MANCHESTER
1824

The University of Manchester

Complexity

COMP61511 (Fall 2017)
Software Engineering Concepts
in Practice

Week 4
Bijan Parsia & Christos Kotselidis
first.last@manchester.ac.uk
(bug reports welcome!)

mailto:first.last@manchester.ac.uk

MANCHESTER

Complexity Challenge B

The University of Manchester

“But when projects do fail for reasons that are
primarily technical, the reason is often uncontrolled
complexity....

When a project reaches the point at which no one
completely understands the impact that code
changes in one area will have on other areas,
progress grinds to a halt.”

MANCHESTER

Complexity Challenge B

The University of Manchester

“Software's Primary Technical Imperative has to be
managing complexity.”
McConnell, 5.2
Architecture is key to managing complexity
Architecture provides a guide
Good architecture controls interaction
which allows considering subsystems independently

MANCHESTER

Dealing with complexity il

We can’t comprehend the entire system
in detail, so we use information hiding via

Modularisation
Abstraction

...to be able to effectively deal with
complexity

Modularity and abstraction are MANCHESTER

. . . 1824
maJ Or alds tO underStandlng The University of Manchester

Using modularisation and abstraction, we have the
intellectual leverage to understand and (informally)
reason about systems

We can apply these concepts at different levels to aid
our understanding of a system

In turn understanding enables us to
Go about constructing systems
Maintain them
Extend them

MANCHESTER

LGVGIS Of Design 1824

The University of Manchester

. (h @ software system
Modularity b
Confines the details |)
SO they dOn’t matter “from rC] h @ Division into subsystems/packages
outside” — ()
Facilitates abstraction \ y
(C — = A @ Division inte classes within p;lckugcs
As we move up levels 3 e ;
We lose detail, and Lg Nt
==
Expand scope of what we can * g
@ Division inte data and routines within classe
understand - %EH:
| =)
Good design and -

construction means that the
details can be safely ignored
at higher levels

@ Internal routine design

Diagram source: McConell

MANCHESTER

Example: Components i#4

The University of Manchester

4 N

User Interface Graphics]

Application
[Data Storage] [Level Classes]

Business Enterprise-Level
Rules Tools

McConnell, 5.2: Figure 5-3. An example of a system with six subsystems

Example: Complexity via unconstrained
. . 1824
Communlcatlons The University of Manchester

User Interface |[+— Graphics

/'? |
]

[Data Storage |+—>

Application
Level Classes

‘\.l//\¢

Business < »| Enterprise-Level
Rules - Tools

McConnell, 5.2: Figure 5-4. An example of what happens with no restrictions on intersubsystem communications

MANCHESTER

Example: Low coupling is better 4

The University of Manchester

User Interface p— Graphics

\

[Data Storage]4—»[Application

Level Classes
A /
Business « Enterprise-Level
Rules Tools

McConnell, 5.2: Figure 5-5. With a few communication rules, you can simplify subsystem interactions significantly

MANCHESTER

Different Levels of Modularity o4

The University of Manchester

Notice modularity,

() @ software system
encapsulation and
interfaces at different ')
levels ((_‘ @ Division into subsystems/packages
Subsystem k)
PaCkage 'E 3a : Y @ Division into classes within packages

1!
|
ann

Object L

ann

(@ Division into data and routines within classes

@ Internal routine design

1N
Il (2

Different Levels of Modularity

MANCHESTER
182

The University of Manchester

il W X O Q% WG BE S PLS Py 5 &
[# Package Explorer $3 (=N ¥ = B | [J] Logjava = 8
£ 2 LUV GUIS.HIGALLE IS JUWR L1HIGAN S 199UST 1 U] 135 }
» 0z com.oracle.max.tele.vm [maxine Issue#10] l;.;
» §25 com.oracle.max.tests [maxine Issue#10] 137 public static void printCString(Pointer cString) {
P 025 com.oracle.max.tests.jsr292 [maxine Issue#10] 138 out.printCString(cString);
P 055 com.oracle.max.tools [maxine Issue#10] 139 }
¥ i com.oracle.max.vm [maxine Issue#10] 149
v (st 141 /**
> £ com.sun.max.annotate ii: */Equlvalent to calling {@link LogPrintStream#printSymbol(CodePointer)} on {@link #out}.
> Eacom.sun.max.atonrlc 144 public static void printSymbol(CodePointer cp) {
> i com.sun.max.config 145 out.printSymbol(cp);
P com.sun.max.config.base 146 3}
> % com.sun.max.config.jdk 147
> f} com.sun.max.config.vm 148 /**
> Eacom.sun.max.lang 149 * Equivalent to calling {@link com.sun.max.vm.Log.LogPrintStream#printf(String, Object[])} on {@link #out}.
f? *
»> f com.sun.max.memory 150 /

151

> % com.sun.max.platform

»> f} com.sun.max.unsafe

¥ i com.sun.max.vm
» [Jf; AbstractvMScheme.java
> I:}E, AssertionsVMOption.java
4 EEBuiIdLeveI.java
> DB HostOnlyClassError.java
> I:JE, HostOnlyFieldError.java
> DE, HostOnlyMethodError.java
> [J} Intrinsics.java
» (1} JarFileVMOption.java
» |1} JavaAgentVMOption.java
»> [J} LineariDMap.java
» |1} Log.java

Bl e v=08

o= Outline 5%
4 com.sun.max.vm
v GE Log

> CEF LogOutputStream

> GF LogPrintStream
£ F BYTE_ARRAY_BASE_OFFSET : int
£ F CHAR_ARRAY_BASE_OFFSET : int
o % lockDepth : int
o %lockOwner : VmThread
&“Fos: OutputStream

public static void print(String...

for (String s : arr) {
out.print(s);
}
}

/**

* Equivalent to calling {@link

*/

public static void print(String
out.print(s, withNewlLine);

}

/#*

* Equivalent to calling {@link

*/

public static void print(String
out.print(s, width);

}

Vi

* Equivalent to calling {@link

*/

public static void print(Object
out.print(object);

}

public static void flush() {
out.flushQ);
}

arr) {

LogPrintStream#print(String, boolean)} on {@link #out}.

s, boolean withNewLine) {

s, int width) {

LogPrintStream#print(Object)} on {@link #out}.

object) {

Writable Smart Insert 2:1

11

MANCHESTER

Different Levels of Modularity o4

The University of Manchester

LOC: 891K (Java, C, Python, Assembly, Make etc.)
Files: 3957

Classes: 9788

Packages: ~100 packages

Projects: ~30

12

MANCHESTER

Different Levels of Modularity o0

The University of Manchester

13

Different Levels of Modularity

JUNIT

.api.test com.oracle.graal.graph.test com.oracle.graal.test

com.oracle.max.base

JDK_TOOLS

[

MANCHESTER

1824
The University of Manchester

com.oracle.graal.debug.test

com.oracle.max.asmdis €Com.ora

com.oracle.max.tools

com.oracle.max.vm

T

com.oracle.max.tests.jsr292

com.oracle.max.vm.ext.bctrans |:

MANCHESTER

The activity of design and when we do it 4

Design is an activity in many fields
e.g.: Architecture (for buildings), computer
architecture to code and test construction
Characteristics of software design

Knowledge in three kinds of domain:
Application, technical domain and design domains

Requires motivated choices and tradeoffs

Knows what to take account of, and
what to ignore

Multi-faceted and sometimes multi-level

MANCHESTER

Design is a Wicked Problem 1834

Horst Rittel and Melvin Webber defined a "wicked" problem as
one that could be clearly defined only by solving it, or by solving
part of it (1973). McConnell, 5.1

Change is a reality
Requirements and problem definitions change

Exogenously | the external world changes

e.g. a regulation is passed during development
Endogenously | triggered by the evolving system

e.g. people learn that they misunderstood the problem

Software development must cope
Methodologically | e.g. agile methods respond well to change
Architecturally | e.g. modularity lets us replace modules
Constructionally| e.g. robust test suites support change

Direction of Design

System Software

Top down %

Start with the general problem

Break it into manageable parts
Each part becomes a new problem
Decompose further
Bottom out with concrete code

Bottom up

Start with a specific capability
Implement it
Repeat until confident enough

to think about higher level \

Architecture
() @ software system
\ J
4 : R @ Division into subsyster
—]
(g = g 8 @ Divi Lo classe
g, NS c
C\
e
=
\ Wy,
Divi Lo dat 1
— =23 @
=
]]
—|_ &Em
— @ Internal routine design

pieces

Software construction

MANCHESTER

Opportunistic focus 184

Top down and bottom up aren’t exclusive

“Thinking from the top”

Focuses our attention on the whole system
“Thinking from the bottom”

Focuses our attention on concrete issues

Being able to choose where you focus your attention
opportunistically is a great help

For example working at the top level, you may wonder
will this really work, so you consider realisation at a
lower level of detail

Will have to rework the top level if it doesn’t work at a
greater level of detail

Exploring the Design Space

Wickedness suggests
we need to do stuff early
build experimental solutions

Three common forms
Spikes
Prototypes
Walking skeletons

MANCHESTER
1824

Spikes

Very small program to explore an issue
Scope of the problem is small
Often intended to determine specific
risk
Is this technology workable?
No expectation of keeping

MANCHESTER

Prototype 1824

Can have some small or large scope

Intended to demonstrate something, rather than
just’ find out about technology (a spike)

Mock ups through working code
Can be “on paper”!

Prototypes get thrown away
Or are intended to!

MANCHESTER

Walking Skeleton 184

Small version of “complete” system

“tiny implementation of the system that performs
a small end-to-end function. It need not use the
final architecture, but it should link together the
main architectural components. The architecture
and the functionality can then evolve in parallel.”
- Alistair Cockburn

Walking skeletons are meant to evolve into the
software system

Consider miniwc.pv!

http://alistair.cockburn.us/index.php/Walking_skeleton

