

Ontology Engineering for the Semantic Web

COMP62342 Sean Bechhofer and Uli Sattler University of Manchester <u>sean.bechhofer@manchester.ac.uk</u> <u>ulrike.sattler@manchester.ac.uk</u>

What's the Problem?

- Typical web page markup consists of:
 - Rendering information (e.g., font size and colour)
 - Hyper-links to related content
- Semantic content is accessible to humans but not (easily) to computers...

- University of Manchester
 - The Business School
- Consultancy
 - Gain a broader perspective and solve complex business problems
- Commercialisation
 - From idea to marketplace -- bringing our ground-breaking inventions into the commercial world
- Manchester Business School
 - MBS is redefining business education to meet the challenges of a fastevolving global landscape
- Recruit our graduates
 - Attend careers fairs or arrange your own dedicated event on campus
- Contact the Business Engagement Support Team
 - +44 161 275 2227
 - business@manchester.ac.uk

Information a machine can see...

Solution: XML markup with "meaningful" tags?

<university>+++ M●M�M■�▓ X■�M□■♋�X□■♋● ◆□□●≏ →X≏M ***∭**∭ <school>></school>></school> moo•oo)()(free the solution of the solution o <topic>۞ M % + + M □ 6 Q M • M & ♦◘៣១&;៣፬• m◘■↗米◘Ѻ៣≏</topic> <topic>**HO &M □=M □• d • M M <details>%)(O) • \mathbb{M} \mathcal{O} \mathcal{O} </details>... </topic> <**t**opic>**); O & M □ ■ M □ • D • M M. <details>**)(O __)(♦ $M \Omega \subseteq </details> ... </topic>$ & I ■ Yo G → **((** M ● 55 ■ 4 1 1 1 ЕЩ♦ӝӍ҄ӏӏ҇Ѳѿ҄҄҄҄҄҄Ҽѽ҄҄ҍҼ҉Ѧ҈҄҄Ӗ҄ҍӏӏ҄ѻѽ҄҄ѼҨ҈҄҆҂Ӂ҄҄҄ҍ҄҄҄ӼѹѼҴ҄ҴѺ҄Ӎ҅ѽ҈҈҂҂Ӿ҅҃Ѧ҄҄҄҄ѬӍ ♦ m ♦■₭♦Щ♎_&ु₭■₯♎◻Оጬ`♦ंᲚ᠓¯` ♦∎X♦M ≙ • ★★M ♦■OOO #OON #OON

Contact> ♦ M • P=

But what about....?

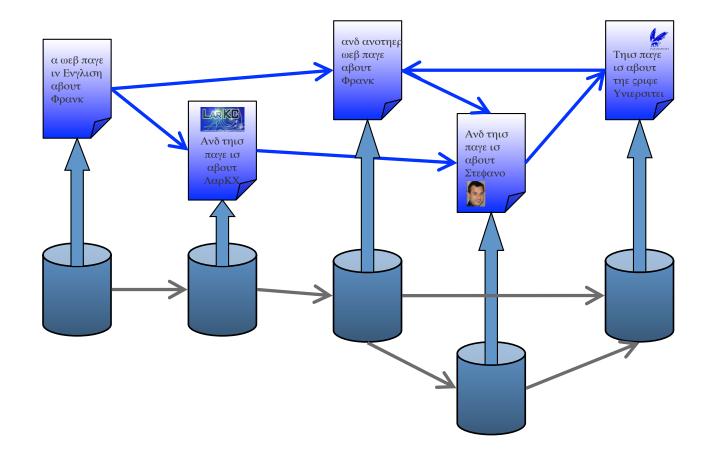
<university>+++ ≈∞៣ ៣●៣◈៣■♦≈ 米■♦៣◻■छ♦米◻∎छ● ◆◻◻●≏ →米≏៣ ◆៣♂₥⊏ </university> <department> <address>♦‴M_⊡⊙♦□■ •⊙X&;X&;X ‴□♦M● moo•oo\\ H⊡ to V</address> <activity>⊅M ዄ升↔M □ ₽■ ♦≈M ◆~ ♠< <u>ک</u>وی ** P□■□●◆●◆ →★●● □□□◆★≏M ◆∞M M = M ↔ M = ♦ m H = ♦ M = © ♦ H = © ● + = = © ● + = = 0 M = M = M M @ * * H + = = M + H H H + H H ᢒᢔᢡᢆᢆᢒᡛ᠋᠋᠋᠋ Ĩ•``₩≏<u>M</u> = • M ∂ ▲□M ∽&;M □・ M□■XH□OM ≏</activity> • \mathbb{M} $\mathcal{O} \subseteq \langle \text{details} \rangle = \langle \text{activity} \rangle$ <ầctivity>ઋ米Ϙ ฦሺ◻∎ሺ๋ם•₫●ሺሺ `♦ M <details>**+O ++ ∭ີ ຄົ ⊡</details>... </activity> • ♦M•⊡ �HM♦∎©O⊡ #©HDM<contact>

Still the Machine only sees...

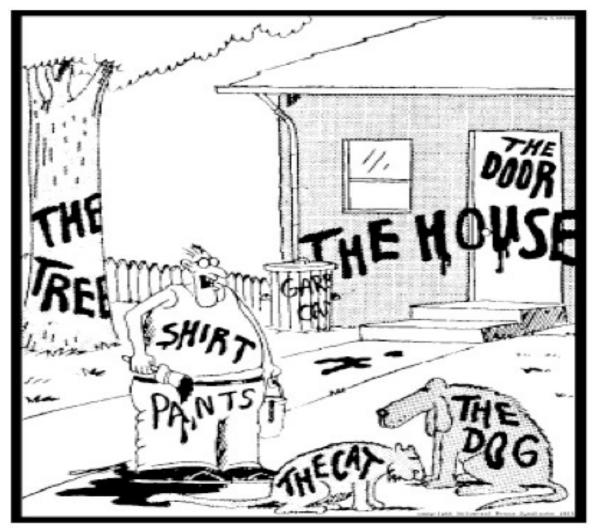
<\\\□■↗>♥♥♥▤□□▤ M●M�M■♦▓ X■♦M□■♋♦米□■♋● ◆□□●으 →X으M I□≏♦™♦╫□■>╢꾓₀╫∙♦╢ � •米●● ◘□□�⊁≏M ♦∞00 €*©∧ ᢧᡒᠫᠣ᠋᠋᠋᠋᠋᠋᠌᠌ᡔ᠅᠁᠓ᢆ᠃᠓ᢀ᠓᠅᠓᠍ᢀ᠁᠂ᢣ᠍ᢀ᠓᠋᠍ᢒ᠖᠅ᡝ᠋᠋ᢩ᠍ᢒᢀ᠂ᡝ᠋᠋ ᢀ᠊᠊ᢣ᠌᠊ᠫ᠋᠃᠕᠒᠉ᡁ᠋᠋■ᡔ᠓᠋᠓᠋᠋᠓᠓᠍᠓᠓᠂ᢀ᠁ᢣ᠋᠈᠘᠋ᠿ᠓᠈ᢀᢣ᠋ᡧ᠂᠕᠅᠓᠅᠓ ᠓ᡒᡪᡗ᠋᠋᠋᠋ ♦◻៣១&;m ◘• m◻■↗米◻੦៣ ≏</米■♦◻◻≏♦m♦米◻■> <∙◻ጢ∽ở&;ጢ◻>ઋĤ◯ ฦጢ◻■ጢ⊡∙₫●ጢጢ── <∂)(**1**)<#`(**1**) ¢ ៣४ഈ</₰₭□>...</▶□॥ॐ&╢□> `♦≈m``•m•• &=□•• +=•m=+□□ □~ ♦≈m + <∂)(<u></u>)< ៣ฦ๎๛</ฦ₭□>...</∙□ጢತೆ&װ៉េ□> 00 ■M�ᲚM□●ⓒ■≏∙ጬ ■□□◆☺⊠ጬ •米■₯☺◘□□∩Mጬ ••米♦жM • m • • • • •

Need to Add "Semantics"

- External agreement on meaning of annotations
 - E.g., Dublin Core for annotation of library/bibliographic information
 - Agree on the meaning of a set of annotation tags
 - Problems with this approach

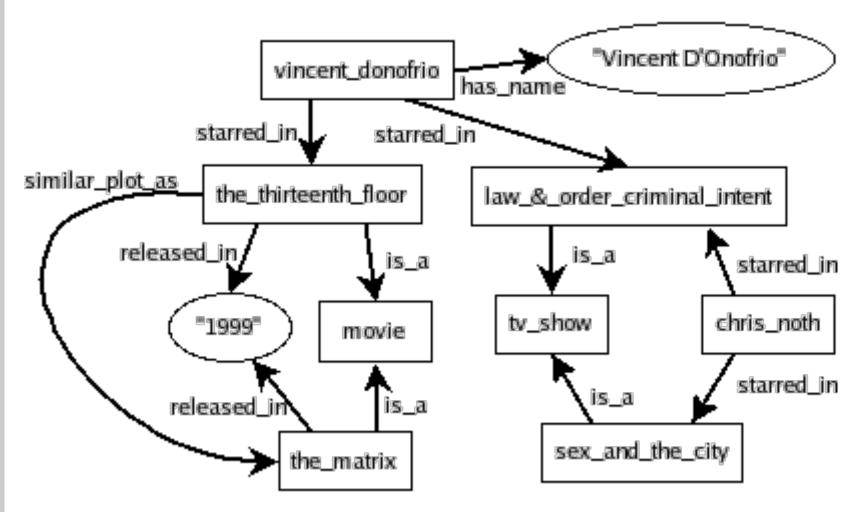

InfleLimit	Machine Processable	
Use Vocabu	not	nnotations
 Ontologi New terr 	not Machine Understandable	es
"0		

- "Conceptual Lego"
- Meaning (semantics) of such terms is formally specified

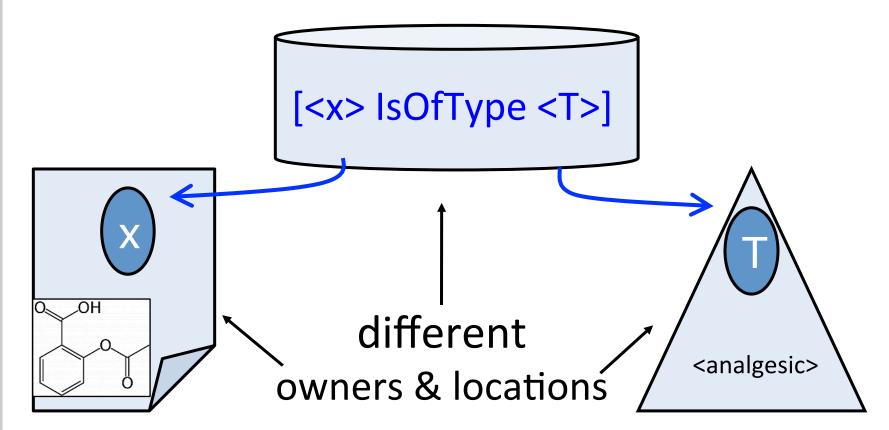


Four principles towards a Semantic Web of Data*

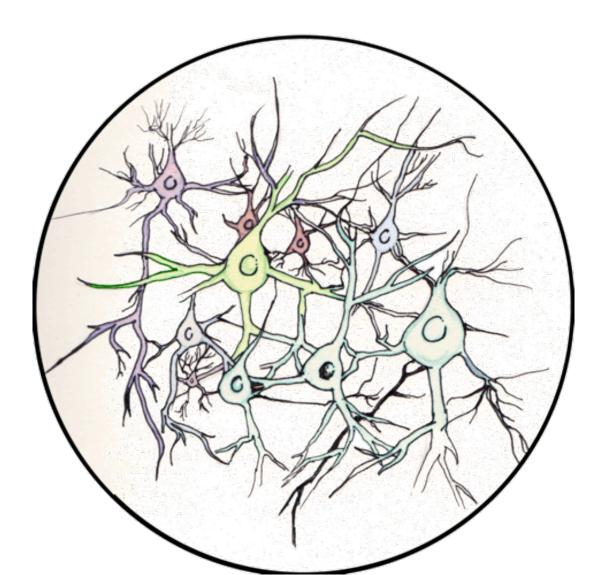
* With thanks to Frank van Harmelen


P1: Give all things a name

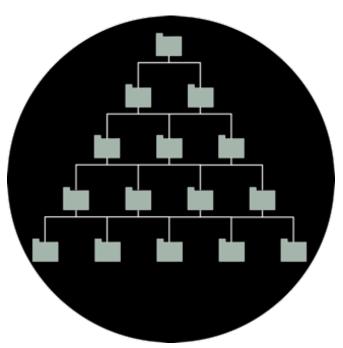
"Now! *That* should clear up a few things around here!"

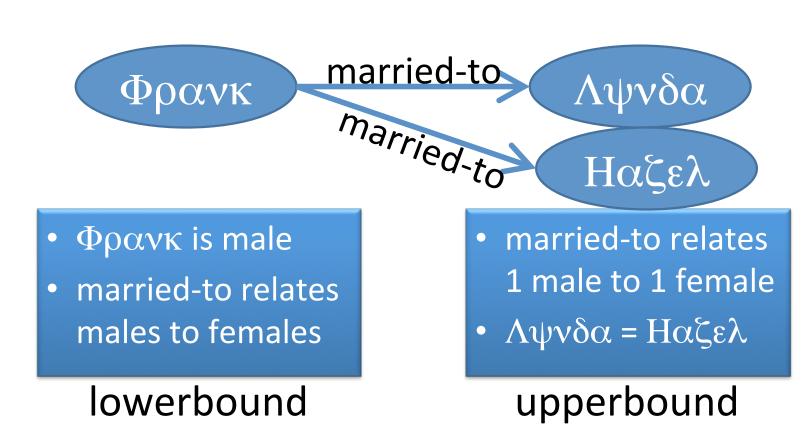


P2: Relationships form a graph between things



P3: The names are addresses on the Web

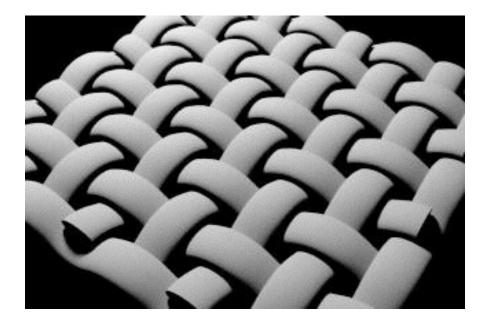

P1 + P2 + P3 = Giant Global Graph


P4: Explicit, Formal Semantics

- Assign Types to Things
- Assign Types to Relations
- Organise Types in a Hierarchy
- Impose Constraints on Possible Interpretations

This is where we will spend most of our time on this course unit -- looking at the ontologies that provide this semantics

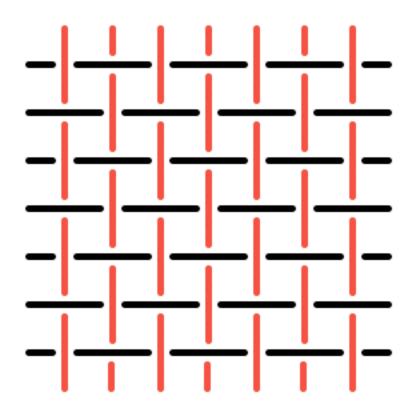
Semantics



Semantics = predictable inference

KR: Cloth Weaves [Maier & Warren, Computing with Logic, 1988]

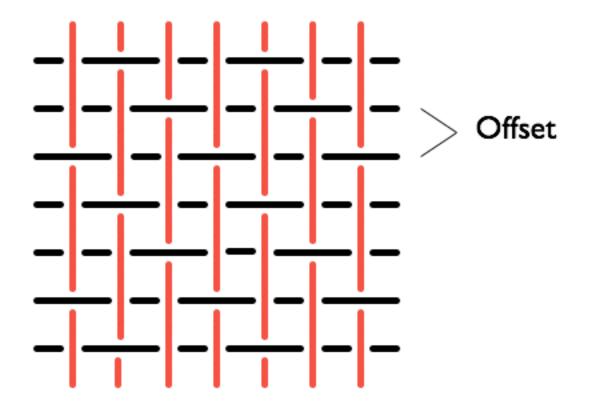
• An example showing how we can represent the qualities and characteristics of cloth types using a simple propositional logic knowledge base.


Cloth

- Woven fabrics consist of two sets of threads interlaced at right angles.
- The warp threads run the length of the fabric
- The *weft* (fill, pick or woof) *threads* are passed back and forth between the warp threads.
- When weaving, the warp threads are raised or lowered in patterns, leading to different weaves.
- Factors include:
 - The pattern in which warps and wefts cross
 - Relative sizes of threads
 - Relative spacing of threads
 - Colours of threads

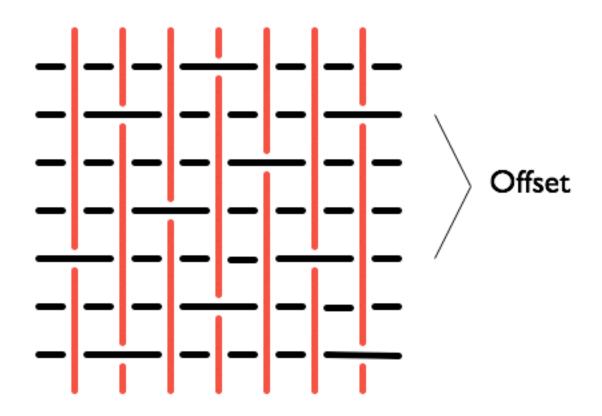
Plain Weave

• Over and under in a regular fashion



Twill Weave

MANCHESTER 1824


- Warp end passes over more than one weft
 - Known as "floats"
- Successive threads offset by 1

Satin Weave

- Longer "floats"
- Offsets larger than 1

Classifying Cloth

- The example provides a number of rules that describe how particular kinds of cloth are described.
- alternatingWarp → plainWeave
 - If a piece of cloth has alternating warp, then it's a plain weave.
- hasFloats, warpOffsetEq1 → twillWeave
 - If a piece of cloth has floats and a warp offset of 1, then it's a twill weave.
- There are many other properties concerning the colour of threads, spacings etc.

- We could use these rules to build a system that would be able to recognise different kinds of cloth through recognising the individual characteristics.
- The example given shows that once we have recognised the following characteristics
 - diagonalTexture
 - floatGTSink
 - colouredWarp
 - whiteFill

then we can determine that this cloth is denim.

Knowledge Representation

- Although this is relatively simple (in terms of both the expressivity of the language used and the number of facts), this really is an example of Knowledge Representation.
 - The rules represent some knowledge about cloth -- objects in the real world
 - Together they form a knowledge base
 - The knowledge base along with some deductive framework allow us to make inferences (which we hope reflect the characteristics/behaviour of the real world objects)

What is a Knowledge Representation?

Davis, Shrobe & Szolovits

http://groups.csail.mit.edu/medg/ftp/psz/k-rep.html

• Surrogate

•

MANCHESTER

That is, a representation

• Expression of ontological commitment

of the world

Theory of intelligent reasoning

and our knowledge of it

• Medium of efficient computation

Medium of human expression

that is accessible to programs

and usable

KR as Surrogate

MANCHESTER

- Reasoning is an internal process, while the things that we wish to reason about are (usually) external
- A representation acts as a surrogate, standing in for things that exist in the world.
 - Reasoning operates on the surrogate rather than the things
- Surrogates can serve for tangible and intangible objects
 - Bicycles, cats, dogs, proteins
 - Actions, processes, beliefs

- What is the correspondence between the representation and the things it is intended to represent?
 - Semantics
- How close is the representation?
 - What's there?
 - What's missing?
- Representations are not completely accurate
 - Necessarily abstractions
 - Simplifying assumptions will be present
- Imperfect representation means that incorrect conclusions are inevitable.
- We can ensure that our reasoning processes are sound
 - Only guarantees that the reasoning is not the source of the error.

KR as Set of Ontological Commitments

- A representation encapsulates a collection of decisions about what to see in the world and how to see it.
- Determine the parts in focus and out of focus
 - Necessarily so because of the imperfection of representation
- Choice of representation
- Commitments as layers
- KR != Data Structure
 - Representational languages carry meaning
 - Data structures may be used to implement representations
 - Semantic Nets vs. graphs

KR as Fragmentary Theory of Intelligent Reasoning

- Incorporates only part of the insight or belief
- Insight or belief is only part of the phenomenon of intelligent reasoning
- Intelligent inference
 - Deduction

MANCHESTER

- Sanctioned inferences
 - What can be inferred
- Recommended inferences
 - What should be inferred

KR as Medium for Efficient Computation

- To use a representation, we must compute with it.
- Programs have to work with representations
 - The representation management system is a component in a larger system
 - If the representation management system is inefficient, programmers will compensate
- Representations get complex quickly
 - People need prosthetics to work well with them

KR as Medium of Human Expression

- Representations as the means by which we
 - express things about the world;
 - tell the machine about the world;
 - tell one another about the world
- Representations as a medium for communication and expression by us.
 - How general is it?
 - How precise is it?
 - Is the expressiveness adequate?
- How easy is it for us to talk or think in the representation language?
 - How easy is it? vs. can we?

KR - ontologies - OWL

- Since the conception of the Semantic Web, (many) people use
 - knowledge base

MANCHESTER

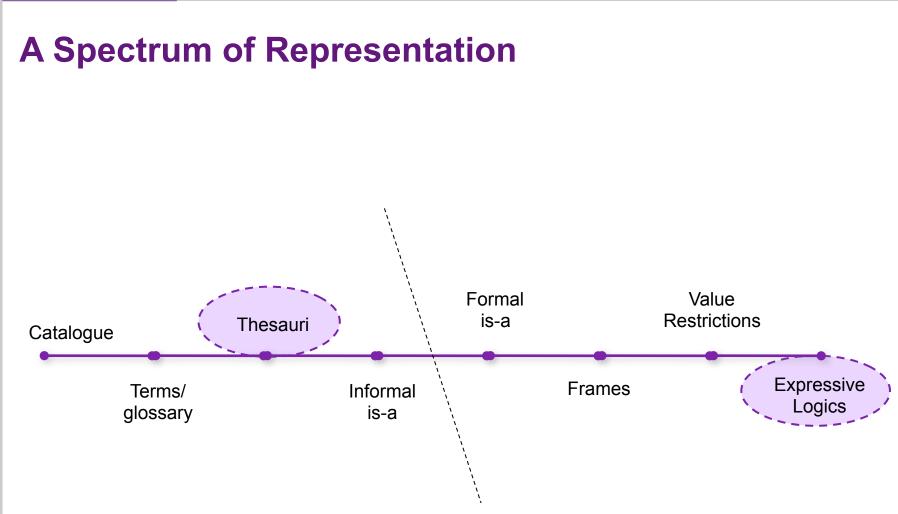
- ontology synonymously...we do here
- OWL is one language to for writing ontologies
 - just like Java is one language for writing programmes

Ontologies

- Metadata
 - Resources marked-up with descriptions of their content. No good unless everyone speaks the same language;
- Terminologies
 - Provide shared and common vocabularies of a domain, so search engines, agents, authors and users can communicate. No good unless everyone means the same thing;
- Ontologies
 - Provide a shared and common understanding of a domain that can be communicated across people and applications, and will play a major role in supporting information exchange and discovery.

Ontology

- A representation of the shared **background knowledge** for a community
- Providing the intended meaning of a formal vocabulary used to describe a certain conceptualisation of objects in a domain of interest
- In CS, ontology taken to mean an **engineering** artefact
- A vocabulary of terms plus **explicit characterisations** of the **assumptions** made in interpreting those terms
- Nearly always includes some notion of hierarchical classification (is-a)
- Richer languages allow the definition of classes through description of their characteristics
 - Introduce the possibility of using inference to help in management and deployment of the knowledge.


Ontologies and Ontology Representations

- "Ontology" a word borrowed from philosophy
 - But we are necessarily building logical systems
- "Concepts" and "Ontologies"/ "conceptualisations" in their original sense are psychosocial phenomena
 - We don't really understand them
- "Concept representations" and "Ontology representations" are engineering artefacts
 - At best approximations of our real concepts and conceptualisations (ontologies)
 - · And we don't even quite understand what we are approximating

Ontologies and Ontology Representations (cont)

- Most of the time we will just say "concept" and "ontology" but whenever anybody starts getting religious, remember...
 - It is only a representation!
 - We are doing engineering, not philosophy although philosophy is an important guide
- There is no *one* way!
 - But there are consequences to different ways
 - and there are wrong ways
 - and better or worse ways for a given purposes
 - The test of an engineering artefact is whether it is fit for purpose
 - Ontology representations are engineering artefacts

So why is it hard?

- Ontologies are tricky
 - People do it too easily;
 People are not logicians
 - Intuitions hard to formalise
- Ontology languages are tricky
 - "All tractable languages are useless; all useful languages are intractable"
- The evidence
 - The problem has been about for 3000 years
 - But now it matters!
 - The semantic web means knowledge representation matters

Ontology Engineering

- How do we build ontologies that are
 - Fit for purpose? (and what does that mean?)
 - Extensible?
 - Flexible?
 - Maintainable?
- Methodologies and guidelines
 - Knowledge acquisition
 - Ontology patterns
 - Normalisation
 - Upper level ontologies

Beware

- OWL is not all of Knowledge Representation
- Knowledge Representation is not all of the Semantic Web
- The Semantic Web is not all of Knowledge Management
- The field is still full of controversies
- This course unit is to teach you about implementation in OWL