be neces-
sary. Such distance measures have often been precomputed in the
databases.

There are other,more abstract kinds of similaritymeasures. One
of them is the contextual similarity of words. Consider a word in
a text, within the context of its neighboring words. If each word
in the vocabulary is represented by a random code, the mutual
correlations between the representations of thewords remain very
small. However, themeasure of similarity of two local contexts, e.g.,
triplets of three successive words in the text, then ensues from the
occurrence of the same random codes in identical positions in the
triplets. Analyses of the semantic values of words can be based on
contextual-similarity studies, and very deep linguistic conclusions
can be drawn from such analyses, as demonstrated in Kohonen and
Xing (2011).

A very special measure of similarity is functional similarity,
which may mean, e.g., the following. Consider, e.g., a set of signal
filters described by a finite number of parameters; otherwise the
structure of the filters is identical. For the same input signal, the
various filters then usually produce different responses. Consider,
e.g., filters used as predictors. An elementary prediction error,
relating to a given input, is the absolute value of the difference of
the prediction and the true future signal value. For given statistics
of input signals, the distance between two filters (i.e. that of the
sets of their parameters) may be defined as the root-mean-square
of their due prediction errors, as suggested by Lampinen and Oja
(1989). Note that two sets of filter parameters may look quite
different, although the differences of the prediction errors of the
respective filters may be small. Onemay find an indefinite number
of different kinds of functional similarities in practical applications.

An important task is to compare dynamic phenomena. This
becomes possible, if the models are made to represent dynamic
states. A very interesting discussion of dynamic SOMs has been
presented by Hammer, Micheli, Sperduti, and Strickert (2004).

3.4. Levels of abstraction in modeling

Biological modeling. The earliest SOM models, tending to repli-
cate the detailed neural-network structures, were intended for the
description and explanation of the creation of brain maps. A very
modern approach to the formation of feature-sensitive cells in the
visual cortex has been made by Miikkulainen, Bednar, Choe, and
Sirosh (2005). One might also mention a recent version of self-
organizing projections (Kohonen, 2005, 2006) in which a global
order can be achieved.With it, amodel of diffusion of the plasticity-
controlling molecules is involved.

Mathematical abstraction. In abstract mathematical models, the
details of network connections, synaptic plasticity, and chemical
control are ignored, and the dynamics of the activities is repre-
sented by matrix-vector functions and computations. Using these
abstractions of neural networks, one has been able to scale up
many problems so that the SOM has become a practical data-
analysis tool.

3.5. Network architectures

The two-dimensional organization of the models is usually
already effective for the approximation of similarity relations
of high-dimensional data items, like in some earlier methods
called the multidimensional scaling (MDS) (Kruskal & Wish, 1978;
Sammon, 1969). One should notice, however, that in the MDS
methods, every data itemmust bedisplayed geometrically,whereas
the SOM uses only a relatively small set of models that it displays
on a regular grid. In this way, plenty of computations will be saved.

For special purposes, gridswith dimensionality higher than two
may be used, too. A simple rank ordering can also be made to take
place along a one-dimensional grid which, however, will not be
able to display anymore general topological relationships between
the data items.

Regular arrays. Most applications of the SOM are based on
regular arrays of nodes. Sometimes one uses rectangular arrays of
nodes for simplicity. However, the hexagonal arrays are visually
much more illustrative and accurate, and are recommended.
Whatever regular architectures are used, it is advisable to select
the lengths of the horizontal and vertical dimensions of the array to
correspond to the lengths of the two largest principal components
(i.e., those with the highest eigenvalues of the input correlation
matrix), because then the SOM complies better with the low-order
signal statistics. The oblong regular arrays have the advantage over
the square ones of guaranteeing faster and safer convergence in
learning.

Cyclic arrays. The usual SOM models, after learning, exhibit
familiar border effects: the spacings of the neighboring models are
not as regular near the borders as in the middle of the SOM. For
this reason, some researchers have suggested that the network
should bemade end-around cyclic, either toroidal or spherical. The
latter choice has beenmade by the BLOSSOM Team (2005). A cyclic
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network is suitable, if the data itself has a simple cyclic structure.
The cyclic structure may also be advantageous, if the SOM is used,
e.g., in process control to look up for optimal corrections from
the SOM. In cyclic maps, namely, there are no discontinuities
due to the network borders. Even in cyclic networks, however,
one can discern similar irregularities in the spacing of the
models, if some models are located near strong extremities of the
input distribution. So, the irregularities seem to be due to the
extremities of the data distribution and not so much to the network
borders.

Growing networks. A few researches have suggested that the
structure of the network ought to be made to comply better with
the input data. So, the network structure ought to bemade variable,
e.g., it should be allowed to grow in the directions of the input data
distribution; cf., e.g., Fritzke (1994). If this is made, one may be
able to see hierarchical structures of the data emerging explicitly.
Nonetheless there is some arbitrariness in the definition of the
conditions that have been suggested to define the directions of
growing. Arbitrary branching criteria define arbitrary structures
in the network. The visual display is nonetheless better in regular
arrays, and the clustering tendencies can be illustrated uniquely by
the U-matrix techniques, as devised by Ultsch (1993).

3.6. A frequently asked question

One of the most frequently asked questions concerning the
structure of the SOM is how many nodes one needs in the array.
Maybe it is necessary to state first that the main virtue of the SOM
is in the visualization of the data space, whereupon the clustering
structures ought to become visible. There is no sense in using the
SOM for very small data sets, because there exist much better data
analysis methods for them.

So, assume that we have enough data items in order to visualize
the data space with sufficient accuracy. Then it should be realized
that the SOM is also a quantizing method, and has a limited
resolution to show the cluster structures. Sometimes the data set
may contain only a few clusters, whereupon a coarse resolution is
sufficient. However, if one suspects that there are interesting fine
structures in the data, then a larger array is needed for sufficient
resolution.

Typical SOM arrays range from a few dozen to a few hundred
nodes, and the relation of the horizontal and vertical dimensions of
the array ought to comply at least roughly with the relation of the
two largest principal components of the input data, respectively.
It is not possible to guess or estimate the exact size of the array
beforehand. It must be determined by the trial-and-error method,
after seeing the quality of the first guess.

However, it is also necessary to realize that the SOM is often
used as a kind of histogram on which one displays the number
of input data items that is mapped into each of the nodes. This
histogram can be visualized by shades of gray or by pseudocolors.
The statistical accuracy of such a histogram depends on how
many input items are mapped on the average per node. A very
coarse rule-of-thumb may be that about 50 items per node on the
average should be sufficient, otherwise the resolution is limited
by the sparsity of data. So a compromise must be made between
resolution and statistical accuracy. These aspects should be taken
into account especially in statistical studies, where only a limited
number of samples are available.

On the other hand, the SOM may be at its best in the visual-
ization of industrial processes, where unlimited amounts of mea-
surements can be recorded. In the latter case one may try to use as
big an array as one is able to compute, and with the modern com-
puters, even personal ones, it is possible to deal with thousands of
nodes in the SOM array.
4. Two main SOM algorithms

4.1. The original, stepwise recursive SOM algorithm

The original formulation of the SOM algorithm resembles a
gradient-descent procedure. It must be emphasized, however,
that this version of the algorithm was introduced heuristically,
when trying to materialize the general learning principle given in
Section 3.1. This basic form has not yet been shown to be derivable
from any energy function. An approximative and purely formal,
but not very strict derivation ensues from the stochastic approxi-
mation method (Robbins & Monro, 1951); it was applied in Koho-
nen (2001, pp. 146–147). Notwithstanding, successful derivations
of the convergence of slightly modified SOM algorithms, based
on correspondingly modified objective functions, have been pre-
sented by Heskes and Kappen (1993), as well as Kohonen (1991)
and Luttrell (1992).

The convergence of the original SOM algorithm to the globally
ordered state has beenprovenmathematically in some simple low-
dimensional cases: see Cottrell and Fort (1987). On the other hand,
Ritter,Martinetz, and Schulten (1992) have presented a proof that a
local order can be reached for more general dimensionalities of the
vectors, if the distribution of the input vectors is discrete-valued.

Below, only the original form of the SOM is shown, because
it is computationally the simplest and lightest, and in practice,
almost without exception, it will produce useful results for high-
dimensional input vectors, too. The correctness of the ordering
result, and the quality of the produced maps can be analyzed
mathematically. The theoretical foundations of the SOMhave been
discussed thoroughly by Cottrell, Fort, and Pagés (1997).

Consider again Fig. 1. Let the input data items this time consti-
tute a sequence {x(t)} of real n-dimensional Euclidean vectors x,
where t , an integer, signifies a step in the sequence. Let {mi(t)} be
another sequence of n-dimensional real vectors that represent the
successively computed approximations of model mi. Here i is the
spatial index of the grid nodewithwhichmi is associated. The orig-
inal SOM algorithm assumes that the following process converges
and produces the wanted ordered values for the models:

mi(t + 1) = mi(t) + hci(t)[x(t) − mi(t)], (3)

where hci(t) is called the neighborhood function. This function re-
sembles the kernel that is applied in usual smoothing processes.
The subscript c is the index of a particular node (winner) in the
grid, namely, the one with the model mc(t) that has the smallest
Euclidean distance from x(t):

c = argmin
i

{∥x(t) − mi(t)∥}. (4)

Eqs. (3) and (4) can be illustrated as defining a recursive step
where first the input data item x(t) defines or selects the best-
matching model (winner) in the grid according to Eq. (4). Then,
according to Eq. (3), the model at this node as well as at its spatial
neighbors in the grid are modified. The modifications always take
place in such a direction that the modified models will match
better with the input.

The rates of the modifications at different nodes depend on the
mathematical form of the function hci(t). A much applied choice
for the neighborhood function hci(t) is

hci(t) = α(t) exp[−sqdist(c, i)/2σ 2(t)], (5)

where α(t) is a monotonically (e.g., hyperbolically, exponentially,
or piecewise linearly) decreasing scalar function of t , sqdist(c, i) is
the square of the geometric distance between the nodes c and i in
the grid, and σ(t) is another monotonically decreasing function of
t , respectively. The true mathematical form of σ(t) is not crucial,
as long as its value is fairly large in the beginning of the process,
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say, on the order of half of the diameter of the grid, whereafter it
is gradually reduced to a fraction of it in about 1000 steps. The
topological order is developed during this period. On the other
hand, after this initial phase of rough ordering, the final convergence
to nearly optimal values of the models takes, say, an order of
magnitude more steps. For a sufficient statistical accuracy, every
model must be updated sufficiently often. However, we must give a
warning: the final value of σ shall not go to zero, because otherwise
the process loses its ordering power. It should always remain, say,
above half of the grid spacing. In very large SOMgrids, the final value
of σ may be on the order of five per cent of the shorter side of the
grid.

There are also other possible choices for themathematical form
of hci(t). One of them is very simple, in which we have hci = 1 up
to a certain radius from the winner, and zero otherwise.

The neighborhood function has the most central role in self
organization. However, attempts to implement it by pure neural
components have not been successful. On the contrary, in biologi-
cal modeling, it seems that it is best materialized by the diffusion
of some chemical control agents fromplaceswhere the cell activity
is high; cf., e.g., Kohonen (2006).

The reader is advised to use some of the ready-made complete
software packages, since there are many parameters and plenty of
other aspects to be taken into account in the definition of a good
learning process. Also the following batch computation procedure
is to be preferred in practice, especially since it contains fewer
parameters than the stepwise recursive algorithm, and converges
much faster.

4.2. Stable state of the learning process

Assuming that the convergence to some stable state of the SOM
is true, we require that the expectation values of mi(t + 1) and
mi(t) for t → ∞ must be equal, while hci is nonzero, where
c = c(x(t)) is the index of the winner node for input x(t). In other
words we must have

∀i, Et{hci(x(t) − mi(t))} = 0. (6)

Here Et is the mathematical expectation value operator over
t . In the assumed asymptotic state, for t → ∞, the mi(t) are
independent of t and are denoted by m∗

i . If the expectation values
Et(.) are written, for t → ∞, as (1/t)


t(.), we can write

m∗

i =


t
hcix(t)
t
hci

. (7)

This, however, is still an implicit expression, since c depends
on x(t) and the mi. Nonetheless, Eq. (7) shall be used for the
motivation of the iterative solution for the mi, known as the batch
computation of the SOM (‘‘Batch Map’’).

Then it is useful to notice that for the different nodes i, the same
addends occur a great number of times. Therefore it is advisable,
especially with very large SOMs, to first compute the mean xm,j of
all of the the x(t) that are closest to model mj in the data space,
and then weight it by the number nj of the samples in this subset
and by hji. Then we obtain

m∗

i =


j
njhjixm,j
j
njhji

, (8)

where the notation xm,j is used to denote the mean of the inputs
that are closest to the model mj, and nj is the number of those
inputs.

Eq. (7) or Eq. (8) will be used later in the derivation of the
iterative batch-computation algorithm.
4.3. Initialization of the models

A special question concerns the selection of the initial values
for the mi. It has been demonstrated by Kohonen (2001) that
they can be selected even as random vectors, whereas much
faster ordering and convergence follow if the initial values are
selected as a regular, two-dimensional sequence of vectors taken
along a hyperplane spanned by the two largest principal components
of x (i.e., principal components associated with the two highest
eigenvalues); cf. Kohonen (2001). This method is called linear
initialization.

The initialization of the models as random vectors was origi-
nally used only to demonstrate the capability of the SOM to be-
come ordered, starting from an arbitrary initial state. In practical
applications one expects to achieve the final ordering as quickly as
possible, so the selection of a good initial state may speed up the
convergence of the algorithms by orders of magnitude.

In the next subsection we shall discuss the batch computation
of the SOM, which also applies to general distance measures of the
input vectors. If the input vectors were Euclidean, the principal-
component method is recommended for the initialization. For
general distance measures the random initialization is always
possible; the optimization of initialization for general metrics,
however, is very tricky; cf. e.g., Kohonen and Somervuo (2002), and
cannot be discussed at length here.

For the initialization of SOMs that are based on functional simi-
larity, onemay have to resort to random initialization of themodel
parameters.

4.4. The batch computation of the SOM

In the continuation we shall concentrate on the batch compu-
tation of the SOM, because it is faster and safer than the stepwise
recursive algorithm, and can also be generalized for nonvectorial
data.

Consider Fig. 2, where a two-dimensional hexagonal array of
nodes, depicted by the circles, is shown. With each node i, a model
mi is associated. Also a list, containing copies of certain input
vectors x(t), is associated with each node.

Like in the stepwise recursive algorithm, the initial values of
themi, in principle, may be selected as random vectors, preferably
from the domain of the input vectors. However, a better strategy,
in the case of the Euclidean metric, is to take for the mi a regular
two-dimensional sequence of values picked up from the two-
dimensional hyperplane, spanned by the two largest principal
components of x.

Then consider the set of input data vectors {x(t)}, where t is an
integer-valued index of a vector. Compare each x(t) with all of the
models and make a copy of x(t) into the sublist associated with
the node, the model vector of which matches best with x(t) in the
Euclidean metric.

In this illustrative examplewe assume a neighborhood function
that has the value 1 in a neighborhood set Ni of nodes, consisting of
the nodes up to a certain distance from node i, and is equal to zero
otherwise.

Since according to Eqs. (7) and (8) the equilibrium value of
every model must now be the mean of the x(t) falling into its
neighborhood set Ni, we want to approach this equilibrium state
by the following strategy. We compute the mean of the x(t) over
Ni, that is, of all the x(t) that have been copied into the union of
all of the sublists in Ni. A similar mean is computed for every node
i, i.e. over the neighborhoods around all of the nodes. Updating of
the mi then means that the old values of the mi are replaced by
the respective means, in one concurrent computing operation over
all nodes of the grid. This concludes one updating cycle.
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Fig. 2. Illustration of one cycle in the batch process. The input data items x(t) are first distributed into sublists associated with their best-matching models, and then the
new values of the models are determined asmeans, or more generally, as generalized medians (as written in the figure) over the neighborhood sets of sublists.
In Fig. 2, however, there appears a new term ‘‘generalized
median’’, written below the set line. In the above discussion it
should be replaced by the word ‘‘mean’’, but because Fig. 2 is also
used for to explain the self-organization in the case of a general
distancemeasure, the term ‘‘generalizedmedian’’ has been used in
it and has to be explained next.

The batch-computing method, as several times mentioned, can
be generalized for nonvectorial data, e.g., strings of symbols, if a
generalized median over the samples x(t) can be defined. This kind
of median of a set of data items is defined as the item that has the
smallest sum of distances from the other items in the set. This concept
was originally introduced by the author; cf. Kohonen (1985), but
it can also be found from Kohonen (2001). Where we earlier used
the mean over the union of the sublists in the neighborhood set Ni,
we shall now use the generalized median in the same role. Such
SOMs have been constructed for protein sequences by Kohonen
and Somervuo (2002) and for virus-type DNA in Oja, Somervuo
et al. (2003); Oja, Sperber, Blomberg, and Kaski (2004, 2005).

This updating cycle is reiterated, always first clearing all lists
and thereafter distributing new copies of the input vectors under
those nodes, the (updated) models of which match best with the
new input vectors. The updated model values, sooner or later,
become steady and are no longer changed in continued iterations,
whereupon the training can be stopped.

A process that complies even better with the stepwise recursive
learning is obtained if the means are formed as weighted averages,
where the weights are related to each other like the hci. Here c is
the index of the node, the model of which is updated, and i stands
for the indices of the nodes in its neighborhood.
A discussion of the convergence of the batch-computing
method has been presented by Cheng (1997).

4.5. Dot-product maps

For metric vectors, a practical computation of the SOM is
based on their dot products. For Euclidean vectors this method
is particularly advantageous, if there are plenty of zero elements
in the vectors, because they are skipped in the evaluation of
similarities. However, the model vectors mi, for their comparison
with the input x, must be kept normalized to constant length all
the time. Instead of Eq. (1), the index of the winner location is now
defined by
c = argmax

i
{dot(x,mi)}. (9)

Since the computation of the SOM is in practice carried out by
the batch algorithm, the mapping of all of the input items onto
the respective winner nodes (i.e., the associated lists) is made
in a similar way as described before. The only modification is
modification of the definition of the ‘‘generalized median’’. There
may exist several possibilities for doing that, but in our applications
we have successfully used the following rule, which is applicable
at least if the number of itemsmapped on each node is high on the
average:

In the ‘‘dot-product SOMs’’, the ‘‘generalized median’’ of a set of
items is identified with that item that has the minimum sum of dot
products with all of the other items.
The normalization of the mi to constant length shall be made

after each iteration cycle.
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5. Applications of the SOM

5.1. Main application areas of the SOM

Before looking into the details, one may be interested in know-
ing the justification of the SOM method. Briefly, by the end of the
year 2005 we had documented 7768 scientific publications: cf.
Kaski, Kangas et al. (1998), Oja, Kaski et al. (2003) and Pöllä et al.
(2009) that analyze, develop, or apply the SOM. The following short
list gives the main application areas:

1. Statistical methods at large
(a) exploratory data analysis
(b) statistical analysis and organization of texts

2. Industrial analyses, control, and telecommunications: Kohonen,
Oja, Simula, Visa, and Kangas (1996)

3. Biomedical analyses and applications at large
4. Financial applications: Deboeck and Kohonen (1998)

In addition to these, one may mention a few specific applica-
tions, e.g., profiling of the behavior of criminals, categorization of
galaxies (Naim, Ratnatunga, & Griffiths, 1997), categorization of
real estates, etc.

It is not possible to give a full account of the theory and different
versions of the SOM, or applications of the SOM in this article. We
can only refer to the above lists of 7768 SOM publications (today,
their number is over 10,000), and to more than ten textbooks,
monographs, or edited books, e.g. Allinson, Yin, Allinson and Slack
(2001), Kohonen (1989, 2001), Miikkulainen (1993), Obermayer
and Sejnowski (2001), Oja and Kaski (1999), Ritter et al. (1992),
Seiffert and Jain (2002), Tokutaka, Kishida, and Fujimura (1999),
Tokutaka, Ookita, and Fujimura (2007) and Van Hulle (2000), and
a great number of Ph.D. Theses.

Two special issues of this journal have been dedicated to the
SOM: The 2002 Special Issuewith the subtitle ‘‘NewDevelopments
in Self-Organizing Maps’’, Neural Networks, Vol. 1, Numbers 8–9,
October/November 2002, and the 2006 Special Issue ‘‘Advances in
Self-Organizing Maps—WSOM’05’’, Neural Networks, Vol. 1, Num-
bers 6–7, July/August 2006. Moreover, the journal Neurocomputing
has published a special SOM issue in Vol. 21, Numbers 1–3, October
1998.

A series of meetings named the WSOM (Workshop on Self-
Organizing Maps) has been in progress since 1997. They have been
organized in the following venues: Otaniemi, Finland (1997 and
1999); Lincoln, UK (2001), Kitakyushu, Japan (2003); Paris, France
(2005); Bielefeld, Germany (2007); St. Augustine, FL, USA (2009),
Espoo, Finland (2011), and Santiago, Chile (2012).

5.2. Hints for the construction of very large SOMs

With very large maps, both winner-search and updating are
time-consuming operations. Notice that with large arrays, the
initial radii of the neighborhoods are usually very large, too. Even
the final radius may be on the order of a dozen grid spacings. Then,
if the initial values of the models are close to the final state, the
convergence of the SOMcanbemade at least an order ofmagnitude
faster.

A good estimate of the initial values of a large map can be
obtained by starting with a smaller map, initializing it properly,
e.g., by the principal-component method (linear initialization),
letting it to get stabilized approximately, and then adding new,
interstitial nodes to the SOM array. The initial values of the models
associated with the interstitial nodes can be interpolated on the
basis of those of the smaller array that have already converged
approximately. After that, the larger map must be let to get
converged carefully in a longer training process.
Especially in word histograms regarded as vectors, there are
usually plenty of zero elements. If the dot-product similarity
measure is applied, the zero elements do not contribute to its
calculation. It is possible to pretabulate the indices of the nonzero
elements for each input vector, and thereafter consider only those
elements in computing the dot products.

The searching of the winner can in general be accelerated by
orders of magnitude by storing the addresses of the old winner
locations together with the corresponding training data. The
pointers to the old winners can be utilized during the next training
cycle, confining the searching for the new winner only to the
neighborhood of the old winner by following the stored pointers,
after which the pointer to the winner is updated. If a smaller map
is computed first, approximate pointers to a much larger map can
also be obtained by the interpolation method explained above.

Eq. (8) allows for a very efficient implementation of parallel
computing, in which extra memory need not be reserved for the
computed new values of themi. After the new pointers to the new
winners have been computed, the previous values of the model
vectors are not needed any longer. They can be replaced by the
updated means xm,j, and the new values of the model vectors can
be computed directly from the above equation.

Moreover, the winner search can be partly parallelized by
dividing the data into different processors in a shared-memory
computer.

For a more detailed explanation, see Kohonen et al. (2000) or
Kohonen (2001, p. 294).

With a high dimensionality of the vectors, the memory re-
quirements can further be reduced significantly by using a low
representation accuracy of the vector elements. Notice that the
truncation errors are comparable to white noise, which is sta-
tistically smoothed out when computing vectorial distances of
high-dimensional vectors. In our largest SOM we have used only
eight-bit accuracy for the vector elements.

5.3. SOMs of document collections

It is possible to form similarity graphs of text documents by the
SOM principle, when models of word collections of the documents
are used as features; cf. Lin, Soergel, andMarchionini (1991), Merkl
(1995), Merkl, Tjoa, and Kappel (1994), Scholtes (1991), and Zavrel
(1995). The simplest features consist ofweighted histograms of the
words, regarded as real vectors, but usually some dimensionality
reduction of the very-high dimensional histogramsmust be carried
out.

One of the new ideas, called theWEBSOM,was to construct first
aword-category SOM based on the contextual similarity of words (cf.
Section 3.3). Then, the words of a free natural text were clustered
onto the grid points of such a word-category SOM to form a word
category histogram. This histogram provided the input features to
an SOM of documents; cf. Kaski, Honkela, Lagus, and Kohonen
(1998).

We abandoned this idea, however, for two reasons. First, the
construction of a word-category SOM was not uniquely defined.
Second,we found that another dimensionality-reduction principle,
based on a random projection of the weighted word histogram,
togetherwith some computational tricks (discussed below) turned
out to be orders of magnitude more effective. The generic name
‘‘WEBSOM’’, nonetheless, was later used also for this improved
version of a document SOM.

5.3.1. Clustering of documents by classes
The text corpus used in this first example consisted of docu-

ments collected from four different fields of applications, and itwas
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Fig. 3. Mapping of the four Reuters document classes onto the SOM. The densities of the ‘‘hits’’ are shown by shades of gray.
compiled by the Reuters corporation. No original documents were
made available, but Lewis, Yang, Rose, and Li (2004) have prepro-
cessed the textual data, removing the stopwords, and reducing the
words into their stems; in other words, our work was based on the
reduced word histograms. Salojärvi from our laboratory selected a
4000-document subset from this preprocessed corpus, restricting
only to such articles that were classified into one of the following
categories:

1. Corporate-industrial.
2. Economics and economic indicators.
3. Government and social.
4. Securities and commodities trading and markets.

There were 1000 documents in each class. Salojärvi then picked
up those 1960 words to the histograms that appeared at least
200 times in the selected texts. In order to carry out statistically
independent experiments, a small subset of documents was set
aside for testing. The 1960-dimensional word histograms were
weighted by entropy-type factors as explained by Manning and
Schütze (1999). Using the weighted word histograms of the rest of
the 4000 documents as input, a 2000-node SOM was constructed.

Fig. 3 shows the four distributions of the hits on the SOM,
when the input items from each of the four classes were applied
separately to the SOM. It is clearly discernible that the map is
ordered, i.e., the four classes of documents are segregated to a
reasonable accuracy, and the classes 1, 3, and 4 are even singly
connected, in spite of all of themdealingwith closely related topics.

5.3.2. The SOM of the Encyclopaedia Britannica
In this example we shall emphasize the benefits of SOM meth-

ods in massive problems such as the organization of and searching
from document corpora. For documents, the distributions of words
and other terms (word combinations) constitute a possible set of
characteristic features. It may be necessary to forestall eventual
criticisms by stating that although semantic analyses of the texts
are more accurate for the classification of the true textual con-
tents, we could not afford such methods. Our objective was to deal
with really large collections of literary documents, whereupon the
standard contemporary computers, albeit rather advanced ones,
already had to operate at the limits of their capabilities. Our choice
for the features then demonstrated the power of (weighted) word
histograms as features, combinedwith the SOM, in the exploration
of large text collections.

From the electronic version of Encyclopaedia Britannica, 68,000
articles were picked up. In addition, 43,000 textual items such
as summaries, updates, and other miscellaneous material were
collected. Very long articles were split into several sections,
resulting in a total of 115,000 documents. An average document
contained 490words. An SOM for thismaterial was then computed
by Kohonen et al. (2000).

These documents were first preprocessed to remove the HTML
markups, links, and images. Inflected word forms were converted
to their base forms using a standard morphological analyzer;
otherwise, every inflected form would have been regarded as a
different word. The words were then weighted by the inverse
document frequency (IDF). By ignoring words that had a very low
IDF value (such as stopwords), the size of the finally accepted
vocabulary was 39,058 words. This would then have been the
dimensionality of the input vectors to the SOM, but it would still
have meant very heavy computations.

In text analysis, the so-called latent semantic indexing (LSI)
(Deerwester, Dumais, Furnas, & Landauer, 1990) is used for the
reduction of the dimensionalities of the word histograms. Kaski
(1998) of our group found out that a certain random projection, as
introduced in Ritter and Kohonen (1989), of the word histograms
is essentially as effective, but is computationally verymuch lighter.

The dimensionality of the feature space was reduced by
forming a random projection of each of the 39,058-dimensional
feature vectors onto a 1000-dimensional space. To that end, every
weighted-histogram vector was multiplied by the same 39,058-
by-1000 matrix, the rows of which were permanently set to some
normalized random-vector values. It has been found that the
relative mutual distances between the projected low-dimensional
vectors are approximately the same as those of the original high-
dimensional vectors.

The size of the SOM grid in this application was 12,096 nodes.
Several speedups in the SOM computation were applied: e.g., by
first computing an SOMwith amuch smaller grid, then introducing
interstitial nodes to forma larger grid, interpolating values for their
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Fig. 4. A close-up view of the map of Encyclopaedia Britannica articles. When the user clicks a node in the map region with the label ‘‘shark’’, he or she obtains the listing of
articles on sharks. The node ‘‘larva’’ contains articles on insects and larvae, and a node in the middle of the area of birds contains articles on birds. A bit more remote areas
(not shown here) contain articles on whales and dolphins, and areas beyond them describe whaling, harpoons, and Eskimos, which proves that the topics change smoothly
and continuously on the map. By clicking the searched titles, the complete articles can be read out.
model vectors, and finally carrying out a shorter fine tuning with
the larger grid.

When an SOM has been constructed and the models have
been fixed, each document will be mapped into one and only one
node, namely, the one whose model vector matches best with the
feature vector of the given document. One can store the original
documents in a separate buffer area in the computer memory
system, and associate with each SOM model only an address
pointer to the respective document. Usually several documents
will be mapped into each node. There exist now several modes of
use of this system.

One simplemode of use of the SOM is browsing. There is usually
a provision with the graphics such that when a particular node
in the display is ‘‘clicked’’, all of the address pointers associated
with that node are activated, and the titles of the corresponding
documents and eventually some additional information such as
descriptivewords arewritten out. After that, thewanted document
can be read out in full.

Fig. 4 shows a close-up view of a part of the large SOM. The
keywords written into the vicinity of some locations on the map
have been determined by an automatic annotation procedure
explained in Lagus and Kaski (1999).

The map is usually provided with a form field into which the
user can type a query. We shall exemplify the use of the form field
in connection with the next example.
5.3.3. The SOM of nearly 7 million patent abstracts
Next we describe how a content-addressable searching opera-

tion from an extremely large corpus of texts can be implemented.
As mentioned earlier, to that end the interface of the map must be
provided with a form field into which the user can type a query,
e.g., a set of keywords or a descriptive sentence. The weighted vo-
cabulary of this query shall match best with the weighted vocabu-
lary of some of the documents.

The size of the text corpus in this application (Kohonen et al.,
2000) was about 20 times that of Encyclopaedia Britannica. It
consisted of 6,840,568 patent abstracts written in English. They
were available on about two hundred CD ROMs and were obtained
from US, European, and Japan patent offices as two databases: the
‘‘first page’’ database (1970–1997), and the ‘‘Patent Abstracts of
Japan’’ (1976–1997). The average length of the abstracts was 132
words. The size of the vocabulary which was finally accepted after
omission of stopwords, numerals and very rare words was 43,222
words, and they were weighted by the Shannon entropy.

The selected size of the SOM was 1,002,240 nodes and the
dimensionality of each model (after having formed the random
projections of the weighted word histograms) was 500. In order to
fit a map of this size into the central computer of our laboratory,
we had to reserve only one byte for each vector element. With
500 vector elements, the accuracy was still sufficient for statistical
comparisons. This is the largest SOM that to our knowledge has
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Fig. 5. The document map of nearly 7 million patent abstracts is depicted in the background, and the form field for the query is shown in the upper right-hand corner.
The query was ‘‘laser surgery on the cornea’’, and twenty best-matching nodes have been marked with small circles. In the main map, these circles are fused together. An
enlarged portion of the map, in which the twenty nodes are visible separately, can be obtained by digital zooming, as shown in the lower left-hand corner by the small
circles. By clicking a particular node, the list of the titles associated with this node is obtained, and by clicking a selected title, the corresponding abstract can be read out.
ever been constructed, and even though we used many different
speedup methods that shortened the computation time by several
decades, it took six weeks to construct the map. The searching
operations, on the other hand, could be accomplished in a few
seconds, so the map could be used in real time. Fig. 5 exemplifies a
case of content-addressable search.

5.4. Human endogenous retroviruses

Only about two per cent of human DNA controls the synthesis
of proteins. The function of the rest is largely unknown. About
eight per cent consists of segments called the human endogenous
retroviruses (HERVs). The name means that the retrovirus
sequences are endogenous, i.e. within the genome, in humans.
These HERVs are remnants of ancient infections by retroviruses,
such as the HIV. The retrovirus has integrated into the genome of
the ancestor species and thus become part of it. It is suggested that
these retrovirus sequences acquire new functions in the human
genomes in regulating the activity of some genes. They may also
produce proteins under some conditions.

The HERVs stem from several kinds of retroviruses. The cur-
rent HERV taxonomy is incomplete: some sequences cannot be
assigned to any class and the classification is ambiguous for
others.

The mutual relationships of the HERVs and their similarities to
some other related DNA elements were studied by Oja, Somervuo
et al. (2003); Oja et al. (2004, 2005), using the SOM techniques. The
map of a collection of 3661 HERV sequences was computed by the
batch computing algorithm, and the distances betweenwhole DNA
sequenceswere evaluated by the FASTAmethod, cf. Pearson (1999)
and Pearson and Lipman (1988).

The clustering of the DNA segments is shown in Fig. 6. Quite
distinct clusters of various types are visible. They are separated by
shades of gray around the hexagons that represent the SOM nodes.
The cluster borders have been shaded by the U-matrix techniques
(Ultsch, 1993).

The clustering visualized the same kinds of relationships as
what are known from more traditional biological classifications
and phylogenetic taxonomies. In addition, the SOM detected
a completely new group of epsilonretroviral sequences and was
able to shed light into the relationships of three pre-existing
HERV families. The SOM detected a group of ERV9, HERVW, and
HUERSP3 sequences, which suggested that the ERV9 and the
HERVW sequences may have a common origin.
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Fig. 6. The SOM of human endogenous retroviruses. The labels in the figure are
manually assigned names for different areas of the map. The labels describe the
class of the sequences in each area (class names like HERVADP, HERVH, HERVRb
etc. have been abbreviated by dropping theHERV from the beginning). The question
marks are used to mark areas where most of the sequences are unclassified. The
gray scale coloring describes the distances between map units; black denotes large
distance and white small. The darkest borders divide the three major groups and
lighter borders the different groups inside the major groups, respectively.

6. Approximation of an input data item by a linear mixture of
models

An analysis hitherto generally unknown is introduced in this
chapter; cf. also Kohonen (2007) and Kohonen (2008). The purpose
is to extend the use of the SOM by showing that instead of a
single winner model, one can approximate the input data item
more accurately by means of a set of several models that together
define the input data itemmore accurately. It shall be emphasized
that we do not mean kwinners that are rank-ordered according to
their matching. Instead, the input data item is approximated by an
optimized linear mixture of the models, using a nonlinear constraint.

Consider the n-dimensional SOM models mi, i = 1, 2, . . . , p,
where p is the number of nodes in the SOM. Their general linear
mixture is written as

k1m1 + k2m2 + · · · + kpmp = Mk, (10)

where the ki are scalar-valued weighting coefficients, k is the
p-dimensional column vector formed by them, andM is thematrix
withmi as its columns. NowMk shall be the estimate of some input
vector x. The vectorial fitting error is then

e = Mk − x. (11)

Our aim is to minimize the norm of e in the sense of least
squares.However, the special nonlinear constraintmust then be taken
into account in this optimization.

Much attention has recently been paid to least-squares prob-
lems where the fitting coefficients are constrained to nonnegative
values. Such a constraint is natural, when the negatives of the items
have nomeaning, for instance, when the input item consists of sta-
tistical indicators that can have only nonnegative values, or is a
weighted word histogram of a document. In these cases at least,
the constraint contains additional information that is expected to
make the fits more meaningful.
Fig. 7. A linear mixture of SOM models fitted to a new, unknown document. The
weighting coefficients ki in themixture are shownbyusing a coloringwith a relative
shade of gray of the due models.

6.1. The lsqnonneg function

The present fitting problem belongs to the broader category
of quadratic programming or quadratic optimization, for which
numerous methods have been developed in recent years. A much-
applied one-pass algorithm is based on the Kuhn–Tucker theorem,
as explained in Lawson and Hanson (1974), but it is too involved to
be reviewed here in full. Let it suffice to mention that it has been
implemented in MATLAB as the function named the lsqnonneg.
Below, the variables k, M, and x must be understood as being
defined in the MATLAB format. Then we obtain the weight vector
k as

k = lsqnonneg(M, x). (12)

The lsqnonneg function can be computed, and the result will be
meaningful, for an arbitrary rank of the matrix M. Nonetheless it
has to be admitted that there exists a rare theoretical case where
the optimal solution is not unique. This case occurs, if some of the
mi in the final optimal mixture are linearly dependent. In practice, if
the input data items to the SOM are stochastic, the probability for
the optimal solution not being unique is negligible. At any rate, the
locations of the nonzero weights are unique even in this case!

6.2. Description of a document by a linear mixture of SOM models

The following analysis applies to most of the SOM applications.
Here it is exemplified by textual databases.

In text analysis, one possible task is to find out whether a text
comes from different sources, whereupon its word histogram is
expected to be a linear mixture of other known histograms.

The example that demonstrates the fitting of a linear mixture
of models to a given document is based on the lsqnonneg function.
The text corpus was derived from the Reuters data as described
earlier.

Fig. 7 shows a typical example, where a linear mixture of SOM
models was fitted to a new, unknown document. The values of the
weighting coefficients ki in the mixture are shown by dots with
relative shades of gray in the due positions of the SOM models.
It is to be emphasized that this fitting procedure also defines the
optimal number of the nonzero coefficients. In the experiments
with large document collections, this number was usually very
small, less than a per cent of the number of models.

When the models fall in classes that are known a priori, the
weight of a model in the linear mixture also indicates theweight of
the class label associated with that model. Accordingly, by summing
up the weights of the various types of class labels one then obtains
the class-affiliation of the input with the various classes.
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7. Discussion

The self-organizing map (SOM) principle has been used exten-
sively as an analytical and visualization tool in exploratory data
analysis. It has had plenty of practical applications ranging from in-
dustrial process control and finance analyses to themanagement of
very large document collections. New, very promising applications
exist in bioinformatics. The largest applications so far have been in
the management and retrieval of textual documents, of which this
paper contains two large-scale examples.

Several commercial software packages as well as plenty of
freeware on the SOMare available. This author strongly encourages
the use of two public-domain software packages developed by the
SOM_PAK Team (1990) and the SOM Toolbox Team (1999). Both
packages contain auxiliary analytical procedures, and especially
the SOM Toolbox, which makes use of the MATLAB functions, is
provided with good and versatile graphics as well as thoroughly
proven statistical analysis programs of the results.

This paper has applied the basic version of the SOM, on which
the majority of applications is based. Nonetheless there may exist
at least theoretical interest in different versions of the SOM, where
some of the following modifications have been introduced.

Above the SOM grid was always taken as two dimensional,
regular, andhexagonal. This formof the array is advantageous if the
purpose is to visualize the overall structure of the whole database
in one image. One of the different versions of the grid, developed,
e.g., by the BLOSSOM Team (2005), is cyclic. Such ‘‘topologies’’ may
have some meaning if the data themselves have a cyclic structure,
or if the purpose is to avoid border effects of the noncyclic array of
nodes. This may be the case if the SOM is used for process control,
for the continuous and smooth description of all possible process
states.

Another, often suggested version of the SOM is to replace the
regular grid by a structured graph of nodes, where the structure and
the number of nodes are determined dynamically; cf., e.g., Fritzke
(1994).

Then, of course, there arises a question whether one could
define a SOM-like system based on quite different mathemati-
cal principles. One of the interesting suggestions is the genera-
tive topographic mapping (GTM) introduced in Bishop, Svensen, and
Williams (1998). It is based on direct computation of the topologi-
cal relations of the nodes in the grid. A different, theoretically deep
approach has been made by Van Hulle (2000), using information-
theoretic measures in the construction of the SOM topology.

Perhaps one of the main virtues of the basic SOM algorithm is
that one can compute really large mappings in reasonable time,
using only personal computers.

Finally we must remind that the traditional methodology for
the representation of similarity relations between data items is to
cluster them according to some similarity or distancemeasure. The
classical clustering algorithms as described by Anderberg (1973),
Hartigan (1975), Jain and Dubes (1988), and Tryon and Bailey
(1973), however, are usually rather heavy computationally, since
every data item must be compared with all of the other ones,
maybe reiteratively. For masses of data this is obviously time-
consuming. The remedy provided by the SOM is to represent the
set of all data items by a much smaller set ofmodels, each of which
stands for a subset of similar or almost similar data items. In the
classification of an indefinite number of input data items, their
comparison with the models can be at least an order of magnitude
or more lighter operation.

Notwithstanding, our original motivation of the SOM research
was an attempt to explain especially the abstract feature maps
found in the biological central nervous systems. The biological as-
pects and implications of the SOM algorithm, however, have been
almost totally ignored in the paper in presentation. The primary
goal in the recent SOM research has been to develop algorithms
and computational procedures for practical data mining applica-
tions.
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