Knowledge Acquisition

COM62342
Sean Bechhofer
University of Manchester
sean.bechhofer@manchester.ac.uk

Knowledge Acquisition (KA)

• Operational definition
 – Given
 • a source of (declarative) knowledge
 • a sink
 – KA is the transfer of declarative statements from source to sink
 • we can generalise this to other sources, e.g., sensors

• We distinguish between KA and K refinement
 – i.e., modification of the statements in our sink
 – But this distinction is merely conceptual
 • Actual processes are messy

• Range of automation
 – Fully manual (what we’re going to do!)
 – (Fully) automated
 • Possibly plus refinement
 • e.g., machine learning, text extraction
From Knowing to Representation

• Source
 – A person, typically called the domain expert (DE, or “expert”)
 • domain, subject matter, universe of discourse, area,...
 – Key features
 • They know a lot about the domain (coverage)
 • They are highly reliable about the domain (accuracy)
 • They know how to articulate domain knowledge
 – Though not always in the way we want!
 • They have good metaknowledge

• Immediate Sink
 – A document encoded in natural language or semi-NL

• Ultimate Sink
 – A document encoded in a formal/actionable KR language
 • I.e., an OWL Ontology!
 • This KA is often called Knowledge Elicitation

Knowing to Representation

Margaret Grace Rever is the mother of Robert David Bright

Robert_David_Bright_1965
hasMother
Margaret_Grace_Rever_1934
Eliciting Knowledge

- Proposal 1: Ask the expert nicely to write it all down
- Problems:
 1. They know too much
 2. Much of what they know is tacit
 - Perhaps can give it on demand, but not spontaneously
 - I.e., it’s there but hard to access
 - They can’t describe it (well)
 3. They know too little
 - E.g., application goals
 - Target representation constraints
 - E.g., the language
 - Their knowledge is incomplete
 - Though they maybe able to acquire or generate it
 4. Expense
 - Busy and valuable people
 - They get bored
The Knowledge Engineer (KE)

• Key Role
 – Expertise in KA
 • E.g., elicitation
 – Knows the target formalism
 – Knows knowledge (and software) development
 • Tools, methodologies, requirements management, etc.

• Does not necessarily know the domain!
 – Though the KE may also be a DE
 • Most DEs are not KEs
 – Though they may be convertible
 – May be able to “become (enough of an) expert”
 • E.g., if autodidact or good learner with access to classes

• Investment in the representation itself

Elicitation Technique Requirements

• Minimise DE’s time
 – Assume DE scarcity
 – Capture essential knowledge
 • Including metaknowledge!

• Minimise DE’s KE training and effort
 – Assume loads of tacit knowledge
 • Thus techniques must be able to capture it

• Support multiple sources
 – Multiple experts (get consensus?)
 – Experts might point to other sources (e.g., standard text)

• KEs must understand enough
 – So, the techniques have to allow for KE domain learning
 – KRs reasonably accessible to non-experts

• Always assume DE not invested
 – I.e., that you care more about the KR, much more
Note on generalizability

- Many KA techniques are very specific
 - Specific to source (e.g., learning from relational databases)
 - Specific to targets (e.g., learning a schema)
- Elicitation techniques are generally flexible
 - Arbitrary sources and sinks
 - In both domain and form
 - NL intermediaries help
 - "Parameterisable" is perhaps more accurate

Elicitation Techniques

- Two major families
 - Pre-representation
 - Post-(initial)representation
- Pre-representation
 - Starting point! Experts interact with a KE
 - Focused on "protocols"
 - A record of behavior
 - Protocol-generation
 - Protocol-analysis
- Post-representation (modelling)
 - Experts interact with a (proto)representation (& KE)
 - Testing and generating
Pre-representation Techniques

- Protocol-generation
 - Often involves video or other recording
 - Interviews
 - Structured or unstructured (e.g., brainstorming)
 - Observational
 - Reporting
 - Self or shadowing
 - Any non-interview observation

- Protocol-analysis
 - Typically done with transcripts or notes
 - But direct video is fine
 - Convert protocols into protorepresentations
 - So, some modelling already!

- We can treat many things as protocols
 - E.g., Wikipedia articles, textbooks, papers, etc.

Modelling Techniques

- (Often characterized by aspects of the target (OWL in our case))
- Being picky
 - Pedantic refinement

- Sorting techniques
 - are used for capturing the way people compare and order concepts, and can lead to the revelation of knowledge about classes, properties and priorities

- Hierarchy-generation techniques
 - such as laddering are used to build taxonomies or other hierarchical structures such as goal trees and decision networks.

- Matrix-based techniques
 - involve the construction of grids indicating such things as problems encountered against possible solutions.

- Limited-information and constrained-processing tasks
 - are techniques that either limit the time and/or information available to the expert when performing tasks. For instance, the twenty-questions technique provides an efficient way of accessing the key information in a domain in a prioritised order.
Other Modelling Techniques

- Scenario descriptions
- Diagrams
- Problem solving
- Teaching
- Role Play
- Joint Observation
- Etc.

Example: An Animals Taxonomy

- Task:
 - generate a controlled vocab for an index of a children’s book
- Domain:
 - Animals including (think of these as CQ)
 - Where they live
 - What they eat
 - Carnivores, herbivores and omnivores
 - How dangerous they are
 - How big they are
 - A bit of basic anatomy
 » legs, wings, fins? skin, feathers, fur?
 - ...
 - (read the book!)
- Representation aspects
 - Hierarchical list with priorities
Protocol Analysis

• From interviews/behaviour to analysable items
 – Text! Text is good!

• From a text,
 – find key terms
 – harmonise them
 • capitalisation, pluralization (or not), orthography, etc.

• Keep track of
 – Significance
 • Core or peripheral terms
 • Illustrative? Defining?
 – Situation
 • Sentences or sections

• Output: List of Terms

Animal taxonomy Term Generation!

- Horse
- Grass
- Sheep
- Goldfish
- Trout
- Wolf
- Shark
- Cow
- Herring
- Bear
- Cat
- Herring
- Dog
- Tree
- Wheat
Sort of Knowledge

• “Declarative” Knowledge about Terms (or Concepts)
 – Aka Conceptual Knowledge
• Initial steps
 – Identify the domain and requirements
 – Collect the terms
 • Gather together the terms that describe the objects in the domain.
 • Analyse relevant sources
 – Documents
 – Manuals
 – Web resources
 – Interviews with Expert
• We’ve done that!
• Now some modelling
 – Two techniques today!
 • Card sorting
 • 3 card trick

Card Sorting!

• Card Sorting identifies similarities
 – A relatively informal procedure
 – Works best in small groups
• Write down each concept/idea on a card
 1. Organise them into piles
 2. Identify what the pile represents
 – New concepts! New card!
 3. Link the piles together
 4. Record the rationale and links
 5. Reflect
• Repeat!
 – Each time, note down the results of the sorting
 – Brainstorm different initial piles
Sorted Animal Cards

- Horse
- Sheep
- Cat
- Wolf
- Bear
- Cow
- Dog
- Animal

Try 2 Rounds

- Initial ideas
 - How we use them
 - Ecology
 - Anatomy
 - ...

Plant

Wheat

Grass

Tree

Fish

Herring

Goldfish

Shark

Trout
Generative

- For elicitation, more is (generally) better
 - Within limits
 - Brainstormy
- Is critical knowledge tacit?
 - We can’t easily know in advance
- Winnowing is crucial
 - Sometimes we elicit things which should be discarded
 - And trigger the discarding of other things!
 - Better to know what we don’t care to know!

Knowledge Acquisition (KA)

- Operational definition
 - Given
 - a source of (propositional) knowledge
 - a sink
 - KA is the transfer of propositions from source to sink
- Elicitation (for terminological knowledge)
 - Initial Capture:
 - Source: People, “experts”, “domain experts” (DE)
 - Sink: “Protocol” (record of behavior)
 - Term Extraction:
 - Source: Text (e.g., transcript, textbook, Wikipedia article)
 - Sink: List of terms (perhaps on cards)
 - Initial Regimentation:
 - Source: List of terms (on cards!)
 - Sink: Proto-representation
 - Hierarchy of categorized, harmonised terms (with notes!)
Triadic Elicitation: The 3 card trick

• Select 3 cards at random
 – Identify which 2 cards are the most similar?
 • Write down why (a similarity)
 – As a new term!
 • Write down why not like 3rd (a difference)
 – Another new term!

• Helps to determine the characteristics of our classes
 – Prompts us into identifying differences & similarities
 • There will always be two that are “closer” together
 • Although which two cards that is may differ
 – From person to person
 – From perspective to perspective
 – From round to round

Example

1. David Bright (1934)

2. Margaret Grace Reever (1934)

3. Robert David Bright (1965)
20 Questions

- Like the game!
 - The KE picks an object/concept in the domain
 - The DE tries to guess it
 - and asks a series of yes/no questions
 - “Is it an animal?” “Is it a vegetable?” “Is it a mineral?”
- KE notes the questions and their order
 - Can help determine key concepts, properties, etc.
 - Animals, vegetables, and minerals!
 - Can help structure the domain
 - “Is it a living thing?”, “an animal?” “a plant?”
- Note that the technique is not the game!
 - Goals are different!
 - We’re very interested in the questions, not the answers per se

Key Goal: Laddering

- Terms vary in generality
 - Tree vs. Plant
 - Dog vs. Rover
- Each sort may be implicit!
 - Goal: Flesh out the generality hierarchy
 - Get more specific (if too general)
 - Get more general (if mostly specific)
- How?
 1. Take a group and ask what they have in common
 - During sorting or 3-card or directly
 2. Then investigate relations of new term
 - Siblings, missing children, and (eventually) parents (back to 1)
So! The Task

- Capture
 - Look at the Menu
- Extract
 - List of terms; put them on cards!
- Organise
 - Hierarchy
- Encode
 - OWL in Protégé

Coursework

- Take the KE done in class
 - Feel free to refine it further
- Encode it using Protege 4
 - Each category term becomes a class
 - Capture your hierarchy using subsumption/subclassing
- Submit your RDF/XML file
- Full description on Blackboard!