Week 4

COMP62342
Sean Bechhofer, Uli Sattler
sean.bechhofer@manchester.ac.uk,
uli.sattler@manchester.ac.uk
Today

- Some clarifications around last week’s coursework
- More on reasoning:
 - extension of the tableau algorithm & discussion of blocking
 - traversal or “how to compute the inferred class hierarchy”
 - OWL profiles
- Snap-On: an ontology-based application
- The OWL API: a Java API and reference implementation
 - creating,
 - manipulating and
 - serialising OWL Ontologies and
 - interacting with OWL reasoners
- **Lab:**
 - OWL API for coursework
 - Ontology Development
Some clarifications around last week’s coursework
Ontologies, inference, entailments, models

- **OWL** is based on a *Description Logic*
 - we can use DL syntax
 - e.g., $C \sqsubseteq D$ for C SubClassOf D

- An OWL ontology O is a **document**:
 - therefor, it cannot **do** anything: it isn’t a piece of software!
 - in particular, an ontology cannot **infer** anything
 (a reasoner may infer something!)

- An OWL ontology O is a **web document**:
 - with ‘import’ statements, annotations, …
 - corresponds to a **set of logical OWL axioms**, its *imports closure*
 - the OWL API (today) helps you to
 - parse an ontology
 - access its axioms
 - a **reasoner** is only interested in this set of axioms
 - **not** in annotation axioms
 - see [https://www.w3.org/TR/owl2-primer/#Document_Info...](https://www.w3.org/TR/owl2-primer/#Document_Information_and_Annotations)
 - https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/#Annotations
Ontologies, inference, entailments, models (2)

- We have defined what it means for O to entail an axiom $C \text{ SubClassOf } D$
 - written $O \models C \text{ SubClassOf } D$
 - or $O \models C \sqsubseteq D$
- based on the notion of a model I of O
 - i.e., an interpretation I that satisfies all axioms in O
- don’t confuse ‘model’ with ‘ontology’
 - one ontology can have many models
 - the more axioms in O the fewer models O has

- A DL reasoner can be used to
 - check entailments of an OWL ontology O and
 - compute the inferred class hierarchy of O
 - this is also known as classifying O
 - e.g., by using a tableau algorithm
Learn terms & meaning & relations!
More on Reasoning

Why?

To deepen our understanding of OWL

To understand better what reasoners do
Recall Week 2: OWL 2 Semantics: Entailments

Let O be an ontology, α an axiom, and A, B classes, b an individual name:

- O is **consistent** if there exists some model I of O
 - i.e., there is an interpretation that satisfies all axioms in O
 - i.e., O isn’t self contradictory

- O **entails** α (written O ⊧ α) if α is satisfied in all models of O
 - i.e., α is a consequence of the axioms in O

- A is **satisfiable** w.r.t. O if O ⊭ A SubClassOf Nothing
 - i.e., there is a model I of O with A_I ≠ {∅}

- b is an **instance of** A w.r.t. O (written O ⊧ b:A) if b_I ⊆ A_I in every model I of O

Theorem:

1. O is consistent iff O ⊭ Thing SubClassOf Nothing
2. A is satisfiable w.r.t. O iff O ∪ {n:A} is consistent (where n doesn’t occur in O)
3. b is an instance of A in O iff O ∪ {b:not(A)} is not consistent
4. O entails A SubClassOf B iff O ∪ {n:A and not(B)} is inconsistent
Recall Week 2: OWL 2 Semantics: Entailments etc.

Let O be an ontology, α an axiom, and A, B classes, b an individual name:

- O is **consistent** if there exists some model I of O
 - i.e., there is an interpretation that satisfies all axioms in O
 - i.e., O isn’t self contradictory
- O **entails** α (written O ⊨ α) if α is satisfied in all models of O
 - i.e., α is a consequence of the axioms in O
- A is **satisfiable** w.r.t. O if O ⊨ A SubClassOf Nothing
 - i.e., there is a model I of O with A^I ≠ {}
- b is an **instance of** A w.r.t. O if b^I ⊆ A^I in every model I of O

- O is **coherent** if every class name that occurs in O is satisfiable w.r.t O
- **Classifying O** is a reasoning service consisting of
 1. testing whether O is consistent; if yes, then
 2. checking, for each pair A,B of class names in O plus Thing, Nothing O ⊨ A SubClassOf B
 3. checking, for each individual name b and class name A in O, whether O ⊨ b:A
 …and returning the result in a suitable form: O’s **inferred class hierarchy**
Before Easter, you saw a **tableau algorithm** that
- takes a class expression C and decides **satisfiability** of C:
 - it answers ‘yes’ if C is satisfiable
 - ‘no’ if C is not satisfiable
- …and always stops with a yes/no answer:
 it is sound, complete, and terminating

We saw such a tableau algorithm for ALC:
- ALC is a Description Logic that forms logical basis of OWL, only has **and, or, not, some, only**
- works by trying to generate an interpretation with an instance of C
 - by breaking down class expressions
 - generating new P-successors for some-values from restrictions
 - (\(\exists P.C\) restrictions in DL)
- we can handle an ontology that is a set of **acyclic SubClassOf axioms**
 - via **unfolding** (check Week 3 slide 24ff)
Week 3: tableau rules

\[
\begin{align*}
\text{x} & \quad \bullet \quad \{C_1 \cap C_2, \ldots \} \\
& \quad \rightarrow \cap \\
& \quad \times \quad \bullet \quad \{C_1 \cap C_2, C_1, C_2, \ldots \}
\end{align*}
\]

\[
\begin{align*}
\text{x} & \quad \bullet \quad \{C_1 \cup C_2, \ldots \} \\
& \quad \rightarrow \sqcup \\
& \quad \times \quad \bullet \quad \{C_1 \cup C_2, C, \ldots \}
\text{For } C \in \{C_1, C_2\}
\end{align*}
\]

\[
\begin{align*}
\text{x} & \quad \bullet \quad \{\exists R.C, \ldots \} \\
& \quad \rightarrow \exists \\
& \quad \times \quad \bullet \quad \{\exists R.C, \ldots \}
\text{y} & \quad \downarrow \quad \{C\}
\end{align*}
\]

\[
\begin{align*}
\text{x} & \quad \bullet \quad \{\forall R.C, \ldots \}
\text{y} & \quad \downarrow \quad \{\ldots\}
\end{align*}
\]

\[
\begin{align*}
\text{x} & \quad \bullet \quad \{\forall R.C, \ldots \} \\
& \quad \rightarrow \forall \\
& \quad \times \quad \bullet \quad \{\forall R.C, \ldots \}
\text{y} & \quad \downarrow \quad \{C, \ldots\}
\end{align*}
\]
Mini-exercise

- Apply the tableau algorithm to test whether A is satisfiable w.r.t.

\[
\{ A \sqsubseteq B \cap \exists P.C, \quad B \sqsubseteq C \cap \forall P.(\neg C \cup D) \} \quad \text{and} \quad \{ A \text{ SubClassOf B and (P some C),} \quad B \text{ SubClassOf C and (P only (not C or D))} \}
\]
This week: GCIs and tableau algorithm

• When writing an OWL ontology in Protégé,
 • axioms are of the form A SubClassOf B with A a class name
 • (or A EquivalentTo B with A a class name)

• last week’s tableau handles these via unfolding:
 • works only for acyclic ontologies
 • e.g., not for A SubClass (P some A)

• but OWL allows for general class inclusions (GCIs),
 • axioms of the form A SubClassOf B with A a class expression
 • e.g., (eats some Thing) SubClassOf Animal
 • e.g., (like some Dance) SubClassOf (like some Music)
 • this requires another rule:

\[
\begin{align*}
 \x \bullet \{ \ldots \} & \quad \rightarrow_{\text{GCI}} \quad \x \bullet \{ \neg C \sqcup D, \ldots \}
\end{align*}
\]

for each $C \sqsubseteq D \in \mathcal{O}$
Interlude: GCIs

- Assume you have some \(C \subseteq D \in O \) and consider an interpretation \(I \):
 - If \(I \) is a model of \(O \), then
 - \(C^I \subseteq D^I \), hence
 - \(x \in C' \) implies \(x \in D' \) for each \(x \) in the domain of \(I \), hence
 - \(x \not\in C' \) or \(x \in D' \), hence
 - \(x \in (C' \cup D') \)
 - This is why our new rule ensure that the interpretation we are trying to construct satisfies all GCIs:

\[
\forall x \in \bullet \{ [...] \} \quad \rightarrow \quad \text{GCI} \\
\forall x \in \bullet \{ \neg (C \cup D), [...] \}
\]

for each \(C \subseteq D \in O \)
GCIs and tableau algorithm

\[x \bullet \{ \ldots \} \rightarrow_{\text{GCI}} x \bullet \{ \neg C \sqcup D, \ldots \} \]
for each \(C \sqsubseteq D \in O \)

• E.g., test whether

 \[\{ \text{A SubClassOf (P some A)} \} \]

 or \(\{ \text{A } \sqsubseteq \exists P.A \} \)

• This rule easily causes **non-termination**

 • if we do not **block**

\[\bullet \{ \text{A, } \neg A \sqcup \exists P.A, \exists P.A \} \]

 \[
 \downarrow \quad P \\
 \bullet \{ \text{A, } \neg A \sqcup \exists P.A, \exists P.A \} \\
 \downarrow \quad P \\
 \bullet \{ \text{A, } \neg A \sqcup \exists P.A, \exists P.A \} \\
 \downarrow \quad P \\
 \bullet \{ \text{A, } \neg A \sqcup \exists P.A, \exists P.A \} \\
 \downarrow \quad P \\
 \ldots
\]
Blocking

- Blocking ensures termination
 - even on cyclic ontologies
 - even with GCIs
- If x’s node label is contained in the label of a predecessor y, we say “x is blocked by y”
- E.g., test whether A is satisfiable w.r.t. \{A \text{ SubClassOf} (P \text{ some } A)\}
 - here, n2 is blocked by n1

\[x \bullet \{\exists R.C, \ldots \} \quad \rightarrow \exists \quad x \bullet \{\exists R.C, \ldots \} \]
\[y \bullet \{C\} \]

- only if x’s node label isn’t contained in the node label of a predecessor of x

\[n_1 \bullet \{A, \neg A \sqcup \exists P.A, \exists P.A\} \]
\[P \]
\[n_2 \bullet \{A, \neg A \sqcup \exists P.A, \exists P.A\} \]
Blocking

- When blocking occurs, we can build a cyclic model from a complete & clash-free completion tree
 - hence soundness is preserved!

\[x \cdot \{ \exists R.C, \ldots \} \quad \rightarrow_{\exists} \quad x \cdot \{ \exists R.C, \ldots \} \]
[Diagram: x \rightarrow R \rightarrow y \cdot \{ C \}]

only if x’s node label isn’t contained in the node label of a predecessor of x
Our ALC tableau algorithm with blocking is

- **sound**: if the algorithm stops and says “input ontology is consistent” then it is.
- **complete**: if the input ontology is consistent, then the algorithm stops and says so.
- **terminating**: regardless of the size/kind of input ontology, the algorithm stops and says
 - either “input ontology is consistent”
 - or “input ontology is **not** consistent”

...i.e., a decision procedure for ALC ontologies
- even in the presence of cyclic axioms!
Our ALC tableau algorithm has a few sources of complexity:

- the breadth/out-degree of the tree constructed
- the depth of/path length in tree constructed
- non-determinism due to \(\rightarrow \) rule from
 - disjunctions in O, e.g., A SubClassOf B
 - SubClassOf axioms in O
 - EquivalentTo axioms in O

Tableau algorithm & complexity:

Not too bad: bounded by number of ‘some’ expressions in O

- Ok/linear for acyclic O
- Potential for exponential for general O: each model has a path of length \(2^n \)

1 disjunction per axiom in O

2 disjunctions per axiom in O for each node in tree

37,778,931,862,957,161,709,568

3 nodes with 25 SubClassOf axioms \(\rightarrow \) how many choices?
Tableau algorithm & complexity

- Without further details: deciding ALC satisfiability
 - only of class expressions is PSpace-Complete
 - of class expressions w.r.t. ontology is ExpTime-complete
 - …*much* higher than intractable/SAT

- Implementation of ALC or OWL tableau algorithm requires *optimisation*
 - there has been a lot of work in the last ~25 years on this
 - you see the fruits in Fact++, Pellet, Hermit, Elk, …
 - reasoners available in Protégé
 - some of them from SAT optimisations, see COMP60332

- Next, I will discuss 1 optimisation: *enhanced traversal*
Naive Classification

- **Remember:** Classifying O is a reasoning service consisting of

 1. testing whether O is consistent; if yes, then

 Test:

 Is Thing satisfiable w.r.t. O?

 2. checking, for each pair A, B of class names in O plus Thing, Nothing
 whether O ⊨ A SubClassOf B

 Test:

 Is A ∩ ¬B unsatisfiable w.r.t. O?

 3. checking, for each individual name b and class name A in O, whether O ⊨ b:A

 Test:

 Is O ∪ {b:¬A} is inconsistent?

...and returning the result in a suitable form: O’s inferred class hierarchy
Naive Classification

- **Remember:** Classifying O is a reasoning service consisting of

 1. testing whether O is consistent; if yes, then

 \[
 \text{Test: is Thing satisfiable w.r.t. } O? \quad 1 \text{ test}
 \]

 2. checking, for each pair A,B of class names in O plus Thing, Nothing whether \(O \not\models A \text{ SubClassOf } B \)

 \[
 \text{Test: is } A \cap \neg B \text{ unsatisfiable w.r.t. } O? \quad n^2 \text{ tests for } O \text{ with } n \text{ class names}
 \]

 3. checking, for each individual name b and class name A in O, whether \(O \not\models b:A \)

 \[
 \text{Test: is } O \cup \{b: \neg A\} \text{ is inconsistent?} \quad nm \text{ tests for } O \text{ with } n \text{ class names, } m \text{ individuals}
 \]

...and returning the result in a suitable form: O’s **inferred class hierarchy**
Enhanced Traversal

- **Naive Classification of O** requires $1 + n^2 + nm$ expensive satisfiability/consistency tests
- …can we do better?
 ➡ **Enhanced Traversal**
 - idea: build inferred class hierarchy top-down and bottom-up, “trickling in” each class name in turn

- Assume you have, so far, constructed this hierarchy for O
- Now you “trickle in” Oak
Naive Classification of O requires $1 + n^2 + nm$ expensive satisfiability/consistency tests

...can we do better?

➡ Enhanced Traversal

- idea: build inferred class hierarchy top-down and bottom-up, “trickling in” each class name in turn

Assume you have, so far, constructed this hierarchy for O

Now you “trickle in” Oak: check whether

- $O \not\subseteq Oak \subseteq Plant$?
 yes - continue with Plant’s child
Naive Classification of O requires \(1 + n^2 + nm\) expensive satisfiability/consistency tests

...can we do better?

➡ Enhanced Traversal

- idea: build inferred class hierarchy top-down and bottom-up, “trickling in” each class name in turn

Assume you have, so far, constructed this hierarchy for O

Now you “trickle in” Oak: check whether
- \(O \not\subseteq \text{Oak} \subseteq \text{Plant}\)?
 yes - continue with Plant’s child
- \(O \not\subseteq \text{Oak} \subseteq \text{Tree}\)?
 yes. Done here, backtrack.
Enhanced Traversal

- **Naive Classification of O** requires $1 + n^2 + nm$ expensive satisfiability/consistency tests
- …can we do better?

➡ Enhanced Traversal
 - idea: build inferred class hierarchy top-down and bottom-up, “trickling in” each class name in turn

- Assume you have, so far, constructed this hierarchy for O

- Now you “trickle in” Oak: check whether
 - $O \not\models \text{Oak} \sqsubseteq \text{Plant}$?
 - yes - continue with Plant’s child
 - $O \not\models \text{Oak} \sqsubseteq \text{Tree}$?
 - yes. Done here, backtrack.
 - $O \not\models \text{Oak} \sqsubseteq \text{Animal}$?
 - No. Done: no more need to test!
Enhanced Traversal

- **Naive Classification of O** requires $1 + n^2 + nm$ expensive satisfiability/consistency tests
- …can we do better?
- ➡ Enhanced Traversal
 - idea: build inferred class hierarchy top-down and bottom-up, "trickling in" each class name in turn

- Potentially avoids many of the n^2 satisfiability/consistency tests
 - very important in practice
 - different variants have been developed

- Just one of many optimisations!
OWL Profiles

Restrictions of OWL to tame complexity
OWL Profiles

- Despite all optimisations, classification may still take too long if ontology is
 - big (300,000 axioms or more) and/or
 - rich (ALC plus inverse properties, atleast, atmost, sub-property chains,...)

- For OWL 2 [*], profiles have been designed
 - syntactic fragments of OWL obtained by restricting constructors available

- Each profile is
 - maximal, i.e., we know that if we allow more constructors, then computational complexity of reasoning would increase
 - motivated by a use case

[*] the one we talk about here/you use in Protégé
OWL Profiles

OWL 2 has 3 profiles, roughly defined as follows:

- **OWL 2 EL:**
 - only and, some, SubProperty, transitive, SubPropertyChain
 - it’s a *Horn* logic
 - no *reasoning by case* required,
 - no *disjunction*, not even hidden
 - designed for big class hierarchies

- **OWL 2 QL:**
 - only restricted some, restricted and, inverseOf, SubProperty
 - designed for querying data in a database through a class-level ontology

- **OWL 2 RL:**
 - no some on RHS of SubClassOf, …
 - designed to be implemented via a classic rule engine

- For details, see OWL 2 specification!
Some Key Complexity Classes

- Validity of FOL Formula
- Consistency/Satisfiability/Entailment of OWL 2 ontologies
- Satisfiability Propositional Logic
- Entailment/… of OWL 2 EL ontologies
- All Problems
- Semi-Decidable
- Decidable
- NP
- P
The design triangle

Expressivity
(Representational Adequacy)

Usability
(Weak Cognitive Adequacy vs. Cognitive Complexity)

Computability
(vs. Computational and Implementational Complexity)
Summary

OWL reasoning

- is unusual:
 - standard reasoning involves solving many reasoning problems/satisfiability tests
- is decidable:
 - for standard reasoning problems, we have decision procedures
 - i.e., a calculus that is sound, complete, and terminating
- can be complex
 - but we know the complexity for many different DLs/OWL variants/profiles
 - and implementations require many good optimisations!

- goes beyond what we have discussed here
 - entailment explanation
 - query answering
 - module extraction
 - …
Today

✓ Some clarifications from last week’s coursework
✓ More on reasoning:
 ✓ extension of the tableau algorithm & discussion of blocking
 ✓ traversal or “how to compute the inferred class hierarchy”
 ✓ OWL profiles
• Snap-On: an ontology-based application
• The OWL API: a Java API and reference implementation
 • creating,
 • manipulating and
 • serialising OWL Ontologies and
• interacting with OWL reasoners
• Lab:
 • OWL API for coursework
 • Ontology Development