Week 4

COMP62342
Sean Bechhofer, Uli Sattler
sean.bechhofer@manchester.ac.uk,
uli.sattler@manchester.ac.uk
Today

- Some clarifications from last week’s coursework
- More on reasoning:
 - extension of the tableau algorithm & discussion of blocking
 - traversal or “how to compute the inferred class hierarchy”
 - OWL profiles
- The OWL API: a Java API and reference implementation for
 - creating,
 - manipulating and
 - serialising OWL Ontologies and
 - interacting with OWL reasoners
- Lab:
 - OWL API for coursework
 - Ontology Development
Some clarifications from last week’s coursework
Ontologies, inference, entailments, models

- **OWL** is based on a *Description Logic*
 - we can use DL syntax
 - e.g., $C \sqsubseteq D$ for C SubClassOf D

- An OWL ontology O is a **document**:
 - therefor, it cannot do anything - as it isn’t a piece of software!
 - in particular, an ontology cannot infer anything
 (a reasoner may infer something!)

- An OWL ontology O is a **web document**:
 - with ‘import’ statements, annotations, …
 - corresponds to a **set of logical OWL axioms**
 - the OWL API (today) helps you to
 - parse an ontology
 - access its axioms
 - a **reasoner** is only interested in this set of axioms
 - not in annotation axioms
 - see https://www.w3.org/TR/owl2-primer/#Document_Information_and_Annotations
 - https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/#Annotations
Ontologies, inference, entailments, models (2)

- We have defined what it means for O to **entail** an axiom C SubClassOf D
 - written $O \models C$ SubClassOf D
 or $O \models C \subseteq D$
 - based on the notion of a **model** I of O
 - i.e., an **interpretation** I that satisfies all axioms in O
 - don’t confuse ‘model’ with ‘ontology’
 - one ontology can have **many** models
 - the more axioms in O the fewer models O has

- A **DL reasoner** can be used to
 - check entailments of an OWL ontology O and
 - compute the **inferred class hierarchy** of O
 - this is also known as **classifying** O
 - e.g., by using a **tableau algorithm**
Learn terms & meaning & relations!
More on Reasoning
Recall Week 2: OWL 2 Semantics: Entailments

Let \(O \) be an ontology, \(\alpha \) an axiom, and \(A, B \) classes, \(b \) an individual name:

- **\(O \) is consistent** if there exists some model \(I \) of \(O \)
 - i.e., there is an interpretation that satisfies all axioms in \(O \)
 - i.e., \(O \) isn’t self contradictory
- **\(O \) entails \(\alpha \) (written \(O \vDash \alpha \))** if \(\alpha \) is satisfied in all models of \(O \)
 - i.e., \(\alpha \) is a consequence of the axioms in \(O \)
- **\(A \) is satisfiable w.r.t. \(O \)** if \(O \not\vDash A \) SubClassOf Nothing
 - i.e., there is a model \(I \) of \(O \) with \(A^I \neq \{\} \)
- **\(b \) is an instance of \(A \) w.r.t. \(O \)** (written \(O \vDash b:A \)) if \(b^I \subseteq A^I \) in every model \(I \) of \(O \)

Theorem:

1. \(O \) is consistent iff \(O \not\vDash \text{Thing SubClassOf Nothing} \)
2. \(A \) is satisfiable w.r.t. \(O \) iff \(O \cup \{n:A\} \) is consistent (where \(n \) doesn’t occur in \(O \))
3. \(b \) is an instance of \(A \) in \(O \) iff \(O \cup \{b:\neg(A)\} \) is not consistent
4. \(O \) entails \(A \) SubClassOf \(B \) iff \(O \cup \{n:A \text{ and not}(B)\} \) is inconsistent
Recall Week 2: OWL 2 Semantics: Entailments etc.

Let O be an ontology, α an axiom, and A, B classes, b an individual name:

- O is **consistent** if there exists some model I of O
 - i.e., there is an interpretation that satisfies all axioms in O
 - i.e., O isn’t self contradictory
- O **entails** α (written O ⊧ α) if α is satisfied in all models of O
 - i.e., α is a consequence of the axioms in O
- A is **satisfiable** w.r.t. O if O ⊧ A SubClassOf Nothing
 - i.e., there is a model I of O with A^I ≠ {}
- b is an **instance of** A w.r.t. O if b^I ⊆ A^I in every model I of O

- O is **coherent** if every class name that occurs in O is satisfiable w.r.t O
- **Classifying O** is a reasoning service consisting of
 1. testing whether O is consistent; if yes, then
 2. checking, for each pair A,B of class names in O plus Thing, Nothing O ⊧ A SubClassOf B
 3. checking, for each individual name b and class name A in O, whether O ⊧ b:A

...and returning the result in a suitable form: O’s **inferred class hierarchy**
Week 3: how to test satisfiability …

Last week, you saw a **tableau algorithm** that

- takes a class expression C and decides **satisfiability** of C
- i.e., it
 - answers ‘yes’ if C is satisfiable
 - ‘no’ if C is not satisfiable
 - sound, complete, and terminating

- we saw this for the ALC
 - ALC is a Description Logic that forms logical basis of OWL
 - only and, or, not, some, only
 - works by trying to generate an interpretation with an instance of C
 - by breaking down class expressions (in NNF!)
 - generating new P-successors for some-values from restrictions
 (∃P.C restrictions in DL)

- we can handle an ontology that is a set of **acyclic SubClassOf axioms**
 - via **unfolding** (check Week 3 slides!)
Week 3: tableau rules

\[x \bullet \{ C_1 \cap C_2, \ldots \} \rightarrow \cap \quad x \bullet \{ C_1 \cap C_2, C_1, C_2, \ldots \} \]

\[x \bullet \{ C_1 \cup C_2, \ldots \} \rightarrow \cup \quad x \bullet \{ C_1 \cup C_2, C, \ldots \} \quad \text{For } C \in \{ C_1, C_2 \} \]

\[x \bullet \{ \exists R.C, \ldots \} \quad x \bullet \{ \exists R.C, \ldots \} \]

\[y \] \quad \rightarrow \exists \quad R \quad y \]

\[\{C\} \]

\[x \bullet \{ \forall R.C, \ldots \} \quad x \bullet \{ \forall R.C, \ldots \} \]

\[R \quad \rightarrow \forall \quad y \]

\[\{C, \ldots\} \]
Mini-exercise

- Apply the tableau algorithm to test whether A is satisfiable w.r.t.

\[
\{ A \subseteq B \cap \exists P. C, \\
B \subseteq C \cap \forall P. (\neg C \cup D) \} \\
\{ A \text{ SubClassOf B and (P some C), } \\
A \text{ SubClassOf C and (P only (not C or D))} \}
\]
This week: GCIs and tableau algorithm

- When writing an OWL ontology in Protégé,
 - axioms are of the form A SubClassOf B with A a class name
 - (or A EquivalentTo B with A a class name)

- last week’s tableau handles these via unfolding:
 - works only for acyclic ontologies
 - e.g., not for A SubClass (P some A)

- but OWL allows for general class inclusions (GCIs),
 - axioms of the form A SubClassOf B with A a class expression
 - e.g., (eats some Thing) SubClassOf Animal
 - e.g., (like some Dance) SubClassOf (like some Music)
 - this requires another rule:

\[
\begin{align*}
 x \bullet \{\ldots\} & \rightarrow \text{GCI} & x \bullet \{\neg C \sqcup D, \ldots\} \\
\end{align*}
\]

for each \(C \subseteq D \in O \)
GCIs and tableau algorithm

\[x \bullet \{\ldots\} \rightarrow_{\text{GCI}} x \bullet \{\neg C \sqcup D, \ldots\} \]

for each \(C \sqsubseteq D \in O \)

- E.g., test whether

 A is satisfiable w.r.t.

 \{A \text{ SubClassOf } (P \text{ some } A)\}

 or \(\{A \sqsubseteq \exists P.A\} \)

- This rule easily causes **non-termination**

 - if we forget to **block**
Blocking

- Blocking ensures termination
 - even on cyclic ontologies
 - even with GCIs
- If x's node label is contained in the label of a predecessor y, we say "x is blocked by y"
- E.g., test whether A is satisfiable w.r.t. \{A SubClassOf (P some A)\}
 - here, n2 is blocked by n1

Algorithm Examples

\[
\begin{align*}
n1 \bullet \{A, \neg A \sqcup \exists P.A, \exists P.A\} \\
\downarrow \quad P \\
n2 \bullet \{A, \neg A \sqcup \exists P.A, \exists P.A\}
\end{align*}
\]
Blocking

- When blocking occurs, we can build a **cyclic** model from a complete & clash-free completion tree
- hence soundness is preserved!

\[
\begin{align*}
\text{n1} & \rightarrow \text{R} \\
\text{n2} & \rightarrow \text{P}
\end{align*}
\]
Our ALC tableau algorithm with blocking is

- **sound**: if the algorithm stops and says “input ontology is consistent” then it is.
- **complete**: if the input ontology is consistent, then the algorithm stop and says so.
- **terminating**: regardless of the size/kind of input ontology, the algorithm stops and says
 - either “input ontology is consistent”
 - or “input ontology is **not** consistent”

...i.e., a decision procedure for ALC ontologies
- even in the presence of cyclic axioms!
Tableau algorithm & complexity

Our ALC tableau algorithm has a few sources of complexity:

• the breadth/out-degree of the tree constructed
• the depth of/path length in tree constructed
• non-determinism due to \sqcup rule from
 • disjunctions in O, e.g., A SubClassOf B
 • SubClassOf axioms in O
 • EquivalentTo axioms in O

Tableau algorithm & complexity not too bad:
bounded by number of ‘some’ expressions in O

ok/linear for acyclic O
exponential for general O:
we can construct O of size n where each model has
a path of length 2^n with

37,778,931,862,957,161,709,568

3 nodes with 25 SubClassOf axioms \rightarrow how many choices?
Tableau algorithm & complexity

- Without further details: deciding ALC satisfiability
 - only of class expressions is PSpace-Complete
 - of class expressions w.r.t. ontology is ExpTime-complete
 - …much higher than intractable/SAT

- Implementation of ALC or OWL tableau algorithm requires optimisation
 - there has been a lot of work in the last ~25 years on this
 - you see the fruits in Fact++, Pellet, Hermit, Elk, … reasoners available in Protégé
 - some of them from SAT optimisations, see COMP60332

- Next, I will discuss 1 optimisation: enhanced traversal
Naive Classification

- **Remember:** Classifying O is a reasoning service consisting of

 1. testing whether O is consistent; if yes, then

 \[
 \text{Test:} \quad \text{is Thing satisfiable w.r.t. } O? \\
 \]

 2. checking, for each pair A, B of class names in O plus Thing, Nothing
 whether $O \vDash A \text{ SubClassOf } B$

 \[
 \text{Test:} \quad \text{is } A \cap \neg B \text{ unsatisfiable w.r.t. } O? \\
 \]

 3. checking, for each individual name b and class name A in O, whether $O \vDash b:A$

 \[
 \text{Test:} \quad \text{is } O \cup \{b:\neg A\} \text{ is inconsistent?} \\
 \]

 ...and returning the result in a suitable form: O’s **inferred class hierarchy**
Naive Classification

- **Remember:** Classifying O is a reasoning service consisting of

 1. testing whether O is consistent; if yes, then

 Test: is Thing satisfiable w.r.t. O? | 1 test

 2. checking, for each pair A, B of class names in O plus Thing, Nothing whether $O \not\models A \text{ SubClassOf } B$

 Test: is $A \sqcap \lnot B$ unsatisfiable w.r.t. O? | n^2 tests for O with n class names

 3. checking, for each individual name b and class name A in O, whether $O \not\models b : A$

 Test: is $O \cup \{b : \lnot A\}$ is inconsistent? | nm tests for O with n class names, m individuals

...and returning the result in a suitable form: O’s inferred class hierarchy
Enhanced Traversal

- **Naive Classification of O** requires $1 + n^2 + nm$ expensive satisfiability/consistency tests
- …can we do better?
 ➡ Enhanced Traversal
 - idea: build inferred class hierarchy top-down and bottom-up, “trickling in” each class name in turn

- Assume you have, so far, constructed this hierarchy for O
- Now you “trickle” Oak: check whether
 - $O \not\models$ Oak \sqsubseteq Plant?
 yes - continue with Plant’s child
 - $O \not\models$ Oak \sqsubseteq Animal?
 no - ignore Animal’s children!
 - $O \not\models$ Oak \sqsubseteq Tree?
 yes - done!
 ➡ 2 entailment tests saved!
Enhanced Traversal

- **Naive Classification of O** requires $1 + n^2 + nm$ expensive satisfiability/consistency tests
- ...can we do better?
 ➔ Enhanced Traversal
 - idea: build inferred class hierarchy top-down and bottom-up, “trickling in” each class name in turn

- Potentially avoids many of the n^2 satisfiability/consistency tests
 - very important in practice
 - different variants have been developed

- Just one of many optimisations!
OWL Profiles

- Despite all optimisations, classification of an ontology may still take too long if it is
 - big and/or
 - 300,000 axioms or more
 - rich
 - ALC plus inverse properties, atleast, atmost, sub-property chains,…

- For OWL 2 [], profiles have been designed
 - syntactic fragments of OWL obtained by restricting constructors available

- Each profile is
 - **maximal**, i.e., we know that if we allow more constructors, then computational complexity of reasoning would increase
 - **motivated** by a use case

[] the one we talk about here/you use in Protégé
OWL Profiles

In a nutshell, these are the profiles of OWL 2:

- **OWL 2 EL:**
 - only ‘and’, ‘some’, SubProperty, transitive, SubPropertyChain
 - it’s a *Horn* logic
 - no reasoning by case required,
 - no disjunction, not even hidden
 - designed for big class hierarchies

- **OWL 2 QL:**
 - only restricted ‘some’, restricted ‘and’, inverseOf, SubProperty
 - designed for querying data in a database through a class-level ontology

- **OWL 2 RL:**
 - no ‘some’ on RHS of SubClassOf, …
 - designed to be implemented via a classic rule engine

- For details, see OWL 2 specification!
Some Key Complexity Classes

- FO
- Predicate Logic
- OWL 2
- Propositional Logic

All Problems
- Semi-Decidable
- Decidable
- NP
- P
- OWL 2 EL
The design triangle

Expressivity
(Representational Adequacy)

Usability
(Weak Cognitive Adequacy vs. Cognitive Complexity)

Computability
(vs. Computational and Implementational Complexity)
Summary

OWL reasoning

- is unusual:
 - standard reasoning involves solving many reasoning problems/satisfiability tests
- is decidable:
 - for standard reasoning problems, we have decision procedures
 - i.e., a calculus that is sound, complete, and terminating
 - can be complex
 - but we know the complexity for many different DLs/OWL variants/profiles
 - and implementations require many good optimisations!

- goes beyond what we have discussed here
 - entailment explanation
 - query answering
 - module extraction
 - …
Today

✓ Some clarifications from last week’s coursework
✓ More on reasoning:
 ✓ extension of the tableau algorithm & discussion of blocking
 ✓ traversal or “how to compute the inferred class hierarchy”
✓ OWL profiles
 • The OWL API: a Java API and reference implementation for
 • creating,
 • manipulating and
 • serialising OWL Ontologies and
 • interacting with OWL reasoners
✓ Lab:
 • OWL API for coursework
 • Ontology Development