Knowledge Acquisition

COMP62342
Sean Bechhofer
University of Manchester
sean.bechhofer@manchester.ac.uk
Knowledge Acquisition (KA)

• Operational definition
 – Given
 • a source of (declarative) knowledge
 • a sink
 – KA is the transfer of declarative statements from source to sink
 • we can generalise this to other sources, e.g., sensors

• We distinguish between KA and K refinement
 – i.e., modification of the statements in our sink
 – But this distinction is merely conceptual
 • Actual processes are messy

• Range of automation
 – Fully manual (what we’re going to do!)
 – (Fully) automated
From Knowing to Representation

• Source
 – A person, typically called the domain expert (DE, or “expert”)
 • domain, subject matter, universe of discourse, area,...
 – Key features
 • They know a lot about the domain (coverage)
 • They are highly reliable about the domain (accuracy)
 • They know how to articulate domain knowledge
 – Though not always in the way we want!
 • They have good metaknowledge

• Immediate Sink
 – A document encoded in natural language or semi-NL

• Ultimate Sink
 – A document encoded in a formal/actionable KR language
Knowing to Representation

Margaret Grace Rever is the mother of Robert David Bright

Robert_David_Bright_1965 hasMother Margaret_Grace_Rever_1934
...there are known knowns; there are things we know we know. We also know there are known unknowns; that is to say we know there are some things we do not know. But there are also unknown unknowns -- the ones we don't know we don't know.
Eliciting Knowledge

• Proposal 1: Ask the expert nicely to write it all down

• Problems:
 1. They know too much
 2. Much of what they know is tacit
 • Perhaps can give it on demand, but not spontaneously
 – I.e., it’s there but hard to access
 • They can’t describe it (well)
 3. They know too little
 • E.g., application goals
 • Target representation constraints
 – E.g., the language
 • Their knowledge is incomplete
 – Though they maybe able to acquire or generate it
 4. Expense
 • Busy and valuable people
 • They get bored
The Knowledge Engineer (KE)

• Key Role
 – Expertise in KA
 • E.g., elicitation
 – Knows the target formalism
 – Knows knowledge (and software) development
 • Tools, methodologies, requirements management, etc.

• Does not necessarily know the domain!
 – Though the KE may also be a DE
 • Most DEs are not KEs
 – Though they may be convertible
 – May be able to “become (enough of an) expert”
 • E.g., if autodidact or good learner with access to classes

• Investment in the representation itself
Elicitation Technique Requirements

- Minimise DE’s time
 - Assume DE scarcity
 - Capture essential knowledge
 - Including metaknowledge!
- Minimise DE’s KE training and effort
 - Assume loads of tacit knowledge
 - Thus techniques must be able to capture it
- Support multiple sources
 - Multiple experts (get consensus?)
 - Experts might point to other sources (e.g., standard text)
- KEs must understand enough
 - So, the techniques have to allow for KE domain learning
 - KRs reasonably accessible to non-experts
Note on generalizability

• Many KA techniques are very specific
 – Specific to source (e.g., learning from relational databases)
 – Specific to targets (e.g., learning a schema)

• Elicitation techniques are generally flexible
 – Arbitrary sources and sinks
 • In both domain and form
 – NL intermediaries help
 – “Parameterisable” is perhaps more accurate
Elicitation Techniques

- Two major families
 - Pre-representation
 - Post-(initial)representation

- Pre-representation
 - Starting point! Experts interact with a KE
 - Focused on “protocols”
 - A record of behavior
 - Protocol-generation
 - Protocol-analysis

- Post-representation (modelling)
 - Experts interact with a (proto)representation (& KE)
 - Testing and generating
Pre-representation Techniques

• Protocol-generation
 – Often involves video or other recording
 – Interviews
 • Structured or unstructured (e.g., brainstorming)
 – Observational
 • Reporting
 – Self or shadowing
 • Any non-interview observation

• Protocol-analysis
 – Typically done with transcripts or notes
 • But direct video is fine
 – Convert protocols into protorepresentations
 • So, some modelling already!
 – We can treat as protorepresentations now!
Modelling Techniques

- (Often characterized by aspects of the target (OWL in our case))
- Being picky
 - Pedantic refinement
- Sorting techniques
 - are used for capturing the way people compare and order concepts, and can lead to the revelation of knowledge about classes, properties and priorities
- Hierarchy-generation techniques
 - such as laddering are used to build taxonomies or other hierarchical structures such as goal trees and decision networks.
- Matrix-based techniques
 - involve the construction of grids indicating such things as problems encountered against possible solutions.
- Limited-information and constrained-processing tasks
 - are techniques that either limit the time and/or information available to the expert when performing tasks. For instance, the twenty questions technique.
Other Modelling Techniques

• Scenario descriptions
• Diagrams
• Problem solving
• Teaching
• Role Play
• Joint Observation
• Etc.
Example: An Animals Taxonomy

• Task:
 – generate a **controlled vocab** for an index of a children’s book

• Domain:
 – Animals including (think of these as CQ)
 • Where they live
 • What they eat
 – Carnivores, herbivores and omnivores
 • How dangerous they are
 • How big they are
 – A bit of basic anatomy
 » legs, wings, fins? skin, feathers, fur?
 • ...
 – (read the book!)
Protocol Analysis

• From interviews/behaviour to analysable items
 – Text! Text is good!

• From a text,
 – find key terms
 – harmonise them
 • capitalisation, pluralization (or not), orthography, etc.

• Keep track of
 – Significance
 • Core or peripheral terms
 • Illustrative? Defining?
 – Situation
 • Sentences or sections

Output: List of Terms
Animal taxonomy Term Generation!
Sort of Knowledge

• “Declarative” Knowledge about Terms (or Concepts)
 – Aka Conceptual Knowledge

• Initial steps
 – Identify the domain and requirements
 – Collect the terms
 • Gather together the terms that describe the objects in the domain.
 • Analyse relevant sources
 – Documents
 – Manuals
 – Web resources
 – Interviews with Expert

• We’ve done that!

• Now some modelling
 Two techniques today!
Card Sorting!

• Card Sorting identifies similarities
 – A relatively informal procedure
 – Works best in small groups

• Write down each concept/idea on a card
 1. Organise them into piles
 2. Identify what the pile represents
 – New concepts! New card!
 3. Link the piles together
 4. Record the rationale and links
 5. Reflect

• Repeat!
 – Each time, note down the results of the sorting
Try 2 Rounds

• Initial ideas
 – How we use them
 – Ecology
 – Anatomy
 – ...

...
Generative

• For elicitation, more is (generally) better
 – Within limits
 – Brainstormy

• Is critical knowledge tacit?
 – We can’t easily know in advance

• Winnowing is crucial
 – Sometimes we elicit things which should be discarded
 • And trigger the discarding of other things!
 – Better to know what we don’t care to know!
Knowledge Acquisition (KA)

- **Operational definition**
 - Given
 - a *source* of (propositional) knowledge
 - a *sink*
 - KA is the *transfer* of propositions from source to sink

- **Elicitation** (for terminological knowledge)
 - Initial *Capture*:
 - Source: People, “experts”, “domain experts” (DE)
 - Sink: “Protocol” (record of behavior)
 - Term *Extraction*:
 - Source: Text (e.g., transcript, textbook, Wikipedia article)
 - Sink: *List of terms* (perhaps on cards)
 - Initial *Regimentation*:
 - Source: List of terms (on cards!)
Reminder: An Animals Taxonomy

• Task:
 – generate a controlled vocab for an index of a children’s book

• Domain:
 – Animals including
 • Where they live
 • What they eat
 – Carnivores, herbivores and omnivores
 • How dangerous they are
 • How big they are
 – A bit of basic anatomy
 » legs, wings, fins? skin, feathers, fur?
 • ...
 – (read the book!)
Triadic Elicitation: The 3 card trick

• Select 3 cards at random
 – Identify which 2 cards are the most similar?
 • Write down why (a similarity)
 – As a new term!
 • Write down why not like 3rd (a difference)
 – Another new term!

• Helps to determine the characteristics of our classes
 – Prompts us into identifying differences & similarities
 • There will always be two that are “closer” together
 • Although which two cards that is may differ
 – From person to person
 – From perspective to perspective
 – From round to round
Example

Horse Cow Bear
Example

Sheep Wolf Shark
20 Questions

• Like the game!
 – The KE picks an object/concept in the domain
 – The DE tries to guess it
 • and asks a series of yes/no questions
 – “Is it an animal?” “Is it a vegetable?” “Is it a mineral?”

• KE notes the questions and their order
 – Can help determine key concepts, properties, etc.
 • Animals, vegetables, and minerals!
 – Can help structure the domain
 • “Is it a living thing?”, “an animal?”, “a plant?”

• Note that the technique is not the game!
 – Goals are different!
 We’re very interested in the questions, not the answers per se.
Key Goal: Laddering

• Terms vary in generality
 – Tree vs. Plant
 – Dog vs. Rover

• Each sort may be implicit!
 – Goal: Flesh out the generality hierarchy
 • Get more specific (if too general)
 • Get more general (if mostly specific)

• How?
 1. Take a group and ask what they have in common
 • During sorting or 3-card or directly
 2. Then investigate relations of new term
 • Siblings, missing children, and (eventually) parents (back to 1)
A (Partial) Hierarchy

- Living Thing
 - Animal
 - Mammal
 - Cat
 - Dog
 - Cow
 - Person
 - Fish
 - Trout
 - Goldfish
 - Shark
 - Plant
 - Tree
 - Grass
Categorisation: “Grammatical”

- **Types/Classes/Categories**
 - **Self standing entities**
 - Things that can exist on their own
 - People, animals, houses, …
 - Roughly nouns
 - **Modifiers**
 - Things that modify (“inhere”) in other things
 - Roughly adjectives and adverbs
 - **Relations/Properties**
 - Things which relate two individuals
 - Roughly verbs, and (variable) attributes
 (Perhaps defer to later)
Categorisation: Modelling

• In general, given a set of terms:
 – We describe the world using them
 – We describe terms using other terms
 • Paradigmatically, we define terms

• Assumable
 – Terms which have no or minimal modelling
 • Too hard to model or not needed to model or don’t know
 – For “Living thing” we might just have a list of subclasses
 – Sometimes known as the “primitive vocabulary”

• Definable
 – Terms for which we can give a full definition
 • Or reasonably full definition
 “Carnivore is an animal that eats only meat.”
Result!

- Living Thing
 - Animal
 - Mammal
 - Cat
 - Dog
 - Cow
 - Person
 - Fish
 - Trout
 - Goldfish
 - Shark
 - Plant
 - Tree
 - Grass
 - Wheat

- Modifiers
 - Domestic
 - Pet
 - Farmed
 - Draft
 - Food
 - Wild
 - Health
 - Healthy
 - Sick
 - Sex
 - Male
 - Female
 - Age
 - Adult
 - Child

- Relations
 - eats
 - owns
 - parent-of
 - ...

- Definable
 - Carnivore
 - Herbivore
 - Child
 - Parent
 - Mother
 - Father
 - Food Animal
 - Draft Animal
So! A Task

• Capture
 – Look at the Source Materials

• Extract
 – List of terms; put them on cards!

• Organise
 – Hierarchy

• Encode
 – OWL in Protégé
Coursework

• Take the KE done in class
 – Feel free to refine it further
• Encode it using Protege 4
 – Each category term becomes a class
 • Capture your hierarchy using subsumption/subclassing
• Submit your RDF/XML file
• Full description on Blackboard!