COMP62342
Using Ontologies

Sean Bechhofer
sean.bechhofer@manchester.ac.uk

Uli Sattler
uli.sattler@manchester.ac.uk
Today

✓ SKOS
✓ Linked Data
 • Some clarifications of misunderstandings I saw in your essays
 • More on Profiles
 • OWL and Graphs
 • Using Ontologies
 – for MCQ generation
 – in an information system
• Wrap Up
Clarifications
Check out this example

Does this ontology entail

Furniture SubClassOf hasShape exactly 1 Shape

Can we improve this ontology?

Class: Square SubClassOf Shape
Class: Circle SubClassOf Shape
Class: Rectangle SubClassOf Shape

DisjointClasses: Square, Circle, Rectangle

Class: Shape SubClassOf (Square or Circle or Rectangle)

Property hasShape Range: Shape
 Domain: Furniture

Class: Furniture SubClassOf hasShape some Shape

Class: Chair SubClassOf Furniture and hasShape only Rectangle
Part-Whole Relation

- hasPart and isLocatedIn are 2 different properties.
- Which one relates
 - your lungs and your chest?
 - a bed and its bedroom
 - an apple and its tree

- How do they interact?
Part-Whole Relation

- hasPart and isLocatedIn are 2 different properties.
- Which one relates
 - your lungs and your chest?
 - a bed and its bedroom
 - an apple and its tree
- How do they interact?

ObjectProperty: hasPartOf InverseProperty isPartOf
objectPropertyCharacteristic Transitive
ObjectProperty isLocatedIn SubPropertyChain isLocatedIn o isPartOf
More on Profiles
The Design Triangle

Expressivity (Representational Adequacy)

Usability (Weak Cognitive Adequacy vs. Cognitive Complexity)

Computability (vs. Computational and Implementational Complexity)
• OWL is an expressive ontology language providing a number of class forming operators and axiom types
 – full Booleans
 ▪ and, or, not
 – Property Restrictions
 ▪ some, only, min, max, exact
 – Enumerations
 ▪ Explicit classes formed from individuals
 – Subclass and Equivalence
 – Property
 – Hierarchies
 – Chains
 – Characteristics: functional, inverse
• Expressivity comes with a (computational and cognitive) cost
 – Do we always need all this expressivity?
OWL Profiles

• …are trimmed down sublanguages/fragments that trade

 expressive power for efficiency of reasoning

• Restrictions are placed on the
 • operators, e.g., no or, no not
 • axiom types supported, e.g., no InverseObjectProperties(p q)

• Three profiles, EL, QL and RL are defined in the
 OWL Profiles Recommendation
 http://www.w3.org/TR/owl2-profiles/

• …each of them is maximal for that profile’s computation complexity,
 i.e., weakening any restriction results in increased computational
 complexity
• Other profiles could be defined
Profiles (from last week)

- **OWL 2 EL:**
 - only ‘and’, ‘some’, SubProperty, transitive, SubPropertyChain
 - it’s a *Horn* logic
 - no reasoning by case required,
 - no disjunction, not even hidden
 - designed for big class hierarchies, e.g. SNOMED,

- **OWL 2 QL:**
 - only restricted ‘some’, restricted ‘and’, inverseOf, SubProperty
 - designed for querying data in a database through a class-level ontology

- **OWL 2 RL:**
 - no ‘some’ on RHS of SubClassOf, …
 - designed to be implemented via a classic rule engine

- For details, see OWL 2 specification!
Ontologies
and
(Knowledge) Graphs
Ontologies and Graphs?!

- An OWL ontology \(O \) is a **set of axioms** that
 - is consistent or inconsistent
 - entails other axioms, e.g., inferred class hierarchy
 - can be the result of parsing an OWL file
 - in one of the many OWL syntaxes
 - can be viewed as a **graph**:

Ontologies and Graphs?!

- An OWL ontology O is a **set of axioms** that
 - is consistent or inconsistent
 - entails other axioms, e.g., inferred class hierarchy
 - can be the result of parsing an OWL file
 - in one of the many OWL syntaxes
 - can be viewed as a **graph**:
 - e.g., the parse tree of its axioms

Class: Square SubClassOf Shape
Class: Circle SubClassOf Shape
Class: Rectangle SubClassOf Shape

DisjointClasses: Square, Circle, Rectangle

Class: Shape SubClassOf (Square or Circle or Rectangle)

Property hasShape Range: Shape
Ontologies and Graphs?!

- An OWL ontology O is a **set of axioms** that
 - is consistent or inconsistent
 - entails other axioms, e.g., inferred class hierarchy
 - can be the result of parsing an OWL file
 - in one of the many OWL syntaxes
 - can be viewed as a **graph**:
 - e.g., the **asserted class hierarchy** (see Protégé)

Class: Square SubClassOf Shape
Class: Circle SubClassOf Shape
Class: Rectangle SubClassOf Shape
DisjointClasses: Square, Circle, Rectangle
Class: Shape SubClassOf (Square or Circle or Rectangle)
Property hasShape Range: Shape

\[\begin{align*}
\text{Furniture} & \quad \text{Shape} \\
\text{Chair} & \quad (\text{Square} \lor \text{Circle} \lor \text{Rectangle}) \\
\end{align*} \]
Ontologies and Graphs?!

- An OWL ontology O is a **set of axioms** that
 - is consistent or inconsistent
 - entails other axioms, e.g., inferred class hierarchy
 - can be the result of parsing an OWL file
 - in one of the many OWL syntaxes
 - can be viewed as a **graph**:
 - e.g., some **adorned inferred class hierarchy**

```
Class: Square SubClassOf Shape
Class: Circle SubClassOf Shape
Class: Rectangle SubClassOf Shape

DisjointClasses: Square, Circle, Rectangle

Class: Shape SubClassOf (Square or Circle or Rectangle)

Property hasShape Range: Shape
```
Which adorned graphs to build?

Property hasShape Range: Shape
Domain: Furniture

Class: Furniture SubClassOf
 hasShape some Shape

Class: Chair SubClassOf Furniture and
 hasShape only Rectangle

How many arrows do we need?
And where do we put them?
Which adorned graphs to build?

What is the graph of an ontology?
Ask - different people mean different things!
Why Ontologies?
What do we use them for?
Remember from last week:

- An OWL ontology O is a **document**:
 - therefor, it cannot **do** anything - as it isn’t a piece of software!
 - in particular, an ontology cannot **infer** anything (a reasoner may infer something!)

- An OWL ontology O is a **web document**:
 - with ‘import’ statements, annotations, …
 - corresponds to a **set of logical OWL axioms**
 - the OWL API (today) helps you to
 - parse an ontology
 - access its axioms
 - a **reasoner** is only interested in this set of axioms
 - **not** in annotation axioms
 - see https://www.w3.org/TR/owl2-primer/
 #Document_Information_and_Annotations
 - https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/#Annotations
An OWL ontology O is a document:
- therefore, it cannot *do* anything - as it isn’t a piece of software!
- in particular, an ontology cannot *infer* anything (a reasoner may infer something!)

An OWL ontology O is a web document:
- with ‘import’ statements, annotations, …
- corresponds to a set of logical OWL axioms
- the OWL API (today) helps you to
 - parse an ontology
 - access its axioms
- a reasoner is only interested in this set of axioms
 - *not* in annotation axioms
- see https://www.w3.org/TR/owl2-primer/#Document_Information_and_Annotations
- https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/#Annotations
Using Ontologies to create MCQs
E.g., let’s create MCQs!

• Given that some
 – ontology captures rich domain knowledge
 – assessment/MCQ generation is costly & relevant
 – in particular for healthcare & medicine

➡ why not auto-generate MCQs from ontologies?

• Building on research we have done so far,
 • in particular on how to make good MCQs,
 e.g., control difficulty

• we have been exploring this with Elsevier
 • towards more complex MCQs, e.g., patient cases

• interesting new app with new reasoning problems
 • similarity of concepts and cases
Anatomy of an MCQ

Which of these is not a mammal?

1. Dolphin
2. Whale
3. Tuna
4. Chimpanzee
Anatomy of an MCQ

Which of these is not a mammal?

1. Dolphin
2. Whale
3. Tuna
4. Chimpanzee
Anatomy of an MCQ

Which of these is not a mammal?

1. Dolphin
2. Whale
3. Tuna
4. Chimpanzee
Anatomy of an MCQ

Which of these is not a mammal?

1. Dolphin
2. Whale
3. Tuna
4. Chimpanzee
Anatomy of an MCQ

Which of these is **not a** mammal?

1. Dolphin
2. Whale
3. Tuna
4. Chimpanzee
Anatomy of an MCQ

Which of these is **not** a mammal?

1. Dolphin
2. Whale
3. Tuna
4. Chimpanzee

Stem

Distractors

Options

MCQ

Key
Anatomy of an MCQ

Which of these is not a mammal?

1. Dolphin
2. Whale
3. Tuna
4. Chimpanzee

Follows a template:
Stem: Which of these is not a (Class) X?
Distractors: Y with $O \not\equiv Y \subseteq X$
Key: Y with $O \not\equiv Y \subseteq X$
Ontology-based MCQ generation

The more similar D is to K, the more difficult is Q.
Ontology-based MCQ generation

The more similar D is to K, the more difficult is Q.
Anatomy of an MCQ

Which of these is **not** a mammal?

1. Dolphin
2. Whale
3. Tuna
4. Chimpanzee

1. Zebra
2. Giraffe
3. Tuna
4. Chimpanzee

(Why) Is Whale more similar to Tuna than Giraffe?

How to measure similarity of classes in ontologies?
What else do we do with ontologies?

- OBIS: Ontology-Based Information Systems
- Think MVC/Front-End Back-End
- IS needs to store some data, in:
 - relational database
 - no-SQL database
 - files
 - XML docs
 - ... Ontology
What else do we do with ontologies?

- OBIS: Ontology-Based Information Systems
- Think MVC/Front-End Back-End
- IS needs to store some data, in:
 - relational database
 - no-SQL database
 - files
 - XML docs
 - …
 - Ontology

Which?
Using Ontologies to build & maintain taxonomies
Remember…

- **Controlled Vocabulary** = \{terms for concepts\}
- **Taxonomy** = CV + hierarchy
- **Classification system** = Taxonomy + principles
- **Thesaurus** = Taxonomy + more labels
- **Terminology** = … + glossary/explanations
- **Ontology** = … + logical axioms + well-defined semantics + reasoning + ….
Taxonomy Building & Maintenance

Taxonomies

• used heavily, e.g., to annotate data about
 – patients, clinical trials data, genetics,…

• are often big, ~300,000 concepts

Building/maintaining them requires

• checking whether a term/class is already covered

• adding new terms/classes
 – into the right place, with the right name(s)

• fixing terms/classes
 – move them to right place
 – associate right terms: annotation properties
 • label, alternative label, …
 • label @lang = “Eng”, see https://www.w3.org/wiki/RdfThesaurus
Is hard: remember

shoulder_catches_during_movement
shoulder_feels_like_it_will_slip_out_of_place
shoulder_joint_feels_like_it_may_slip_out_of_place
shoulder_joint_pain_better_after_rest
shoulder_joint_pain_causes_difficulty_lying_on_affected_side
shoulder_joint_pain_causing_inability_to_sleep
shoulder_joint_pain_difficult_to_localize
shoulder_joint_pain_feels_better_after_normal_movement
shoulder_joint_pain_first_appears_at_night
shoulder_joint_pain_improved_by_medication
shoulder_joint_pain_improves_during_exercise__returns_later
shoulder_joint_pain_incr_by_raising_arm_above_shoulder
shoulder_joint_pain_increased_by
shoulder_joint_pain_increased_by_lifting
shoulder_joint_pain_increased_by_moving_arm_across_chest
shoulder_joint_pain_increased_by_reaching_around_the_back
shoulder_joint_pain_relieved_by_putting_arm_over_head
shoulder_joint_pain_sudden_onset
shoulder_joint_pain_unrelenting
shoulder_joint_pain_worse_on_rising
shoulder_joint_pain_worsens_with_extended_activity
shoulder_joint_popping_sound_heard
shoulder_joint_suddenly_gives_way
shoulder_seems_out_of_place
shoulder_seems_out_of_place__recollection_of_the_event
shoulder_seems_out_of_place_recurrent
shoulder_seems_out_of_place_which_resolved
Taxonomy Building & Maintenance

Build & maintain an ontology

- taxonomy = inferred class hierarchy (O)
 - describe (instances of classes)
 - let reasoner figure out class hierarchy
 ✓ no need for manual placing of concept!
 ✓ deals nicely redundancies
 ✓ (unintended, missed) relationships are found
 ✓ taking all given information into account

- requires
 - ontology language, e.g., OWL
 - reasoner
 - infrastructure to update/expert inferred class hierarchy (OWL API)
 - with the correct labels
 - perhaps ignoring some classes
Taxonomy Building & Maintenance

Remember our remodelling/untangling of AminoAcids?

Class: LargeAminoAcid

EquivalentTo: AminoAcid

and hasSize **some** Large

Class: PositiveAminoAcid

EquivalentTo: AminoAcid

and hasCharge **some** Positive

Class: LargePositiveAminoAcid

EquivalentTo: LargeAminoAcid and PositiveAminoAcid

Amino Acids
- Alanine
- Arginine
- Asparagine
- Cysteine
- Glutamate

Polarity
- Polar
- Nonpolar

Size
- Tiny
- Small
- Medium
- Large

Charge
- Negative
- Neutral
- Positive

Hydrophobicity
- Hydrophobic
- Hydrophilic
Taxonomy Building & Maintenance

- Even searching/using **ontology** is cool:
 - we can **build** expressions and classify these
 - ...jump rather than browse, even with only partial knowledge
 - since OWL & reasoner support **post-coordination**

\[
\begin{aligned}
\text{Endocardium} & \sqcap \text{BodyWall} \sqcap \exists \text{partOf}.\text{Heart} \\
\text{HeartWall} & \sqcap \text{Tissue} \sqcap \exists \text{containedIn}.\text{HeartWall} \sqcap \exists \text{containedIn}.\text{HeartValve} \\
\text{HeartValve} & \sqcap \text{BodyValve} \sqcap \exists \text{partOf}.\text{Heart} \sqcap \exists \text{coveredIn}.\text{Endocardium} \\
\text{Endocarditis} & \equiv \text{Inflammation} \sqcap \exists \text{isLocatedIn}.\text{Endocardium} \\
\text{Inflammation} & \sqcap \text{Disease} \sqcap \exists \text{actsOn}.\text{Tissue} \\
\text{HeartDisease} & \equiv \text{Disease} \sqcap \exists \text{isLocatedIn}.\text{Heart} \\
\text{partOf} & \sqcap \text{containedIn}, \quad \text{coveredIn} \sqcap \text{containedIn} \\
\text{isLocatedIn} & \circ \text{containedIn} \sqcap \text{isLocatedIn} \\
\models \text{BactInfection} \sqcap \exists \text{isLocatedIn}.\text{HeartValve} \sqcap \text{Endocarditis}
\end{aligned}
\]
Taxonomy Building & Maintenance

• If you’re a GP and need to label patient data with a term
 – know/find/browse to correct term in taxonomy
 • e.g., Endocarditis
 • error prone
 • often leads to over-generalisation
 – describe term
 • e.g., BactInfection ∩ ∃isLocatedIn.HeartVal
 – and let reasoner find suitable super class
 • e.g., Endocarditis
Using Ontologies in information systems e.g., SnapOn last week!
E.g.: Patient Documentation System

- Information System relies on Patient Data
 - recorded in different systems with possibly different structures
 - recorded by different clinicians with different styles

- Holding Data in DB:
 - many complex queries that need to change with changes in medical knowledge

User Interface → Patient Documentation System → Patient Data

Healthcare Record
Name: Bob
History:
Demographic: Smoker
Sex: Male
Endocarditics 1998
E.g.: Patient Documentation System

- Toy example: get all *Parents* from database - get those
 - who have a *known child*
 - described as *Mother* or *Father*
 - described as *Grandmother* or *Grandfather*
 - who *receive Child Benefit*
 - ...

```
Patient Data
Healthcare Record
Name: Bob
History:
Demographic: Smoker
Sex: Male
Endocardities 1998
```

```
User Interface
Patient Documentation System
```

```
Patient Data
Healthcare Record
Name: Bob
History:
Demographic: Smoker
Sex: Male
Endocardities 1998
```
Why basing ISs on Ontologies?

- Toy example: get all *Parents* from ontology:
 - use suitable TBox and
 - retrieve all those who are *entailed* to be an instance of *Parent*
 - ...

TBox
- Parent ≡ Person and hasChild some Person
- Mother ≡ Parent and Female
- Grandparent ≡ Parent and hasChild some Parent
 ...

ABox
- Healthcare Record
 - Name: Bob
 - Demographic: Smoker
 - Sex: Male
 - History: Endocardities 1998
Why basing ISs on Ontologies?

- Separation of concerns:
 - background knowledge & terminology into ontology
 - data into DB or ABox
 - suitably linked/mapped
 - behaviour into program code

TBox
Endocarditis = Inflammation and locatedIn Heart
Inflammation = Disease and causedBy Bacteria

ABox
Healthcare Record
Name: Bob
Demographic: Sex: Male
History: Smoker
Endocardities 1998
Why basing ISs on Ontologies?

• Separation of concerns
✓ flexible access to data can deal with
 • **incomplete** knowledge
 • data coded in different ways
 • complex expressions: post-coordination!
 • data coded & queries on varying levels of granularity
✓ via terms as appropriate to IS
 • same data can be linked to different ontologies
✓ maintainable
 • changes in background knowledge are reflected in updated ontology
Ontology-Based ISs

- doesn’t require patients
- knowledge-heavy domains
 - where knowledge changes
- Example:
 - furniture
 - restaurants & food properties: allergies, ethical,…
 - biochemistry
 - defence, intelligence
 - (nano) engineering
 - recruitment/skills management
Ontology-Based ISs

- doesn’t require ABox/Data
- sometimes only TBox
 - e.g., NCI Thesaurus, where a large medical thesaurus & its hierarchy is maintained as the Inferred Class Hierarchy of rich OWL ontology

TBox
Endocarditis = Inflammation and locatedIn some Heart
Inflammation = Disease and causedBy some Bacteria
Building Ontology-Based ISs

- involves difficult design choices
 - which ontologies?
 - build own?
 - reuse/extend/combine others?
 - how to map?
 - what to put in OWL classes or Java classes?
 - how to make it scale?
 - which tools to use?
 - OWL API
 - reasoner
Building Ontology-Based ISs

- involves difficult design choices
 - which ontologies?
 - build own?
 - reuse/extend/combine others?
 - how to map?
 - what to put in OWL classes or Java classes?
 - how to make it scale?
 - which tools to use?
 - OWL API
 - reasoner

We tried to give you knowledge & understanding to answer these questions
E.g., Cerner Collaboration

- formerly Siemens Healthcare US
 - originally led by Alan Rector
- led by Bijan Parsia
- concerned with patient documentation systems:
 - given the information about patient we have so far
 - what should we ask/document next?
- fine example where
 - behaviour depends on but differs from
 - static knowledge captured in ontology
- led to development of Chiron, Hobo, Mekon,…
Challenges of Building an OBIS

• Reasoner Performance/Scalability
 – if your usage scenario doesn’t fit reasoner performance, consider
 • other reasoner; see ORE
 • suitable profile
 • your scenario

• New (reasoning) problems crop up
 – entailment explanation (see Protégé’s “?”)
 – modularity (in OWL API tools!)
 – similarity (see MCQ generation)

• Training, maintenance
 – who’s building/maintaining the ontology?
 – who’s writing the code?

• Tool support
 – many OWL tools around, but few stable/commercial
That’s it!
What have we learnt?

- Intro to Knowledge Representation
 - Why do this?
- Knowledge Acquisition
 - What & how do we model?
- Formalisation, Ontology Patterns
 - How to represent things (in OWL) in actionable way?
- Semantics and Reasoning
 - Models, entailments, tableau, classification, …
 - What exactly is it we are saying and what are the consequences?
- OWL API: actions with ontologies
- SKOS
 - An alternative to OWL using OWL
- Linked Data
 - Using OWL or RDF(S) for data on the Web
- Usage of ontologies
Coursework this Week

• Core Task: Furniture Ontology (50% of your coursework mark)
 – Submit your ontology (group) by Friday, May 10
 – Submit your report (individual) by Friday, May 10 (65% of CT mark)
 – Peer assess your ontologies, by Tuesday, May 14 (35% of CT mark)

• W5 Query application
 – use the OWL API to query an ontology
 – Friday, May 10

• W5 Post-coordination
 – a short essay
Your furniture Ontology

• An ontology of furniture
• Classes that enable us to represent furniture & answer competency questions like
 – Which pieces of furniture are found in the greatest number of rooms?
 – Which items of furniture are available in different sizes?
 – What are those sizes?
 – …see BB for more CQs: we’ve added some more!
• Class hierarchy organised using the PIMPS upper ontology.
• Peer assessed

• Plus a reflective report on how you built it, interesting aspects of the model
Exam

- Online Exam via Blackboard
 - Two hours
 - Multiple Choice Questions
 - Short Essays
 - Answer all questions
- …which is formative, i.e., will not count towards your final mark
- …use Forum for questions about
 - coursework
 - everything else
That’s really it…

- not quite:
 - work on your coursework
 - in your teams
 - ask questions in Forum
 - stay in touch
 - stay safe

- Thanks for continuing to learn and work with us in these unusual times!