
COMP60411
Modelling	Data	On	The	Web

Tim	Morris	&	Uli	Sattler

Week	1	Introduction,	Data	Models,	Tables,	and	SQL

Topic	Overview
What	is	a	(core)	data	model?	E.g.,
Flat:	flat	files
Table	based:	relational
Tree	based:	XML	and	a	bit	of	JSON
Graph	based:	RDF

Trade	offs	(esp.	representational)	between	them
Discussing	pain	points	&	sweet	spots,	distinguishing

principled	ones	from
DM-based	ones	from
those	caused	by	your	usage	of	DM

Course	Goals:
Knowledge	&	Understanding

This	 	aims	to	give	you	a
good	understanding	of	core	concepts	of	data	modelling
some	familiarity	with	formalisms,	APIs,	and	languages

for	modelling	data	on	the	web
design/representation	issues	that	arise

course	unit

http://studentnet.cs.manchester.ac.uk/pgt/COMP60411/syllabus

Course	Goals:
Skills

This	 	aims	to	give	you	the	ability/skill	to
compare	different	data	modelling	formalisms,
design	or	analyse	a	data	management	system,

does	it	make	good	use	of	the	formalism's	features?
does	it	fit	its	purpose?

course	unit

http://studentnet.cs.manchester.ac.uk/pgt/COMP60411/syllabus

Course	Structure
Lectures

Active	learning
Lab

Make	sure	you	understand	the	coursework!
Readings

All	readings	available	online
Core:	the	"Learning"	eBook	series

Learning	SQL
Learning	XML
Learning	SPARQL

https://ebookcentral.proquest.com/lib/manchester/detail.action?docID=443242
http://proquestcombo.safaribooksonline.com/book/xml/0596004206
https://ebookcentral.proquest.com/lib/manchester/detail.action?docID=1250020

Our	Expectations
Lectures:

active	listening	&	participation
Lab	Mondays	afternoon:

make	sure	you	understand	the	coursework!
Lab	during	week:

work	on	your	coursework
make	use	of	TAs:	14:00-15:00

Coursework:
submit	on	time

Read!

Assessment
Coursework	(50%,	≈200	marks)

Each	week,	a	mixture
1.	 MCQ	quizzes	(≈10	marks)
2.	 Short	essays	(≈5	marks)
3.	 A	modelling	assignment	(≈10	marks)
4.	 A	programming	assignment	(≈15	marks)
Precise	mark	breakdown	varies

Exam	(50%)
Taken	online
Very	like	1	&	2

Materials	&	Blackboard
All	course	materials	are	available	online	on	the	materials	page
We	use	Blackboard	for

Coursework
Online	forums

Subscribe	to	each	forum
Ask	questions	there
Answer	questions	there
Share	examples,	test	cases	there

Exam

Variant	Circumstances
Disability	(Equality	Act):

any	condition	which	has	a	significant,	adverse	and	long-term	effect	on	a
person’s	ability	to	carry	out	normal	day-to-day	activities.

Exam	&	Study	support	&	more
Great,	helpful	people

	and	 	process

Disability	Advisory	and	Support	Service

Counselling	service
SSO Mitigating	Circumstances

...feel	free	to	ask	us:	we're	happy	to	advise!

http://www.dass.manchester.ac.uk/
http://www.studentnet.manchester.ac.uk/counselling/
http://studentnet.cs.manchester.ac.uk/student-services/index.php?view=pgr
http://studentnet.cs.manchester.ac.uk/assessment/mitigatingcircumstances.php

Assistance	&	Help
Early	intervention	is	more	effective

If	you	are	having	challenges	of	any	sort
the	sooner	they	are	identified	and
communicated	to	us
the	more	likely	we	can	find	a	good	resolution

This	is	very	true	for	mitigating	circumstances
If	something	is	interfering,	document	it!
Fill	out	the	form	when	things	are	happening
There	is	a	"too	late"	here!

...when	in	doubt,	ask	us	and	SSO	for	MitCircs

http://studentnet.cs.manchester.ac.uk/assessment/mitigatingcircumstances.php

Expected	Conduct
We	expect	of	you	(and	ourselves)	to

be	fair	minded
treat	each	other	well	&	with	respect
avoid	academic	malpractice
take	responsibility	for	course	duties
be	engaged,	curious,	and	active

If	you	have	a	problem	or	issue
please	raise	it	with	us
if	that	doesn't	help,	contact	your	programme	director

Preliminaries

We	all	have	to	start	somewhere

Data	Management	(1)
Almost	every	program	must	do	some	data	management

If	only	config	files!
Many	are	information	heavy

and	must	deal	with	that	information	over	time
Database	Management	Systems	(DBMSs)

Separate	(or	separable)	component
Specialised	for	variables	purposed

secondary	storage,	scaling,	complexity,	etc.

Data	Management:
Lifetime

Some	data	is	(typically)	transient	or	ephemeral
Position	of	the	cursor	on	the	screen

Some	data	is	(typically)	persistent
Bank	records,	addresses,	health	data,	library	entries
Cursor	position	can	be!

(If	you	are	recording	the	screen...)

We're	focused	on	data	that	leans	toward	persistent

Data	Management:
Structure

Some	data	is	(more	or	less)	informationally	opaque
e.g.,	images,	video,	text,	audio
its	information/content	isn't	(easily)	available

You	typically	must	do	some	extraction
this	is	called	unstructured	data

Some	data	is	informationally	transparent
its	information/content	is	programmatically	explicit
this	is	called	(semi-)structured	data

Out	Of	Scope
There	is	lots	of	DM	that's	outside	our	scope
1.	 Performance	&	Scaling:	see	
2.	 Concurrency

Thus	transactions
(You	should	read	up	on	ACIDity)

3.	 Tuning,	indeed	most	physical	level	stuff
4.	 Cleansing
5.	 Integration

Except	for	a	tiny	bit,	around	merging

COMP62421

These	considerations	do	affect	modelling!

http://studentnet.cs.manchester.ac.uk/pgt/COMP62421/syllabus/

Data	And	The	Web
The	Web	is	a	collaborative	information	structure

Largely	decentralised
Immense
Growing	rapidly
Changing	rapidly

The	Web	produces	new	data	challenges
Scale	of	data
Kind	of	data
Shape	of	data
Use	of	data

Data	on,	from,	behind	the	Web
On	the	Web

data.gov,	data.gov.uk,	...
From	the	Web

Log	files
Behind	the	Web

Data(base)	backed	Websites
The	filesystem	is	a	kind	of	database

Content	Management	Systems
Wordpress

Sites	as	Database	Front	Ends
See	Amazon

What	is	a	Data	Model?
Three	Key	Aspects
1.	 Underlying	Data	Structure,	"Core	Data	Model"
2.	 Data	Integrity
3.	 Data	Manipulation
4.	 (Plus	a	fourth!)	Data	Sharing

More	important	on	the	Web	*

"Data	Model"	is	Ambiguous:
1.	 a	complete	data	representation	and	manipulation	approach	(we	do	this!)
2.	 just	the	core	data	model
3.	 a	particular	data	representation	for	a	domain	or	application,	also	called	the
domain	model

"Does	your	calendar	data	model	include	leap	years?"

Generally,	you	can	tell	from	context,	(2)	is	rare.

Kinds	of	Data
Data	can	lend	itself	to	different	shapes

Array-like
Tree-like
Graph-like
Document-like

Data	can	have	different	volumes
Small	to	"big"	data

Data	can	have	different	velocities
Static/offline	to	streaming

Data	can	have	different	use	patterns
Many	readers/few	writers	or	the	reverse	or	other!

Data	Does	Not	Grow	on	Trees
Data	may	lend	itself	to	one	shape

e.g.,	tree-shape	or	graph-shape
but	this	does	not	mean	that

we	have	to	persist	it	in	this	form
we	know	exactly	how	to	cast	it	in	this	form
...consider	pain-points	and	sweet	spots
others	share	it	in	this	form

Polyglot	Persistence
...we	 are	 gearing	 up	 for	 a	 shift	 to	 polyglot	 persistence	 —	 where	 any
decent	 sized	 enterprise	 will	 have	 a	 variety	 of	 different	 data	 storage
technologies	 for	 different	 kinds	 of	 data.	 There	 will	 still	 be	 large
amounts	of	 it	managed	 in	 relational	 stores,	but	 increasingly	we'll	be	 first
asking	how	we	want	to	manipulate	the	data	and	only	then	figuring
out	what	technology	is	the	best	bet	for	it.

—	Martin	Fowler

http://martinfowler.com/bliki/PolyglotPersistence.html

Polyglot	Persistence	(2)
This	polyglot	[e]ffect	will	be	apparent	even	within	a	single	application.	A
complex	 enterprise	 application	 uses	 different	 kinds	 of	 data,	 and	 already
usually	integrates	information	from	different	sources.	Increasingly	we'll
see	 such	 applications	 manage	 their	 own	 data	 using	 different
technologies	depending	on	how	the	data	is	used.	
—	Martin	Fowler

http://martinfowler.com/bliki/PolyglotPersistence.html

Poly	-Glot/-System	Persistence
Even	a	single	core	data	model	can	result	in

multiple	systems	with	different	characteristics
multiple,	overlapping,	domain	models
multiple,	overlapping	owners,	versions,	variants

This	is	particularly	true	in	on	the	Web!

"Flat	Files"	--	A	Simple	Model

https://commons.wikimedia.org/wiki/File%3ABasel_2012-10-06_Batch_Part_3_(31).JPG

A	Sample	Domain
We	start	with	a	classic	example:	The	Address	Book

People	and	information	about	them
Names	and	contact	information

We	can	do	a	first	cut	as	a	diagram

For	Example
Bijan!

Name:	Bijan	Parsia
Company:	University	of	Manchester
Email:	bijan.parsia@manchester.ac.uk
...

Uli!
Name:	Uli	Sattler
Company:	University	of	Manchester
Email:	uli.sattler@manchester.ac.uk

Storing!

Slides	are	not	a	good	storage	place	for	data
We	have	an	array	like	structure	so...

How	about	a	spreadsheet!
1	entity/record/person	per	row
Each	field/attribute	is	a	column

We	have	software	that	works	well	with	this!	

Interacting	With	The	Data

To	the	demo!

Pain	points
Around	"name"

Sorting	is	on	columns
Cannot	sort	by	surname

Filtering:	can	filter	by	names	beginning	with	Z
Cannot	filter	by	surnames	beginning	with	Z

Around	"address"
Can't	sort	or	filter	by	postcode
Can't	sort	or	filter	by	city
Can't	sort	or	filter	by	county

Problems	with	spreadsheets	or	our	format?

Format	2
This	should	fix	our	pain	points!

Interacting!

Demo	encore!

New	Pain	Points
Variable	numbers	of	the	"same"	attribute

Phone	number
Email	address
Web	page
Inserting	columns	is	painful

Lots	of	partial	columns
Sheer	number	sucks

Companies	have	addresses!
More	than	one!
And	phone	numbers,	etc.

More	problems	with	our	format

NOT	A	New	Format
Not	a	fix	to	our	format:

Fixing	The	Format	Again
We	want	adding	a	(similar)	column	to	be	easy!

Easy	as	adding	a	row!
Make	a	new	table	just	for	phone	numbers
Index	numbers	with	person	rows

Format	3
Now	this	should	fix	our	pain	points!

Still	Pain	Points
Sorting	destroys	the	relationship

We	used	row	numbers	to	connect
Sorting	changes	the	row	number!

Hard	to	see	the	record
No	longer	a	simple	flat	file

CSV	format	makes	assumptions

These	are	(mostly)	implementation	problems!

Analyse	Format	Failure
Did	we

get	the	domain	wrong	(addresses)?
fit	it	wrong	into	our	core	DM	(tables)?
pick	the	wrong	core	DM	to	model	it	in?

Is	our	format
unworkable?
workable	but	requires	a	lot	of	application	code?
reasonable	with	some	workarounds?

How	much	technical	debt	are	we	piling	up?
What's	the	cost	of	switching?

Unsuitable	Core	Data	Model
If	you	are

always	"fighting"	the	system
use	lots	of	application	code	to	hack	things
live	in	an	error	rich	environment
have	increasing	amounts	of	workaround	support	in	your	data

Your	core	data	model	might	not	be	a	good	fit	for	your	domain	and
application!

The	Rest	Of	The	DBMS
Even	if	your	core	DM	isn't	a	good	fit,	you	might

be	stuck	with	the	system
You	paid	good	money	for	that	Oracle	database!

need	features	of	the	implementation
is	there	an	XML	database	with	transactions?
what's	the	support	contract?

be	stuck	with	the	model	(critical	legacy	apps)
Just	because	the	model	is	broken	doesn't	mean	that	the	system	is

Or	is	broken	enough	to	justify	a	switch

Flat	File	Programming

Sharing	Our	Databases
Spreadsheets?
Propriatory-ish	(Excel,	Google	Doc,	OpenOffice)

Lingua	franca:	CSV
Comma	(or	Tab)	Delimited	Values
Exactly	the	(pure)	flat	file	model
Format:	text	file

1	record	per	line
First	line	can	be	special	(column	names)
Each	column	separated	by	a	","

We	may	need	to	quote	cells	(with	commas)

CSV	Example

Programmatic	Manipulation
If	we	store	our	databases	as	CSV

We	can	load	and	parse	them	into	structures
Manipulate	our	data	from	our	programs

E.g.,	using	Python
import csv
with open("../Adresses/mod2-uk-500.csv") as csvfile:
 line_count = 0
 myreader = csv.reader(csvfile, delimiter=',', quotechar='t')
 for row in myreader:
 if line_count == 0:
 line_count += 1
 else:
 print(f' Candidate {line_count}: Firstname {row[0]} Lastname {row[1]} City {row[4]}')
 line_count += 1
print(f'Processed {line_count -1} Candidates.')

Solving	Problems
This	solves	some	problems!

Inserting/removing	columns	a	"small	matter	of	programming"
Or	we	could	use	multiple	arrays	with	pointers

We	can	split/combine	fields	at	will
Well,	with	a	bit	of	programming

We	can	control	sorting	well	enough
Use	pointers	to	connect

Lots	of	work!

Against	Bespoke	Programming
This	is	all	at	the	wrong	level

Flat	files	and	flat	file++	are	ubiquitous
We	shouldn't	be	coding	complex	functions

Over	and	over	again!
Even	if	we	can	program	our	way	around	problems

Doesn't	eliminate	the	problems
Some	solutions	(pointers)	effectively	change	the	core	model:	no	longer
flat	files!

A	Relational	Model

https://commons.wikimedia.org/wiki/File%3ARelational_model_concepts.png

Tables
A	core	DM	where	table	(or	relation)	is	the	core	data	structure

A	table	is	a	set	of	tuples
A	tuple	is

an	n-ary	sequence
a	set	of	key-value	pairs

Flat	file	had	one	table
We	allow	many!
Named	tables
Aka	relations

Relations!
(We	use	table	and	relation	interchangeably)
Relations	are	like	First	Order	Logic	(FOL)	predicates

Relation	name	=	Predicate	name
Number	of	columns	=	Arity	of	predicate

Person(bijan,	u_o_manchester,	...)
Predicate	is	true	(or	false!)	of	its	arguments

Relation	is	"true"	of	tuples	which	occur	in	it
Predicates	can	have
definitions	(intensional!)
facts	(extensional!)

Order	and	Identity
Records/Rows/Entities	need	identity

In	Excel,	we	had	the	row	label
the	order	or	position	of	a	record	was	significant

In	our	model,	we	need	distinguishing	attributes
we	push	identity	into	the	data:	a	key

either	a	"naturally"	unique	set	of	attributes
or	a	made	up	one:	an	ID

Order	is	always	a	property	of	the
data	values
implementation

Multiple	Tables
Actions	on	multiple	tables:
Splitting	at

design	time:	try	to	normalize	your	DB
run	time:	dropping	bits

Combining
Take	two	tables	and	produce	a	new	table

The	key	to	relational	domain	modelling
Decompose	your	problem	into	"base"	tables
Derive	new	tables	for	specific	needs

A	Relational	Formalism

https://commons.wikimedia.org/wiki/File%3AVennandornot.svg

What	Is	A	Formalism?
A	formal	system	(or	formalism):
syntax:	what	can	we	write?
semantics:	what	does	our	writing	mean?
with	precise	(mathematical)	definitions
designed	to	capture	a	coherent	set	of	operations
("syntax"	is	loose,	e.g.,	we	might	just	have	a	collection	of	operators)

Key	Goals	Of	A	Formalism
1.	 to	be	clear	about	what	we	mean

In	our	spreadsheet	is	"1"	a	number,	a	string,	either,	both,	something
else?

2.	 to	allow	the	determination	of	key	properties
e.g.,	complexity	of	query	answering

3.	 to	abstract	away	from	particular	implementions
e.g.,	allow	us	to	determine	when	wildly	different	implementations	are
correct	thus	can	interoperate

Formalism	vs.	Language
Formalisms	are	often	abstract

This	can	be	an	advantage!
Can	be	hard	to	use	if	only	abstract
Concrete	instances	typically	involve	compromise

We	focus	on	concrete	languages
Formalisms	are	the	theory
Languages	are	the	practice

Well,	it	may	be	all	right	in	practice,	but	it	will	never	work	in	theory.
In	theory,	there	is	no	difference	between	theory	and	practice.	But,	in
practice,	there	is.

Other	Quotes	On	Theory	vs	Practice

http://c2.com/cgi/wiki?QuotesOnTheoryVsPractice

SQL:	A	Language	For	Tables
Schema

CREATE TABLE	table_name
Update

INSERT INTO	table_name
DELETE FROM	table_name
UPDATE	table_name
...

Query
SELECT ... FROM	table_name

SQL	operations	(largely)	are	closed	over	tables

An	Infelicity
There	is	a	lot	of	lingo	with	slight	different	meanings.	Concepts	get	divided	up

in	slightly	different	ways.

Our	talk Common Learning	SQL	p.10

Core	Data	Model
Data	Integrity Data	Definition SQL	schema	statements	"CREATE"

Data	Manipulation Query/Update	
Language

SQL	Data	statements

A	Sample	SQL	Program
CREATE TABLE People (
 name varchar(255),
 company varchar(255),
 address varchar(255),
 phone varchar(255),
 email varchar(255),
 home_page varchar(255));

INSERT INTO People
 VALUES ('Aleshia Tomkiewicz', 'Alan D Rosenburg Cpa Pc',
 '14 Taylor St, St. Stephens Ward, Kent CT2 7PP',
 '01835-703597','atomkiewicz@hotmail.com',
 'http://www.alandrosenburgcpapc.co.uk');
SELECT name FROM People

You	must	Define	before	Update	before	Query
I.e.,	CREATE	before	INSERT	before	SELECT

Modelling	With	SQL
SQL	lets	us	express	models	at	the	logical	to	(some	of	the)	physical	level

Specifying	indices	is	a	bit	physical
Knowledge	about	implementation	may	inform	modelling	choices

SQL	has	no	mechanisms	for	conceptual	level

Format	1	In	SQL

Format	1	In	SQL
 CREATE TABLE People (
 name varchar(255),
 company varchar(255),
 address varchar(255),
 phone varchar(255),
 email varchar(255),
 home_page varchar(255));

INSERT INTO People
 VALUES ('Aleshia Tomkiewicz', 'Alan D Rosenburg Cpa Pc',
 '14 Taylor St, St. Stephens Ward, Kent CT2 7PP',
 '01835-703597','atomkiewicz@hotmail.com',
 'http://www.alandrosenburgcpapc.co.uk');
...

Can	we	do	all	that	we	did	in	the	spreadsheet?

SQL	Manipulation	of	Format	1
Count	records	in	your	People	table:

Search	for	items:

Sort	the	table!

SELECT COUNT(*) FROM People

SELECT * FROM People
WHERE name like 'Aleshia%'

SELECT * FROM People
WHERE name like '%Tomkiewicz'

SELECT * FROM People
ORDER BY name asc

Format	2	In	SQL

Format	2	In	SQL
 CREATE TABLE People (
 first_name varchar(255),
 surname varchar(255),
 company varchar(255),
 street_address varchar(255),
 city varchar(255),
 county varchar(255),
 post_code varchar(255),
 phone varchar(255),
 email varchar(255),
 home_page varchar(255));

INSERT INTO People
 VALUES ('Aleshia', 'Tomkiewicz', 'Alan D Rosenburg Cpa Pc',
 '14 Taylor St', 'St. Stephens Ward', 'Kent', 'CT2 7PP',
 '01835-703597','atomkiewicz@hotmail.com',
 'http://www.alandrosenburgcpapc.co.uk');
...

SQL	Manipulation	of	Format	2
The	old	queries	work,	but	we	can	improve	them

Search	for	items:

We	can	recreate	Format	1!

SELECT * FROM People
WHERE first_name = 'Aleshia'

SELECT * FROM People
WHERE surname = 'Tomkiewicz'

SELECT first_name || " " ||surname as name,
street_address || ", " ||city ||", "|| county ||" " || post_code as address,
phone,
email,
home_page
FROM People

Format	3	In	SQL

Format	3	In	SQL
 CREATE TABLE People (
 person_id SMALLINT UNSIGNED,
 first_name varchar(255),
 surname varchar(255),
 company varchar(255),
 street_address varchar(255),
 city varchar(255),
 county varchar(255),
 post_code varchar(255),
 email varchar(255),
 home_page varchar(255),
 CONSTRAINT pk_person PRIMARY KEY (person_id));

 CREATE TABLE Phone (
 person_id varchar(255),
 number varchar (255),
 CONSTRAINT pk_phone_number PRIMARY KEY (number));

INSERT INTO People
 VALUES ('1','Aleshia', 'Tomkiewicz', 'Alan D Rosenburg Cpa Pc',
 '14 Taylor St', 'St. Stephens Ward', 'Kent', 'CT2 7PP',
 'atomkiewicz@hotmail.com',
 'http://www.alandrosenburgcpapc.co.uk');
INSERT INTO Phone
 Values ('1', '01835-703597')
INSERT INTO Phone
 Values ('1', '01944-369967')

SQL	Manipulation	of	Format	3
Recreate	Format	1	and	Format	2:	easy
Find	everyone	with	same	phone	number
Can	we	have	unassigned	phone	numbers?

How	did	our	formats	do?
Core	DM/Data	structure:	Tables	seem	to	work!
SQL	and	Relational	Model

We	can	do	everything!
All	queries	in	all	models
Format	3	has	2	tables/requires	joins

Format	3
Neater	inserting	and	deleting

Can	have	as	many	phones	as	you	want!
Every	other	domain	model	can	be	derived

Just	write	the	query!

Expressive	Power
SQL	is	expressive

The	core	data	model	is	rich
Composing	and	filtering	tables	does	a	lot!
Operators	and	functions	helpful

Without	concat(...),	there'd	be	trouble!
The	language	is	powerful

Reasonably	composable
Lots	of	features
Extended	&	extensible	in	many	implementations

Interop	problems!

Querying	With	SQL

Schemas	Vs.	Queries
CREATE	statements

"create"	empty	tables
out	of	nothing	at	all
with	certain	constraints
with	some	expectation	of	permanence

SELECT	statements
"generate"	new	tables	(possibly	with	data)
out	of	existing	tables
according	to	some	constraints
with	no	expectation	of	permanence

Closed	Over	Tables
SQL	is	(mostly)	closed	over	tables

Most	SQL	constructs	take	&	produce	tables
Clear	exception:	Functions!

Manipulation	is	manipulation	of	tables
Not	rows,	columns,	or	cells	directly
Rows,	columns,	and	cells	are	"degenerate	tables"...

Filtering
Key	operation	SELECT:	ignoring	some	parts

Basically	"find"
Can	filter	rows	or	columns	or	both
Requires	"testing"	functions	on	values

Filtering	Columns
aka	"Projection",	specified	in	SELECT	clause

Keep	all	columns:

Just	a	single	column:

Multiple	columns:

Rename	columns:

 SELECT * FROM People

SELECT county FROM People

SELECT name, county FROM People

SELECT street_address AS address FROM People

Filtering	rows
Selecting	specific	tuples
Specified	in	the	WHERE	clause	of	your	query:

Equality:

Range:

Compound	criteria:

 SELECT * FROM People
 WHERE surname = "Smith"

SELECT * FROM People
WHERE heartrate > 95

SELECT * FROM People
WHERE heartrate > 95 AND county="Kent"

Building	Tables	with	Cross	Join
The	fundamental	operation	is	Cartesian	product

T1	x	T2
for	example	People	x	Phone

Makes	a	new	row	for	every	pair	of	rows	from	T1	&	T2
What's	the	size	of	the	result?

Not	really	a	user-oriented	feature
"Incidentally"	cross	joins	are	dangerous!

Building	Tables	With	Inner	Join
An	inner	join	is	a	join	filtered	on	common	columns

Useful	for	our	phone	records!

The	above	is	special	case,	called	"natural"	join
can	be	written	as	follows:

SELECT * FROM People, Phone
INNER JOIN ON People.person_id = Phone.person_id

SELECT * FROM People NATURAL JOIN Phone

Building	Tables	with	Outer	Join
An	outer	join	is	like	an	inner	join	but	it	returns	also	rows	that	do	not
have	a	match	in	the	other	table

left	outer	different	from	right	outer
SELECT * FROM People, Phone
RIGHT OUTER JOIN ON People.person_id = Phone.person_id

will	return	also	people	who	have	no	phone!

Building	And	Filtering
Once	we've	built	a	table	we	can	filter	things	we	need:

SELECT * FROM People, Phone
RIGHT OUTER JOIN ON People.person_id = Phone.person_id
WHERE People.surname = "Smith"

...you	knew	that	already!?

The	Cost
A	key	issue	with	joins

Worst	case	for	their	computation	is	a	CROSS
Even	if	you	don't	generate	the	CROSS

You	might	have	to	consider	all	the	pairs
(If	you	aren't	careful)

Good	optimisers	avoid	both
Considering	lots	of	matches	(think	indexes)
Generating	large	intermediate	tables

Incomplete	Data

https://commons.wikimedia.org/wiki/File%3APuzzle_black-white_missing.jpg

Multiple	Phone	Columns
Some	people	have	none	or	one
Or	no	email	or	web	page	

No	Surname
Even	if	we	normalised	that	away

Some	people	don't	have	a	surname!

https://commons.wikimedia.org/wiki/File%3AMadonna_3_by_David_Shankbone-2.jpg

Null
null	is	a	distinguished	value	which	can	mean:

"Value	not	yet	known"
"Not	applicable	to	this	entity"
"Value	undefined"
check	out	

Key	property:	Unequal	to	everything
null = null	is	never	true
Match	on	not	null,	rather	than	null

LSQL

Strange	value!

http://proquestcombo.safaribooksonline.com/book/databases/sql/0596007272/4dot-filtering/id2992390?uicode=UKFederation-member@manchester.ac.uk

Outer	Joins
If	you	have	no	nulls	in	your	base	tables

you	can't	get	them	in	tables	derived	by	inner	join
However,	the	2	phone	column	table	is	derivable

We	use	the	outer	join
Outer	joins	take	a	table	T

for	each	row	in	T
extend	it	with	the	(projected)	columns	from	another	table
If	there's	a	match,	add	the	matched	values
*else,	add	nulls

See	Learning	SQL	 	for	examplesChapter	10

http://proquestcombo.safaribooksonline.com/book/databases/sql/0596007272/10dot-joins-revisited/id3013559?uicode=UKFederation-member@manchester.ac.uk

Null	Proliferation
null	never	matches

So	iterated	outer	joins	proliferate	nulls
As	you	get	wider,	you	get	sparser

If	you	are	matching	on	a	sparse	attribute
nulls	pose	challenge	for	relational	theory

And	somewhat	for	practice
Starts	moving	from	the	sweet	spot

SQL	And	The	Web
A	brief	tour

https://commons.wikimedia.org/wiki/File%3APsalter_World_Map%2C_c.1265.jpg

SQL	Driven	Websites
Many	websites	are	backed	by	a	database

PHP	makes	it	easy
Consider	WordPress	and	other	CMSs

Lots	of	unstructured	content
Stuff	in	blobs	and	text	fields

Key	properties
Scaling
ACID:	Atomicity,	Consistency,	Isolation,	Durability

Transactions
Concurrent	access

There	is	a	 	that	is	still	good	reading,	
esp	chps	 -

key	historical	text
11 12

http://philip.greenspun.com/panda/?
http://philip.greenspun.com/panda/databases-intro
http://philip.greenspun.com/panda/databases-choosing

CSV	&	SQL	programs	on	the	Web

Other	government	repositories:
data.gov
data.gov.uk

Scientific	sites
	all	about	clinical	trials!

	all	about	proteins!
...

UN	Data	repository

ClinicalTrials.gov
UniProt

http://data.un.org/
https://clinicaltrials.gov/ct2/home
https://www.uniprot.org/

Google	Query	Viz	Language
A	SQL	like	language

Used	in	Google	Docs	Spreadsheet
QUERY	function	takes	queries	as	argument

WebSQL
The	WhatWG	and	W3C	tried	to	standardize	WebSQL

This	 specification	 introduces	 a	 set	 of	 APIs	 to	 manipulate	 client-side
databases	using	SQL.

Local	database	backed	web	apps

For	offline	use
Just	increased	capabilities

function prepareDatabase(ready, error) {
 return openDatabase('documents', '1.0', 'Offline document storage', 5*1024*1024, function (db) {
 db.changeVersion('', '1.0', function (t) {
 t.executeSql('CREATE TABLE docids (id, name)');
 }, error);
 });
}

http://www.w3.org/TR/webdatabase/

What	is	this	data?
A	recurring	issue:	what	is	in	this	shared	document?

csv
table
JSON	snippet
...

What	does	it	mean?
How	to	parse?
How	to	share?	So	that	it's	good	to	use?
Self-Describing	and	Meaning	will	be	discussed	at	length

Next	Steps

https://commons.wikimedia.org/wiki/File%3AImpossible_staircase.svg

Reading
There	is	a	 	that	is	still	good	reading,	

esp	chps	 -
key	historical	text

11 12

http://philip.greenspun.com/panda/?
http://philip.greenspun.com/panda/databases-intro
http://philip.greenspun.com/panda/databases-choosing

Any	Questions	So	Far?

Labs	&	Coursework
Next,	we	go	to	the	Labs
You	look	in	BB	at	Week	1	coursework:

Quiz	Q1
Short	Essay	SE1
Small	Modelling	exercise	M1
Some	querying	CW1

Read,	think,	ask	us!

