NICOLAS MATENTZOGLU AND IGNAZIO PALMISANO

AN INTRODUCTION TO
THE OWL AP

UNIVERSITY OF MANCHESTER

Copyright © 2016 Nicolas Matentzoglu and Ignazio Palmisano

PUBLISHED BY UNIVERSITY OF MANCHESTER

TUFTE-LATEX.GOOGLECODE.COM

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with
the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0. Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an “AS
IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License

for the specific language governing permissions and limitations under the License.

First printing, April 2016

http://www.apache.org/licenses/LICENSE-2.0

Contents

Setting up 7

Ontology Management 13

Change 19

Inference and reasoning 29

Bibliography 33

Index 35

Introduction

Version information

This is Version 1.0 of the OWL API Tutorial handbook.

For contributions we thank:
¢ Sean Bechhover
« Robert Stevens

o Uli Sattler

This handbook is under constant development. For suggestions and correc-
tions please drop an email to nicolas.matentzoglu@gmail.com.

Requirements

In order to follow this tutorial we expect you to have the following pre-
requisites:

e Be familiar with Java development.

o Understand the basic concepts of the Web Ontology Language (OWL).
This one is crucial, as many of the methods to create class expressions
would be otherwise hard to follow.

e Be quite familiar with your IDE of choice.

e You do not have to be an expert at Maven, but a background in using Java
build tools (maybe you have used Ant) is certainly helpful.

nicolas.matentzoglu@gmail.com

6 NICOLAS MATENTZOGLU

Welcome

Welcome to our introduction to programming with the OWL API. The OWL
API has been around for more than a decade, and is under active develop-
ment with a team of dedicated software engineers. For people interested in
some of the background on design decisions, it is worth it to take a look at
the main OWL API publication (Horridge et al. 2011) in the Semantic Web

Journal L ! Matthew Horridge and Sean Bech-
hofer. The OWL API: A Java API
for OWL Ontologies. Semantic Web,
2(1):11-21, 2011

Setting up

In this chapter you will:

1. Setting up Eclipse for OWL API development
2. Learn to understand the differences between versions

We know from experience that many people struggle with setting up their
IDE of choice to develop ontology-based applications using the OWL API.
Many developers, especially here at Manchester, like to use Eclipse for devel-
oping Java-based software, so we stick to it for the sake of convenience. The
default bundle for Java developers also comes with Maven pre-installed, which
we will use to manage our application development life-cycle. However, if you
prefer to use your own IDE, many of the pitfalls we mention and tips we give
in the following are applicable to all environments. We assume that you have
the latest Java 8 Development Kit (JDK) installed on your system. After
opening your Eclipse (Version Mars.1 at the time of this writing) workspace of
choice, we start by creating a simple Maven project.

8 AN INTRODUCTION TO THE OWL API

Task 1: First steps

1. Create new Maven project (File->New->Other->Maven Project). Check the option
“Create simple project”. Click “Next”.

2. Enter Group Id “owlapi.tutorial” and Artifact Id “msc”; click “Finish”.

3. Now we have to make sure that your project is referencing the Java 8 Development Kit
rather than the Runtime Environment. Right click on the project, select Build Path-
>Configure build path... and navigate to the “Libraries” tab. If you see the Java JRE
there, select it and click “Remove”. Now click Add Libraries->JRE System Library-
>Alternate JRE. If you can find the JDK in this list, select it. If not, click on Installed
JREs->Add..->Standard VM->Directory and navigate to your JDK installation direc-
tory. On windows for example, this is typically something like

“C:\Program Files\Java\jdk1.8.0_51”

Click finish. Back in the list of installed JRE’s, select the JDK version, confirm by
clicking “Ok”. In the next dialogue, make sure that “Alternate JRE” is pointing to the
JRE of the JDK, and click “Finish”.

4. You should see now in the list of Libraries that the JRE System Library from the JDK

is referenced.

5. In the newly created project, double-click on the “pom.xml”, and then click on the
little tab at the bottom of the main window called “pom.xml”.
Locate <version></version> , and inject right AFTER it (not in-between!) the snip-

pet you can find in the infobox below.

6. Save the pom file.

Eclipse will provide content assist here - pressing Ctrl-space will propose
the tags to insert. Also, the dependency can be added in the Dependencies
tab - the UI will guide you and create the XML tags for you.

An alternative way to get the dependency tags for any library is to serch
for them on http://search.maven.org - this is the Maven Central reposi-
tory, where a large number of Java libraries is hosted. Once you locate the
library and version you are after, the XML fragment required is displayed on
the page.

Pay attention to the group id - for OWLAPI, the main libraries all have
net.sourceforge.owlapi as their group id.

http://search.maven.org

SETTING UP 9

Insert just after <version></version> . In case you already have the <de-
pendencies> element, copy only the dependency elements that are neces-
sary:

<dependencies>

<dependency>

<groupld>junit</groupld>
<artifactId>junit< /artifactId>
<version>3.8.1< /version>
<scope>test</scope>

< /dependency >

<dependency>
<groupld>net.sourceforge.owlapi</groupld >
<artifactId>owlapi-distribution< /artifactId>
<version>5.0.0</version>

< /dependency>

< /dependencies>

To make sure everything worked out perform the following task.

Task 2: Running your first OWL API program

1. Create a simple test class by performing a right click on the package “owlapi.tutorial”
(underneath src) and selecting New->Class. Call this class OWLAPIFirst and click
“Finish”.

2. Add the 4 lines of Java code in the info-box below to the main method of your

OWLAPIFirst class.

3. Right click on the “pom.xml” in the package explorer and click Run as—>Maven build.
In the upcoming dialogue, set “install” as a goal and click “Run”. You should see
Maven downloading a number of dependencies of the OWL API. Note that you have
to be connected to the internet in order for this to work.

4. Hover over the red underlined class names and select the first quick fix (“Import...”).

5. Click on the little black downwards arrow next to the icon that looks like a green circle
with a white arrow inside, select Run As->Java Application to execute your program.

Listing 1: Create OWLOntologyManager

10 AN INTRODUCTION TO THE OWL API

public static void main(String][] args) {
OWLOntologyManager man = OWLManager.createOWLOntologyManager();
System.out.printin(man.getOntologies().size());

Your Eclipse console should show:

SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See ... for further details.

0

Do not worry about the warnings for now. The warning relates to the
OWL API internal logging mechanism and will not affect your program.

Congratulations! You have successfully set up you IDE for OWL API
development! In the next chapter, we will learn how to manage ontologies
with the OWLOntologyManager and introduce you to some of the most funda-
mental concepts of the API.

Differences between versions

While all versions (3, 4 and 5) are currently maintained, only 4 and 5 are
under active development. The latest version 4 releae is 4.2.1 (March 2016),
and the latest version 5 release is 5.0.0 (March 2016).

The important thing to know for you is that version 4 involved a major
revision of the OWL API that is not backwards compatible with version
3 - as with many other libraries, changes in the main version number indicate
disruptive changes to the APIL

So, why do we still mention version 3 if it is superseded? The problem is
that, because of the lack of backwards compatibility, many OWL API-based
applications or libraries have not been updated yet. There is usually a lag
of anything between a few weeks and a few months between an OWL API
release and the corresponding releases of related projects; if you have doubts
about which version to use, feel free to email owlapi-developer@lists.
sourceforge.net or open an issue on https://github.com/owlcs/owlapi/

issues - there are always people there willing to help.

Protégé and the SKOS API? have been updated to version 4 only recently 2https://github. com/simonjupp/
(Protege 5.0.0-beta23 is the most recent Protege build at the moment). java-skos-api/pull/2

owlapi-developer@lists.sourceforge.net
owlapi-developer@lists.sourceforge.net
https://github.com/owlcs/owlapi/issues
https://github.com/owlcs/owlapi/issues
https://github.com/simonjupp/java-skos-api/pull/2
https://github.com/simonjupp/java-skos-api/pull/2

SETTING UP

Essential tools for working with OWL are reasoners - implementations
of the OWLReasoner interface. There are a few of them available for OWL
API 4, and there’s work ongoing to release reasoners for OWL API 5. Check
the Wiki pages on the OWL API website for the latest updates: https://
github.com/owlcs/owlapi/wiki

You can find information on how to make your OWL API 3 application
compatible with the later versions here:

List of changes: https://github.com/owlcs/owlapi/wiki/ A
Migrate-from-version-3.4-and-3.5-to0-4.0 —
Additional Tricks: https://github.com/owlcs/owlapi/wiki/
MigrateTo4Tricks

In the course of this tutorial, we will deal mainly with the latest genera-
tions of the OWL APL

11

https://github.com/owlcs/owlapi/wiki
https://github.com/owlcs/owlapi/wiki
https://github.com/owlcs/owlapi/wiki/Migrate-from-version-3.4-and-3.5-to-4.0
https://github.com/owlcs/owlapi/wiki/Migrate-from-version-3.4-and-3.5-to-4.0
https://github.com/owlcs/owlapi/wiki/MigrateTo4Tricks
https://github.com/owlcs/owlapi/wiki/MigrateTo4Tricks

10

11

Ontology Management

Key Classes:
. e OWLManager
1. Creating a new ontology
¢ OWLOntologyManager
2. Loading and saving ontologies « OWLOntology
« IRI

3. Understanding the imports closure . OWLOntologyFormat

4. Understanding IRIs

Creating a new ontology, adding an axiom and saving it.

In this chapter, we will discuss some of the most fundamental ontology man-
agement tasks you may be using the OWL API for. Let’s dive right into it.
The first thing we will do is create a new ontology. For this we will need the
following lines of code:

Listing 2: Create OWLOntology

public static void main(String][] args) {
OWLOntologyManager man = OWLManager.createOWLOntologyManager();
OWLOntology o;

try {
o = man.createOntology();
System.out.printIn(o);

} catch (OWLOntologyCreationException e) {
e.printStackTrace();

}

The OWLOntologyManager is the central class for managing your ontology:
it handles creating, loading and saving ontologies, the application of changes
such as annotations or axiom additions and keeping track of your imports clo-
sure (in the case that one ontology imports another). 0OWLManager.createOWLOntologyManager ()
is a utility method to create a new OWLOntologyManager-in the five years I

14 AN INTRODUCTION TO THE OWL API

(Nico) have been using the OWL API, I have never had a need to create the
manager in any other way. man.createOntology() asks the freshly created
manager to create a new, empty ontology, that is, an ontology without any
axioms and annotations and a default ontology id (typically “Anonymous-07,
if this is the first ontology you create with that particular manager). Note
that a lot of the functionality of the OWL API will require you to deal with
exceptions. We assume the reader to be at least vaguely familiar with ex-
ception handling, and will, for the remainder of this tutorial, omit the try
{...} catch{...} blocks from our code snippets. As most of the this tu-
torial will take place directly in the main(...) method, you may simply
add the relevant throws declaration to it. We do encourage you however

to familiarize yourself a bit with the exceptions, as they will become quite
relevant once you are debugging your OWL API based applications. The
OWLOntology class finally is your main point of access your ontology: looking
at the axioms and signature, reading annotations, and more.

Running the code above should produce the following output:

Ontology (OntologyID (Anonymous-0)) [Axioms: 0 Logical Axioms: 0] First 20
axioms: {}

In the next step, we will discuss some of the different ways we can load an
ontology. The first method loads an ontology document directly from your
local machine using Java’s File and works as follows:

Listing 3: Load Ontology From File

OWLOntologyManager man = OWLManager.createOWLOntologyManager();
File file = new File("C:\\pizza.owl.xml");

OWLOntology o = man.loadOntologyFromOntologyDocument(file);
System.out.printin(o);

Depending on the operating system you are using, the path to the file may
be formatted in a slightly different way. The version above shows how it is
done in a Windows environment. I downloaded the Pizza ontology at Stanford
(http://protege.stanford.edu/ontologies/pizza/pizza.owl) for the
purpose of demonstration (make sure the file path points to the ontology you
downloaded). Running the above program, your output should be something
like (list of axioms omitted):

http://protege.stanford.edu/ontologies/pizza/pizza.owl

o

ONTOLOGY MANAGEMENT

Ontology (OntologyID(OntologyIRI(<http://www.co-ode.org/ontologies/
pizza/pizza.owl>) VersionIRI(<null>))) [Axioms: 940 Logical Axioms:
712] First 20 axioms: {...omitted for brevity...}

If you want to directly load an ontology from the web, you can use the
following code:

Listing 4: Load Ontology From IRI

OWLOntologyManager man = OWLManager.createOWLOntologyManager();
IRI pizzaontology = IRl.create("
http://protege.stanford.edu/ontologies/pizza/pizza.owl

YV);

OWLOntology o = man.loadOntology(pizzaontology);

System.out.printin(o);

Running this program should have the exact same output as the previous
one. There are various other options to load an ontology. You can use your
IDE’s autocomplete functionality to look through the loadOntology... ()
methods of your OWLOntologyManager to get an idea. The most interesting
part of this snippet is the instantiation of an IRI object (IRI stands for In-
ternationalised Resource Identifier, a sort of upgraded version of URIs that
support unicode characters) that provides us with the link to the ontology on
the web. We will be using IRI’s quite a bit: many components of OWL are
represented in the OWL API in the form of IRI’s, from classes and properties
to the ontology IRI itself (a part of the ontology identifier).

In order to save your ontology, we can use the following lines of code:

Listing 5: Save ontology

OWLOntologyManager man = OWLManager.createOWLOntologyManager();
File fileout = new File("C:\\pizza.func.ow!");
IRI pizzaontology = IRl.create("
http://protege.stanford.edu/ontologies/pizza/pizza.owl
OWLO)ntology o = man.loadOntology(pizzaontology);
man.saveOntology(o, new FunctionalSyntaxDocumentFormat(),
new FileOutputStream(fileout));

Again, there are various ways to save an ontology. This one is the one I
have been using quite a bit, so let’s go through it. The saveOntology(...)
method T am using here has three parameters: the ontology that should be
saved, the output format we wish the ontology to be stored in and a reference
to the file we want to write to in the form of an FileOutputStream. The
OWL API supports a large number of document formats such as OWL /XML,

15

http://www.co-ode.org/ontologies/pizza/pizza.owl
http://www.co-ode.org/ontologies/pizza/pizza.owl
http://protege.stanford.edu/ontologies/pizza/pizza.owl
http://protege.stanford.edu/ontologies/pizza/pizza.owl

16 AN INTRODUCTION TO THE OWL API

Functional, Manchester, Latex, Turtle, RDF /XML, OBO, DL, KRSS and
many more. If you are interested in file formats, it is worth looking at the
type hierarchy of OWLDocumentFormatImpl in your IDE (Ctrl+T in Eclipse).

The Imports Closure

You will notice that your OWLOntologyManager can hold more than one
ontology. The most important case where this becomes relevant in my ex-
perience is when we are dealing with ontologies that depend on other on-
tologies. In OWL, we typically make this dependency explicit by adding an
owl:imports statement. For example, your Sushi ontology (SO) may depend
on a Japanese food ontology (JFO), which in turn depends on a general food
ontology (FO) that includes knowledge about basic ingredients, their nutri-
tional values and their origin. If you were to load your ontology using the
OWLOntologyManager, the JFO and the FO would be represented as separate
ontologies in your manager. We call the set of all three ontologies, SO, JFO
and FO, the “imports closure” of SO (i.e. the imports closure always includes
the ontology itself), the set JFO and FO the “imports” of SO and the JFO
all by itself the “direct import(s)” of SO. This is very important to remember
when using the OWL API to manage ontologies, as you are allowed to add
and remove, count and iterate axioms with respect to all three of these sets.
In the following, we discuss one example where this becomes obvious.

Each 0WLOntology object carries a reference to the OWLOntologyManager
object that created it. I spend years passing both the manager and

the ontology itself as parameters to methods. Now I know that
ontology.getOWLOntologyManager () would have done the trick.

ONTOLOGY MANAGEMENT 17

Task 3: Load an ontology from the Web and save locally

1. Load the ontology located at http://www.cs.man.ac.uk/~stevensr/ontology/
family.rdf.owl

2. Save the loaded ontology somewhere on your system.
3. Create an NEW 0OWLOntologyManager.
4. Load the ontology you have just saved in the previous steps.

5. Add this line: System.out.println("Axioms: "+02.getAxiomCount()+", Format:
"+mana.getOntologyFormat (02)) ;

If you have successfully completed the task, running it should result in the
following output:

SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See ... for further details.

Axioms: 2847, Format: Manchester OWL Syntax.

http://www.cs.man.ac.uk/~stevensr/ontology/family.rdf.owl
http://www.cs.man.ac.uk/~stevensr/ontology/family.rdf.owl

Change

Key Classes:

. . L « OWLEntity
1. Introducing axioms and entities

— OWLClass

2. Adding and removing axioms — OWLObjectProperty
— OWLDataProperty

3. Changing axioms . OWLAxiom

4. Annotating the ontology, its entities and axioms — OWLSubClassOfAxiom
— OWLClassAssertion

— OWLAnnotationAssertion

Introducing axioms and entities « OWLDataFactory
¢ OWLAnnotation

« OWLDatatype
¢ OWLLiteral
¢ OWLOntologyChange

There are two categories of building blocks when dealing with OWL on-
tologies entities and axioms. Entities (OWLEntity) can be individuals (
OWLIndividual), i.e. concrete items in the domain (people, countries, genes),

classes (OWLClass), i.e. sets of individuals (the class of students), object — AddAxiom

properties (OWLObjectProperty), i.e. relationships between individuals ~ RemoveAxiom
(loves, is part of) or data properties, i.e. relationships between individuals

and data values (birthdates, names). Axioms are statements about entities,

for example “class Woman is a subclass of Person ”, the “property isPartO0f

is transitive”, i.e. each element A that is part of one element B is also part

of any element C that is part of element B, or the “individual Robert is a

member of the class Person ”.

Axioms are the first class citizens of OWL ontologies. In fact, you should
view an ontology as a set of axioms, rather than a set of entities, especially
when interacting with the ontology using the OWL API. This means for ex-
ample that you should not think: “Does the ontology contain class A”, but
rather “Is class A mentioned in any axiom in the ontology?”. The OWL API’s
getSignature () method is merely a convenience method that collects the set
of entities mentioned across all the axioms in the ontology, and is not main-
tained separately. This means you cannot “just add a class” to your ontology;
you create a so called Declaration, a special kind of axiom, which is added
to the ontology as follows:

1

2

3

20 AN INTRODUCTION TO THE OWL API

Listing 6: Add Declaration Axiom

IRI' lOR = IRl.create("http://owl.api.tutorial");

OWLOntologyManager man = OWLManager.createOWLOntologyManager();
OWLOntology o = man.createOntology(IOR);

OWLDataFactory df = 0.getOWLOntologyManager().getOWLDataFactory();
OWLClass person = df.getOWLClass(IOR+"#Person");
OWLDeclarationAxiom da = df.getOWLDeclarationAxiom(person);
o.add(da);

System.out.printin(o);

This is a relatively complex piece of code for such a small operation,
and we will discuss it in detail now. First, we instantiate an IRI and the
OWLOntologyManager in the usual way, and use it to create an empty on-
tology (i.e., an ontology without axioms). Then, we get an instance of the
OwWLDataFactory, a class that will create our ontology building blocks for
us, i.e. entities and axioms. The naming conventions of previous OWL API
versions suggested that the OWLDataFactory is where you actually “cre-
ate” a OWL class (as part of the ontology). It is important to understand
that this is not the case: you are merely instantiating an OWLEntity ob-
ject (e.g. a class or a property) or an OWLAxiom, but you are not adding
it to your ontology...yet. In OWL, entities are represented by IRI’s (a kind
of qualified name)—every class, every property, every individual has one.
This is reflected by the “get” methods for entities on the OWLDataFactory,
which are parametrised with IRI’s. Once you have obtained a representa-
tion of you person class, you use the same data factory as before to create
a statement about your class; in this case a simple declaration statement,
that merely asserts: “there is a named class called Person”. This axiom can
then be added to the ontology. There are at least three different ways to add
an axiom to your ontology: (1) in the newer version of the OWL API, the
OWLOntology class comes with the add convenience method as described
by the code snippet above; (2) another way to add above axiom is to use
the OWLOntologyManager class: man.addAxiom(o, da);-this was the most
convenient way to do it in earlier versions of the OWL API; (3) if more con-
trol is required, it is possible to wrap the axiom into a change object, which
is then applied to the ontology: AddAxiom ax = new AddAxiom(o, da);
man.applyChange (ax) ; This is how changes are deal with by the OWL
API internally. For simplicity, we will resort to the first option for the re-
mainder of this tutorial. Let us now add a proper axiom to the ontology
that says “Woman is a kind of Person”. This is expressed in the form of a
OWLSubClassOfAxiom as follows:

Listing 7: Add SubCLassOf Axiom

OWLClass person = df.getOWLClass(IOR+"#Person");
OWLClass woman = df.getOWLClass(IOR+"#Woman");
OWLSubClassOfAxiom w_sub_p = df.getOWLSubClassOfAxiom(woman, person);

4

10

11

CHANGE

o.add(w_sub_p);

The OWL 2 specification requires all entities in the ontology to be declared
(see Declaration axiom above). Conveniently, adding a “proper” (i.e. log-
ically effectual) axiom, such as the SubClassOf axiom in the previous snip-
pet, will trigger the OWL API to add the missing OWLDeclarationAxiom’s
for both Person and Woman to the ontology (at the latest when you save
the ontology to a text file). In other words: it should rarely be necessary to
add Declaration’s manually. Let us look at a more complex axiom now:

Listing 8: Create a more complex class expression

OWLClass A = df.getOWLClass(IOR + "#A");

OWLClass B = df.getOWLClass(IOR + "#B");

OWLClass X = df.getOWLClass(IOR + "#X");
OWLObjectProperty R = df.getOWLObjectProperty(IOR + "#R");
OWLObjectProperty S = df.getOWLObjectProperty(IOR + "#S");
OWLSubClassOfAxiom ax = df.getOWLSubClassOfAxiom(
df.getOWLObjectSomeValuesFrom(R, A),
df.getOWLObjectSomeValuesFrom(S, B));

o.add(ax);

o.logicalAxioms().forEach(System.out::printin);

As you can see, we made use of a new OWL construct: 0WLObjectSomeValuesFrom
. This is used to create expressions such as “ isEnrolledIn some University
7 or “R some A”. The key aspect of this code snippet lies in the creation of
the OWLSubClassOfAxiom. As you can see, it takes two parameters (i.e. sub
and super-class), both (potentially) complex class expressions. Class expres-
sions can consist of very deeply nested expressions. In the exercises at the end
of this chapter, you will be asked for example to nest OWLObjectSomeValuesFrom
with OWLObjectIntersectionOf expressions. This nesting principle is similar

for all axiom types that can be created with the OWLDataFactory!

At least for now, it helps to apply the following recipe when creating complex
class expressions and axioms:
1. Create all the entities needed for your axiom (with the
OWLDataFactory).
2. Create all the sub-expressions need for your axiom (intersections,
OWLObjectSomeValuesFrom, etc).
3. Assemble the sub-expressions into the final axiom.

We might need to delete an axiom that we previously created. Let’s add
another axiom as follows:

21

10

11

12

13

14

15

22 AN INTRODUCTION TO THE OWL API

Listing 9: Add buggy SubClassOf Axiom

OWLClass mann = df.getOWLClass(IOR+"#Man");

// mann with two "n" to avoid confusion with the OWLOntologyManager
OWLClass woman = df.getOWLClass(IOR+"#Woman");

OWLSubClassOfAxiom m_sub_w = df.getOWLSubClassOfAxiom(mann, woman);
o.add(m_sub_w);

The statement is, at least to most of us, obviously wrong, and we might
wish to remove it. Deleting works analogous to adding as follows:

Listing 10: Remove Axiom

OWLClass mann = df.getOWLClass(IOR+"#Man");

OWLClass woman = df.getOWLClass(IOR+"#Woman");

OWLSubClassOfAxiom m_sub_w = df.getOWLSubClassOfAxiom(mann, woman);
o.remove(m_sub_w);

In order to delete an axiom from your ontology, you first create the axiom
exactly as it exists in the ontology using the data factory, and them you re-
move it. Again, man.removeAxiom(o, m_sub_w); or RemoveAxiom ra =
new RemoveAxiom(o, m_sub_w); man.applyChange(ra); can be used for the
exact same purpose.

Changing axioms used to be one of the more painful exercises with the
OWL API. Previous to OWL API 5, you had to implement your own method
to replace sub-expressions in axioms, or alternatively drop the old version
of an axiom from the ontology and add the new, updated version of it. For-
tunately for us, that changed now. The following code looks extensive, but
everyone who ever had to change axioms (replace sub-expressions or literals)
will appreciate its flexibility.

Listing 11: Change Axiom (OA5)

final Map<OWLClassExpression, OWLClassExpression> replacements = new HashMap
<>();

OWLClass A = df.getOWLClass(IOR + "#A");

OWLClass B = df.getOWLClass(IOR + "#B");

OWLClass X = df.getOWLClass(IOR + "#X");
OWLObjectProperty R = df.getOWLObjectProperty(IOR + "#R");
OWLObjectProperty S = df.getOWLObjectProperty(IOR + "#S");
OWLSubClassOfAxiom ax = df.getOWLSubClassOfAxiom(
df.getOWLObjectSomeValuesFrom(R, A),
df.getOWLObjectSomeValuesFrom(S, B));

o.add(ax);

o.logicalAxioms().forEach(System.out::printin);

replacements.put(df.getOWLObjectSomeValuesFrom(R, A), X);

16

17

18

19

20

21

22

23

24

25

26

27

OWLObjectTransformer<OWLClassExpression> replacer =
new OWLObjectTransformer<>((x) —> true, (input) —> {
OWLClassExpression | = replacements.get(input);
if (I ==null) {

return input;

return [;
} . df, OWLClassExpression.class);

List<OWLOntologyChange> results = replacer.change(o);
o.applyChanges(results);

We will not get into the details of the above code in this tutorial, but we
want to instead focus your attention on the Java Map called replacements.
The keys in this map correspond to the OWLClassExpression’s to be re-
placed. The values are the values that these expresssions should be replaced
with. The OWLObjectTransformer takes in this map, and performs the re-
placement, which results in a set of OWLOntologyChange objects. These can
then simply be applied to your ontology, and you are done. Note that the
OWLObjectTransformer is generic: You can perform replacements of vir-
tually everything you can think of, not only class expressions, for example
OWLNamedIndividual, if you need to rename some or all of the individuals in

your ontology.

Traversing the ontology

One of the recurring tasks when dealing with your ontology using the OWL
API is iterating over the signature (the set of classes, properties and individu-
als across all axioms in your ontology) or over the set of axioms. In the older
versions of the OWL API, you would have done that in the following way
(you can still do it like that):

Listing 12: Iterate over Axioms

for(OWLAxiom ax:o.getLogicalAxioms()) {
System.out.printin(ax);

}

If you use Eclipse or similar IDE’s for Java development, you will notice
that the getLogicalAxioms() method is deprecated now. This should not
worry you; it is perfectly fine to use it anyways. The OWL API 5 makes
heavy use of Java 8’s streams to replace the practice of iterating through
the signature using the traditional get methods. Explaining streams is
beyond this short introduction, but the interested reader can take a look

CHANGE 23

1

24 AN INTRODUCTION TO THE OWL API

for example at this tutorial: http://winterbe.com/posts/2014/07/31/
java8-stream-tutorial-examples/. In a nutshell, a stream represents a
sequence of elements, such as the entities in the signature, or the axioms

in an ontology, on which you can perform operations in a very convenient,
functional-style manner. For example, the above iteration can be performed
using the stream analog as follows:

Listing 13: Iterate over Axioms (OAb)

o.logicalAxioms().forEach(System.out::printin);

This one-line program has the exact same effect as the previous code snip-
pet, but is terser and often more performant. Using streams can be a bit of a
challenge for programmers without a great deal of java experience, but they
are a powerful tool to master.

Let’s try another example. This time, we want to iterate through all
OWLEntity’s in the signature (that do not belong to the built-in vocabulary),
and for each of them check whether their name starts with a “P”.

Listing 14: Filter during iteration (OA5)

o.signature().filter((e—>('e.isBuiltIn()&&e.getIRI().getFragment().startsWith("P")))).
forEach(System.out::println);

o.signature() again offers us the ontologies signature as a stream. Note
that by default, this gives us all elements in the signature, even some of
the built-in vocabulary (such as rdfs:label for annotations).

Again, I am a rebel and use the deprecated getFragment () method here.
Ideally, you should start using the brand new and shiny getRemainder ()
method instead, but it returns an Optional, another Java 8 thing that I have
not yet fully adapted as a programming style. Essentially, an Optional is a
clean way to avoid returning null values. So, instead of checking whether a
return value is null (or worse, possibly forget checking it in the first place),
we now get these Optional objects back, whose values we can obtain for
example by calling ifPresent() on them. The “OWL API 5” way of doing
the same thing using getRemainder () is as follows:

Listing 15: The IRI Remainder as a Java Optional (OA5)

o.signature().filter(e—>le.isBuiltIn()&&e.getIRI().getRemainder().orElse("").startsWith
("P")).forEach(System.out::printin);

As this gets a little bit hard to read, here an alternative way, defining a
suitable method to check whether the name of the class starts with “P”:

http://winterbe.com/posts/2014/07/31/java8-stream-tutorial-examples/
http://winterbe.com/posts/2014/07/31/java8-stream-tutorial-examples/

CHANGE

Listing 16: Filter with function (OAb)

o.signature().filter(MyClass::owlClassNameStartsWithP)\ \ .forEach(System.out::printIn);

Vit

* Ignoring inessential code

*/

private static boolean owlClassNameStartsWithP(OWLEntity e) {
return le.isBuiltIn()&&e.getIRI().getRemainder().orElse("").startsWith("P");

}

This code can be read like this: get the signature stream, then filter it
down. The method (owlClassNameStartsWithP (OWLEntity e)) that is
passed to the filter () method returns a boolean, takes exactly one param-
eter (OWLEntity) and checks (1) whether the OWLEntity is built-in and then
(2) checks whether the remainder, a Java Optional, starts with “P”. The
orElse(T t) method returns either the remainder (if the entity has one), or
t, which is an object of the class held by the Optional, in our example an
empty string.

Annotations

There are three important aspects of ontologies we can annotate in OWL: (1)
the ontology itself can be annotated for example with provenance information
such as authors, date of creation or versioning information; (2) every axiom
in the ontology can be annotated (I used this feature in the past for example
to give every axiom an id); (3) every entity in the ontology can be annotated,
for example with a human readable label (typically, but not necessarily, using
rdfs:label . Annotations do not have any effect on the logical structure of
the ontology, but provide a way to enrich the ontology with meta-data. One
of the most prominent use cases for annotations is the use of human-readable
labels on classes, properties and individuals to render them in the ontology
engineering environment Protégé. In the following, we will show one simple
example for each of the three annotation types.

Listing 17: Add Annotation

OWLClass student = df.getOWLClass(IRl.create(IOR + "#1D879812719872"));

OWLAnnotation commentAnno = df.getOWLAnnotation(df.getRDFSComment(), df.
getOWLLiteral("Class representing all Students in the University", "en"));

OWLAnnotation labelAnno = df.getOWLAnnotation(df.getRDFSLabel(), df.
getOWLLiteral("Student", "en"));

OWLAxiom axl = df.getOWLAnnotationAssertionAxiom(student.getIRI(), labelAnno);

man.applyChange(new AddAxiom(ont, ax1));

OWLAxiom ax2 = df.getOWLAnnotationAssertionAxiom(student.getIRI(),

commentAnno);

25

26 AN INTRODUCTION TO THE OWL API

man.applyChange(new AddAxiom(ont, ax2));

In this example, we can see that annotations are created in quite a similar
fashion as logical axioms. We first get hold of the components we need to
describe the annotation axiom (in the case ax1, this is the OWLClass we
want to annotate, the property we want to annotate with (rdfs:label and
the actual data value, in our case a string).

Task 4: Building your first complex expression

1. Create a new empty ontology.

2. Add the axiom Student EquivalentTo: Person and isEnrolledIn some

University and attends some Course .

3. Create a named individual (like yourself, we will call her/him person X from now on),
assert her or him as a Person (not Student!), and a named individual ManchesterUni-
versity, asserted as an instance of the class University.

4. Assert that the person X you just created is enrolled in the ManchesterUniversity. This
task requires you to create an object property assertion!

5. Assert that the person you just created attends a course, but without specifying which
one. In Manchester syntax that looks like this:
Individual: Nico
Types: attendsCourse some Course, Person
It is a bit tricky to wrap your head around that one, but you have the tools already to

succeed at this.

6. Print all axioms in your ontology to check whether they look complete according to
the task. You might even want to save the ontology like we discussed in the previous
exercise, and inspect the result in Protégé.

In order to complete the task above, you will need to dig deep into the
OWLDataFactory . The in order to create an existential restriction, you will
for example need datafactory.getOWLObjectIntersectionOf(..) and
datafactory.getOWLObjectSomeValuesFrom(...).

CHANGE 27

If you did everything as discussed, your output should look something like
this (ignoring warnings and the likes):

EquivalentClasses(<http:\\owl.org\o#Student>
ObjectIntersectionOf(<http:\\owl.org\o#Person>

ObjectSomeValuesFrom(<http:\\owl.org\o#attends> <http:
owl.org\o#Course>)

ObjectSomeValuesFrom(<http:\\owl.org\ o\#isEnrolledIn>
<http:\\owl.org\o#University>)))

ClassAssertion(<http:\\owl.org\ o\#Person> <http:\\owl.org\ o\#Nico>)
ClassAssertion(ObjectSomeValuesFrom(<http:\\owl.org\ o\#attends>
<http:\\owl.org\ o\#Course>) <http:\\owl.org\ o\#Nico>)

Inference and reasoning

1. Adding reasoner packages to your project
2. Running the reasoner and inspecting the inferences

3. Appreciating the implementational differences between reasoners

Setting your project up for reasoning

In much the same way as we integrated the OWL API itself with our ap-
plication using Maven, we will now integrate one of the reasoners that are
implementing the OWLReasoner interface. In order to achieve that, we will
simply inject the following XML snippet into our pom.xml file:

Key Classes:
« OWLReasoner
« OWLReasonerFactory

Insert between <dependencies></dependencies> :

<dependency> <groupld>net.sourceforge.owlapi</groupld> <artifac-
tId>org.semanticweb.hermit< /artifactId> <version>1.3.8.500< /version>
< /dependency>

This integrates a version of HermiT 3, a popular (and reliable) OWL rea-
soner, into our project. This version is a special port of HermiT that is com-
patible with the OWL API version 4 and 5. Note that HermiT is one of the
few reasoners ported so far to OWL API 5.

If we now update our Maven (if it does not happen all by itself, right click
on project in eclipse->Maven->Update project), we will be able to write and
execute the following code snippet:

Listing 18: Instantiate Reasoner

3 Birte Glimm, Ian Horrocks, Boris
Motik, Giorgos Stoilos, and Zhe
Wang. HermiT: An OWL 2 Reasoner.
Journal of Automated Reasoning,
53(3):245-269, 2014

10

11

12

30 AN INTRODUCTION TO THE OWL API

OWLReasonerFactory rf = new ReasonerFactory();
OWLReasoner r = rf.createReasoner(o);
r.precomputelnferences(Inference Type. CLASS_HIERARCHY);

Line 1 first instantiates an OWLReasonerFactory, which allows us to create
the reasoner (Line 2). Line 3 finally classifies the ontology, which is for some
tasks not strictly necessary, but convenient with respect to this introduction.

Querying the reasoner

Through the OWLReasoner interface, we can do a number of interesting
things. In the following, you will learn who do query for sub-classes, equiv-
alent classes and instances.

One of the most important tasks we ask our reasoners to perform is to
classify, and then obtain the sub- and superclasses inferred for a particular
class. For example, when querying the pizza ontology, we might be interested
to query for all VegetarianTopping ’s or InterestingPizza ’s. We can
obtain the subclasses of a class as follows:

Listing 19: Get all Inferred Subclasses

OWLOntology o;

OWLDataFactory df = man.getOWLDataFactory();

IRI pizzaontology = IRl.create("http://protege.stanford.edu/ontologies/pizza/pizza.ow!"

)i

try {
o = man.loadOntology(pizzaontology);
OWLReasonerFactory rf = new ReasonerFactory();
OWLReasoner r = rf.createReasoner(o);
r.precomputelnferences(Inference Type. CLASS_HIERARCHY);
r.getSubClasses(df.getOWLClass("http://www.co—ode.org/ontologies/pizza/

pizza.owl#RealltalianPizza"), false).forEach(System.out::println);;

} catch (OWLOntologyCreationException e) {

e.printStackTrace();

}

Line 9 is responsible for the subclass query. The getSubClasses(..)
method takes as an input to parameters: a named 0WLClass, such as a kind
of Pizza, and a boolean, indicating whether you want only the direct (true)
subclasses, or also the indirect ones, i.e. the subclasses of the subclasses of the
pizza. If done correctly, you should see the following in your output:

INFERENCE AND REASONING

Node(<http:\\www.co-ode.org\ontologies\pizza\pizza.owl# Veneziana>)
Node(<http:\\www.co-ode.org\ontologies\pizza\pizza.owl#IceCream>

<http:\ \www.co-ode.org\ontologies\ pizza\ pizza.owl#Cheesey Vegetable Topping >
owl:Nothing)

Node(<http:\\www.co-ode.org\ontologies\pizza\pizza.owl#Napoletana>)

As we can see, the reasoner returns a set of Node objects, each containing
a set of classes that are logically equivalent to each other. If you play around
with the Node object, you will see that there are ways to turn them into
lists of OWLClass objects. To explain the second node is beyond the scope
of this tutorial. Suffice it to say: owl:Nothing is a subclass of everything by
definition of the language, hence HermiT correctly returns it, along with all
the unsatisfiable classes in the ontology that are equivalent to owl:Nothing.

Task 5: Unsatisfiable Classes

1. Create a new ontology with at least two satisfiable classes and one unsatisfiable class.
Tip: the easiest way to do that is to make a class a subclass of the intersection of two
disjoint classes. One suggestion (the thing that will be demonstrated later on) is to use
a Student and Teacher class, make them disjoint and make a class like Demonstrator a
subclass of their intersection.

2. Instantiate a reasoner and determine whether your ontology is consistent. Should it be?
3. Print the list of unsatisfiable classes to the console.

4. Create an individual and make it an instance of the unsatisfiable class in the way we
discussed it before.

5. Check whether the ontology is consistent and explain why.

31

owl:Nothing
owl:Nothing

32 AN INTRODUCTION TO THE OWL API

Task 6: Querying Subclasses

1. Instantiate the reasoner again in the same way as we did for the previous task.

2. The question is: Is the person X you created a student or not? Try to find this out
using the OWLOntology interface alone. DonaAZt spend more than 7 minutes on this
and move on.

3. Ask the reasoner the same question (use the OWLReasoner interface).

Bibliography

[1] Birte Glimm, Ian Horrocks, Boris Motik, Giorgos Stoilos, and Zhe
Wang. HermiT: An OWL 2 Reasoner. Journal of Automated Reason-
ing, 53(3):245-269, 2014.

[2] Matthew Horridge and Sean Bechhofer. The OWL API: A Java API for
OWL Ontologies. Semantic Web, 2(1):11-21, 2011.

Index

license, 2

	Version information
	Requirements
	Welcome
	Setting up
	Differences between versions

	Ontology Management
	Creating a new ontology, adding an axiom and saving it.
	The Imports Closure

	Change
	Annotations

	Inference and reasoning
	Setting your project up for reasoning
	Querying the reasoner

	Bibliography
	Index

